これに戻る 1)まず、”ZF上で実数は定義不可能”か? について ”実数”の意味を明確にしておく必要があるが、それを カントールの集合論における”実数”と規定する つまり、下記に出てくる 実数の連続性(実数の完備性 (completeness of the real numbers) とも)を、備えたものとする 2)そうすると、下記 いろいろ辿ると ”Choice principles in elementary topology and analysis Horst Herrlich”(1997) にたどり着いて、Equivalent are: "1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, " "5. R is a Lindel¨ of space, " "9. the Axiom of Choice for countable collections of subsets of R." "Equivalent are: " だと。つまり、"the Axiom of Choice for countable collections of subsets of R."でも " in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, " "R is a Lindel¨ of space, " までしか言えない、これが限界 (”Lindel¨ of”リンデレーエフは、下記ご参照) 3)ということは、"the Axiom of Choice for countable collections of subsets of R."を否定してしまうと ”実数”の連続性(実数の完備性)どころか、Lindelöfさえいえない。”in R, a point x”と”iff there exists a sequence in A\{x} that converges to x, ” との関係も言えない
結論:(ZFCではなく)ZF上で実数の定義では、カントールの集合論の”実数”には、到達しない 可算選択公理でさえ、R is a Lindel や in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, これが限界です 従属選択公理で、実数の連続性(実数の完備性)が言えるか(フルパワー選択公理でなく)
(参考) en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Independence Many theorems provable using choice are of an elegant general character: the cardinalities of any two sets are comparable
Statements implying the negation of AC There are models of Zermelo-Fraenkel set theory in which the axiom of choice is false. As any model of ZF¬C is also a model of ZF, it is the case that for each of the following statements, there exists a model of ZF in which that statement is true. ・There is a function f from the real numbers to the real numbers such that f is not continuous at a, but f is sequentially continuous at a, i.e., for any sequence {xn} converging to a, limn f(xn)=f(a). ・The real numbers are a countable union of countable sets.[39] This does not imply that the real numbers are countable: As pointed out above, to show that a countable union of countable sets is itself countable requires the Axiom of countable choice. つづく
en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice(ACω) 可算選択公理 Applications For instance, in order to prove that every accumulation point x of a set S⊆R is the limit of some sequence of elements of S∖{x}, one needs (a weak form of) the axiom of countable choice. When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω. Relation to other axioms Weaker systems Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice.[6] Equivalent forms
fr.wikipedia.org/wiki/Axiome_du_choix_d%C3%A9nombrable Axiome du choix dénombrable 仏語 可算選択の公理
Par exemple, afin de prouver que tout point d'accumulation x d'un ensemble S⊆R est la limite d'une suite d'éléments de S\{x}, on a besoin (d'une forme faible) de l'axiome du choix dénombrable. Lorsqu'il est formulé pour les points d'accumulation d'espaces métriques arbitraires, l'énoncé devient équivalent à ACω3. (google訳) たとえば、集合S ⊆ Rの累積点xがS \{ x }の要素シーケンスの極限であることを証明するには、可算選択公理の (弱い形式) が必要です。任意の計量空間の累積点について定式化すると、このステートメントは AC ω 3と等価になります。
There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between
89 名前:conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R -. R is continuous i. it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X -. R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1.
Notes et références 3.Pour d'autres énoncés équivalents à ACω, voir (en) Horst Herrlich, « Choice principles in elementary topology and analysis », Comment. Math. Univ. Carolinae, vol. 38, no 3,‎ 1997, p. 545-552 (lire en ligne [archive]) et (en) Paul Howard et Jean E. Rubin, Consequences of the Axiom of Choice, Providence, R.I., AMS, 1998.
archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R −→ R is continuous iff it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X −→ R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1. Proposition 1.2 ([15]). Equivalent are: 1. in R, every bounded infinite set contains a convergent injective sequence, 2. every infinite subset of R is Dedekind-infinite. There exist models of ZF that violate the above conditions ([18]). Obviously, the conditions of Theorem 1.1 imply the conditions of Proposition 1.2. Is the converse true? Observe that the following slight modifications of condition 1 in Proposition 1.2 hold in ZF: (a) in R, every bounded countable set contains a convergent injective sequence, (b) in R, for every bounded infinite set there exists an accumulation point.
<Lindelöfとは?> en.wikipedia.org/wiki/Lindel%C3%B6f_space Lindelöf space In mathematics, a Lindelöf space[1][2] is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.
(注:上記の”(*) a function f : R −→ R is continuous iff it is sequentially continuous. (*) holds in ZF (without any choiceassumptions) — see [29]”が、下記と思う) alg-d.com/math/ac/continuous.html トップ > 数学 > 選択公理 > 実数関数の連続性 壱大整域 20130323 一方,次の命題はZFで証明できる. 命題 f: R→Rとする. fがRで連続 ⇔ 収束点列 { xn }n=0∞に対して limn→∞f(xn) = f(limn→∞xn) 証明 略す
ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E3%81%AE%E9%80%A3%E7%B6%9A%E6%80%A7 実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。有理数はこの性質を持たない。 実数の連続性は、実数の完備性 (completeness of the real numbers) とも言われる また、実数の連続性を議論の前提とする立場であれば実数の公理と記述する場合もある。 なお、ここで言う連続性は、関数の連続性とは別の概念である。 実数の連続性と同値な命題 実数の連続性と同値な命題は多数存在する。順序体(位相は順序位相を入れる)において、実数の公理は
en.wikipedia.org/wiki/Compact_space Compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space.[1] The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers Q is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers R is not compact either, because it excludes the two limiting values +∞ and −∞. However, the extended real number line would be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.
<注:下記は、対角線論法でない 実数Rの非可算の証明の話> en.wikipedia.org/wiki/Cantor%27s_first_set_theory_article Cantor's first set theory article This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument. The title of the article, "On a Property of the Collection of All Real Algebraic Numbers" ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set of real algebraic numbers is countable. Cantor's article was published in 1874. In 1879, he modified his uncountability proof by using the topological notion of a set being dense in an interval.
<付録> これ面白いね Tarski–Grothendieck set theory (TG, named after mathematicians Alfred Tarski and Alexander Grothendieck) en.wikipedia.org/wiki/Tarski%E2%80%93Grothendieck_set_theory Tarski–Grothendieck set theory (TG, named after mathematicians Alfred Tarski and Alexander Grothendieck) is an axiomatic set theory. It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiomatic set theories by the inclusion of Tarski's axiom, which states that for each set there is a "Tarski universe" it belongs to (see below). Tarski's axiom implies the existence of inaccessible cardinals, providing a richer ontology than ZFC. For example, adding this axiom supports category theory. The Mizar system and Metamath use Tarski–Grothendieck set theory for formal verification of proofs. (引用終り) 以上
可算選択公理でさえ、R is a Lindel や in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, ↓ 可算選択公理でさえ、R is a Lindelöf や in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,
(参考) https://mathoverflow.net/questions/218874/some-axiom-of-choice-and-dependent-choice-issues mathoverflow Some "axiom of choice" and "dependent choice" issues asked Sep 21, 2015 Julian Newman
I am probably about to ask some fairly basic questions, and yet I have found it quite hard to find the answers to these.
If I understand correctly, mathematicians tend to be quite happy working with ZF+DC, but other forms of choice that are not implied by DC can be more controversial.
[Therefore it seems natural that people should give higher priority to discussing the differences in provable theorems between ZFC and ZF+DC -- or at least, the differences in provable theorems between ZFC and ZF+(countable choice) -- than to discussing the differences in provable theorems between ZFC and ZF. (Indeed, you basically can't do any analysis in just ZF.)]
My questions are:
Is it consistent with ZF+DC that every subset of R is Borel-measurable? If the answer to Q1 is no: Is it consistent with ZF+DC that a countably generated σ -algebra can have a cardinality strictly larger than that of the continuum? Is it a theorem of ZF+DC that there exists an injective map from the set ω1 of well-orderings of N into R ? Thanks. 回答 略す
使用例 このような公理が無いとしても、各 n について普通の帰納法によって最初の n 項を有限列としてとることはできる。 従属選択公理が主張しているのは、その極限であるような可算無限列が取れるということである。 公理 DC は AC の断片であって、超限帰納法の各ステップで選択をする必要があって、それまでの選択に独立した選択ができない場合に、可算長の列を構成するのに必要である。
en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem History It turned out, though, that in first-order logic the well-ordering theorem is equivalent to the axiom of choice, in the sense that the Zermelo–Fraenkel axioms with the axiom of choice included are sufficient to prove the well-ordering theorem, and conversely, the Zermelo–Fraenkel axioms without the axiom of choice but with the well-ordering theorem included are sufficient to prove the axiom of choice. (The same applies to Zorn's lemma.) In second-order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.[7]
なお、"可算選択公理無し"の話は、下記のen.wikipedia Cauchy sequence で ”Moduli of Cauchy convergence are used by constructive mathematicians who do not wish to use any form of choice” とあるので、ここまでは可です
ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%97 コーシー列 点列 (xn) が 略 数列の場合と同じく点列がコーシー的であるなどという これは、座標の各成分が全てコーシー数列を成すことと等価である また、やはり数列の場合と同様に、Rk における点列 (xn) がコーシー性を持つならば、十分大きな番号 n に対応する点 xn は例外なく全て、ある非常に小さな直径を持つ k 次元球体に含まれる 複素数全体の集合 C を座標平面 R2 と同一視してガウス平面と考えれば、複素数列は平面上の点の列であり、複素空間 Ck 内のコーシー列も同様に考えることができる
en.wikipedia.org/wiki/Cauchy_sequence Cauchy sequence Modulus of Cauchy convergence Any sequence with a modulus of Cauchy convergence is a Cauchy sequence. The existence of a modulus for a Cauchy sequence follows from the well-ordering property of the natural numbers The existence of a modulus also follows from the principle of countable choice. Moduli of Cauchy convergence are used by constructive mathematicians who do not wish to use any form of choice. Using a modulus of Cauchy convergence can simplify both definitions and theorems in constructive analysis. Regular Cauchy sequences were used by Bishop (2012) and by Bridges (1997) in constructive mathematics textbooks.
In a metric space Since the definition of a Cauchy sequence only involves metric concepts, it is straightforward to generalize it to any metric space X.
Completeness A metric space (X, d) in which every Cauchy sequence converges to an element of X is called complete.
下記ですね ”When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω.”
(参考) en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice
Applications For instance, in order to prove that every accumulation point x of a set S⊆R is the limit of some sequence of elements of S∖{x}, one needs (a weak form of) the axiom of countable choice. When formulated for accumulation points of arbitrary metric spaces, the statement becomes equivalent to ACω.
下記で ”assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers.” google訳 ”可算選択公理を前提とすると、集合の濃度(集合の要素の数)が自然数の濃度より大きくない場合、その集合は可算です。有限でない可算集合は可算無限であると言われます。”
これ 百回音読してね ;p)
(参考) https://en.wikipedia.org/wiki/Countable_set Countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers.[a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.
In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite.
>>129より再録 ”assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers.”
なので、”assuming the axiom of countable choice”を採用します つまり、可算選択公理より、可算整列定理が従います
(参考) en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof of axiom of choice The axiom of choice can be proven from the well-ordering theorem as follows. To make a choice function for a collection of non-empty sets, E, take the union of the sets in E and call it X. There exists a well-ordering of X; let R be such an ordering. The function that to each set S of E associates the smallest element of S, as ordered by (the restriction to S of) R, is a choice function for the collection E.■ An essential point of this proof is that it involves only a single arbitrary choice, that of R; applying the well-ordering theorem to each member S of E separately would not work, since the theorem only asserts the existence of a well-ordering, and choosing for each S a well-ordering would require just as many choices as simply choosing an element from each S.
イタリア版 (google英訳) it.wikipedia.org/wiki/Teorema_del_buon_ordinamento Well-ordering theorem Dependence of the axiom of choice We show that if every set is well-orderable, the axiom of choice holds. Given a family F, we would like to find a function f:F→∪X∈F X such that ∀X∈F,f(X)∈X. But on ∪X∈F X we can establish a well order < . Then, by the definition of well order, given a set X∈F, which will be a subset of ∪X∈F X we can find a minimal element.
The functionf(X)=min{y∈(X,<)} is a good choice function, since it is defined for each X and f(X)∈X. (引用終り)
証明のポイントは、 ”For every ordinal α, define an element aα that is in A by setting aα=f(A∖{aξ∣ξ<α}) ” の部分です。aα=f(A∖{aξ∣ξ<α})の部分が、選択公理における選択関数を成す A∖{aξ∣ξ<α}が集合族で、選択関数の定義域ですね
(参考) en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem 整列可能定理 Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9]
Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα=f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}.■
(参考) alg-d.com/math/ac/countable_union.html 可算和定理 壱大整域 命題「可算個の可算集合の和集合は可算集合」を可算和定理という.可算和定理は選択公理が無ければ証明できない. 証明 M を ZFC+GCH の可算推移的モデルとする.以下を満たす関数 p 全体がなす集合を P とする. 以下略
(参考) ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88 整列集合 導入 自然数全体の成す集合 N が通常の大小関係 "<" に関して整列集合となるという事実は、一般に整列原理と呼ばれる。 (選択公理に同値な)整列可能定理は、任意の集合が整列順序付け可能であることを主張するものである。整列可能定理はまたツォルンの補題とも同値である
en.wikipedia.org/wiki/Well-order Well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The observation that the natural numbers are well ordered by the usual less-than relation is commonly called the well-ordering principle (for natural numbers).
en.wikipedia.org/wiki/Well-ordering_principle Well-ordering principle In mathematics, the well-ordering principle states that every non-empty subset of nonnegative integers contains a least element.[1] Properties Depending on the framework in which the natural numbers are introduced, this (second-order) property of the set of natural numbers is either an axiom or a provable theorem. For example:
(参考) https://en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Results requiring AC (or weaker forms) but weaker than it ・Set theory ・The union of any countable family of countable sets is countable (this requires countable choice but not the full axiom of choice). (google訳) AC(またはより弱い形式)を必要とするが、それよりも弱い結果 ・集合論 ・可算集合の任意の可算族の和集合は可算です (これには可算な選択が必要ですが、選択公理の完全版は必要ありません)。
(参考) ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%9B%86%E5%90%88 可算集合 定義 可算集合とは N と濃度が等しい集合のことである[1]。すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう[2][3]。
en.wikipedia.org/wiki/Cantor%27s_first_set_theory_article Cantor's first set theory article (google訳) カントールの最初の集合論の論文には、無限集合とその性質を研究する超限集合論におけるゲオルク・カントールの最初の定理が含まれている。これらの定理の1つは、すべての実数の集合は可算無限ではなく非可算無限であるという「革命的な発見」である。[ 1 ]この定理は、カントールの最初の非可算性の証明を使用して証明されており、これは対角線論法を使用したより一般的な証明とは異なる。論文のタイトル「すべての実代数的数の集合の特性について」("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen") は、その最初の定理である、実代数的数の集合は可算であることを指し示している。カントールの論文は1874年に発表された。1879年、彼は集合が区間内に 稠密であるという位相的な概念を使用して非可算性の証明を修正した。
記事 カントールの論文は短く、4ページ半未満である。[ A ]論文は実代数的数の議論と彼の第一定理の記述で始まる。実代数的数の集合は正の整数の集合と1対1に対応させることができる。[ 3 ]カントールはこの定理を当時の数学者に馴染みのある言葉で言い換える。「実代数的数の集合は、各数が1回だけ現れる無限列として表すことができる。」[ 4 ]
カントールの第二定理は、実数 ≥ aかつ ≤ bの集合である 閉区間[ a , b ] で機能します。定理は次のように述べています。実数列x 1、x 2、x 3、... と任意の区間 [ a、 b ] が与えられた場合、[ a、 b ] には、与えられた列に含まれない数があります。したがって、そのような数は無限にあります。 [ 5 ]
カントルは、2つの定理を組み合わせると、すべての区間[ a、 b ]には無限の超越数が含まれるというリウヴィルの定理の新たな証明が得られると指摘している。[ 5 ]
Cantor's 1879 uncountability proof Everywhere dense 略す Cantor's 1879 proof 略す The development of Cantor's ideas 略す A misconception about Cantor's work (google訳) カントルの作品に関する誤解 集合論を専門とする金森明宏は、「カントールの研究に関する記述は、超越数の存在を推論する順序をほとんど逆にしており、まず実数の不可算性を証明し、次に代数的数の可算性から存在の結論を導き出している。教科書ではこの逆転は避けられないのかもしれないが、これはカントールの議論が非構成的であるという誤解を助長している」と述べている。[ 29 ] (引用終り) 以上
>>83-84 より再録 fr.wikipedia.org/wiki/Axiome_du_choix_d%C3%A9nombrable Axiome du choix dénombrable 仏語 可算選択の公理 (google訳) たとえば、集合S ⊆ Rの累積点xがS \{ x }の要素シーケンスの極限であることを証明するには、可算選択公理の (弱い形式) が必要です。任意の計量空間の累積点について定式化すると、このステートメントは AC ω 3と等価になります。 誤解 一般的に誤解されているのは、AC ωには反復性があるため、帰納法によって (ZF または同等のシステム、またはより弱いシステムでさえも) 定理として証明できるということです。しかし、そうではありません。この誤った考えは、可算選択の概念と、サイズ n の有限集合(n は任意に選択) に対する有限選択の概念との混同の結果であり、後者の結果です (組み合わせ分析の初等定理です)。それは帰納法で証明できます。 (google 仏→英 訳) There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R -. R is continuous i. it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X -. R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1.
Notes et références 3.Pour d'autres énoncés équivalents à ACω, voir (en) Horst Herrlich, « Choice principles in elementary topology and analysis », Comment. Math. Univ. Carolinae, vol. 38, no 3,‎ 1997, p. 545-552 (lire en ligne [archive]) et (en) Paul Howard et Jean E. Rubin, Consequences of the Axiom of Choice, Providence, R.I., AMS, 1998.
archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R −→ R is continuous iff it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X −→ R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1. Proposition 1.2 ([15]). Equivalent are: 1. in R, every bounded infinite set contains a convergent injective sequence, 2. every infinite subset of R is Dedekind-infinite. There exist models of ZF that violate the above conditions ([18]). Obviously, the conditions of Theorem 1.1 imply the conditions of Proposition 1.2. Is the converse true? Observe that the following slight modifications of condition 1 in Proposition 1.2 hold in ZF: (a) in R, every bounded countable set contains a convergent injective sequence, (b) in R, for every bounded infinite set there exists an accumulation point. (引用終り) 以上
1)可算選択の公理なしで、コーシー列の収束が言えることと 上記 fr.wikipedia 可算選択公理における下記の記述とは、矛盾しない と思う ”Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1.”
2)つまり、可算選択の公理なしで、コーシー列の収束が言えるとして その上で、可算選択公理を認めると ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ”4. each subspace of R is separable,” ”5. R is a Lindel¨ of space,” 成立!
3)というか、”9. the Axiom of Choice for countable collections of subsets of R.” と、Equivalent である!
(参考) en.wikipedia.org/wiki/Separable_space Separable space In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence {xn}n=1〜∞ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (thou
257 名前:gh, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset.
>>239 (引用開始) 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, (引用終り)
1)リンデレフ空間 までしか言えてない ;p) 2)Rだと、Compact space なのだが・・、下記 Compact space Metric spaces の項 で、”For any metric space (X, d), the following are equivalent (assuming countable choice)” とあって、 ”3.(X, d) is sequentially compact; that is, every sequence in X has a convergent subsequence whose limit is in X (this is also equivalent to compactness for first-countable uniform spaces). 4.(X, d) is limit point compact (also called weakly countably compact); that is, every infinite subset of X has at least one limit point in X.” か・・ 3)とすると、(assuming countable choice) ならば、>>239より ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” だから、不足しているのは Rが ”Metric” であることだが。”Rが Metric”をいうには、countable choice だけでは 不足なのかな?
(参考) https://en.wikipedia.org/wiki/Lindel%C3%B6f_space Lindelöf space https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%B3%E3%83%87%E3%83%AC%E3%83%95%E7%A9%BA%E9%96%93 リンデレフ空間(英: Lindelöf space; リンデレーフ空間)は、任意の開被覆が可算部分被覆を持つような位相空間である。リンデレフ性は、有限部分被覆の存在を要求するコンパクト性の概念を弱めたものである。
(原文) Metric spaces For any metric space (X, d), the following are equivalent (assuming countable choice): 1.(X, d) is compact. 2.(X, d) is complete and totally bounded (this is also equivalent to compactness for uniform spaces).[14] 3.(X, d) is sequentially compact; that is, every sequence in X has a convergent subsequence whose limit is in X (this is also equivalent to compactness for first-countable uniform spaces). 4.(X, d) is limit point compact (also called weakly countably compact); that is, every infinite subset of X has at least one limit point in X. 5.(X, d) is countably compact; that is, every countable open cover of X has a finite subcover. 6.(X, d) is an image of a continuous function from the Cantor set.[15] 7.Every decreasing nested sequence of nonempty closed subsets S1 ⊇ S2 ⊇ ... in (X, d) has a nonempty intersection. 8.Every increasing nested sequence of proper open subsets S1 ⊆ S2 ⊆ ... in (X, d) fails to cover X. (引用終り)
>>242 (引用開始) 3)とすると、(assuming countable choice) ならば、>>239より ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” だから、不足しているのは Rが ”Metric” であることだが。”Rが Metric”をいうには、countable choice だけでは 不足なのかな? (引用終り)
下記 Construction of the real numbers の Construction from Cauchy sequences で metric spaces として completion(完備)までやっているが、どの選択公理を使うかの記述がない ”axiom of dependent choice”だと思うのだが・・ (^^
(参考) https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Construction of the real numbers Explicit constructions of models
Construction from Cauchy sequences A standard procedure to force all Cauchy sequences in a metric space to converge is adding new points to the metric space in a process called completion. R is defined as the completion of the set Q of the rational numbers with respect to the metric |x − y| Normally, metrics are defined with real numbers as values, but this does not make the construction/definition circular, since all numbers that are implied (even implicitly) are rational numbers.[5]
An advantage of constructing R as the completion of Q is that this construction can be used for every other metric spaces.
つまり、整列可能定理は公理として、有理コーシー列で有理数Qの完備化を可能として ↓ つまり、整列可能定理は公理として、x∈R subset A⊂R で 有理コーシー列 a sequence in A\{x} that converges to x で有理数Qの完備化を可能として(但し、RをcompactにするためDCを使用>>261)
(参考) >>236より下記(Equivalent are:1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, & 9. the Axiom of Choice for countable collections of subsets of R.) archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1. These may lead one to assume that also the following property is equivalent to the above conditions: (*) a function f : R −→ R is continuous iff it is sequentially continuous. However, this would be a serious mistake: (*) holds in ZF (without any choiceassumptions) — see [29]. If, however, we consider functions f : X −→ R with metric domain we need even more choice than in Theorem 1.1, — see Theorem 2.1.
赤ペン先生、入ります!ww ;p) 「なんで整列定理が必要と思ったの?」については、下記のHorst Herrlichの ”Theorem 2.4 ([4], [14]). Equivalent are: 1. in a (pseudo)metric space X, a point x is an accumulation point of a subset A iff there exists a sequence in A\ {x} that converges to x, 略す 17. the Axiom of Countable Choice.” を、百回音読してね ;p)
なお、下記のソロヴェイモデル 到達不能基数+ ”ZF + DC を満たしで 実数集合が全てルベーグ可測で perfect set property を持ち、ベールの性質を持つものになっている” ここの部分は、到達不能基数が ZFCの外です だから、到達不能基数+”ZF + DC と、”17. the Axiom of Countable Choice”は、直ちには矛盾していないことを付言しておきます ;p) (本音は、良く分からないw)
(参考) 下記(Equivalent are:1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, & 9. the Axiom of Choice for countable collections of subsets of R.) archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich P546 2. In the realm of pseudometric spaces In this section we consider (pseudo)metric spaces and various compactness-notions for them.
Theorem 2.1 ([4], [15]). Equivalent are: 1. every separable pseudometric space is a Lindel¨ of space, 2. every pseudometric space with a countable base is a Lindel¨ of space, 3. the Axiom of Choice for countable collections of subsets of R.
Definition 2.2. A pseudometric space X is called 1. Heine-Borel-compact provided every open cover of X contains a finite one, 2. Weierstraß-compact provided for every infinite subset of X there exists an accumulation point, 3. Alexandroff-Urysohn-compact provided for every infinite subset of X there exists a complete accumulation point, 4. sequentially-compact provided every sequence in X has a convergent subsequence. Under the Axiom of Choice the above compactness concepts are equivalent. This is no longer the case in ZF.
Theorem 2.4 ([4], [14]). Equivalent are: 1. in a (pseudo)metric space X, a point x is an accumulation point of a subset A iff there exists a sequence in A\ {x} that converges to x, 略す 17. the Axiom of Countable Choice. The Axiom of Dependent Choices implies the Baire Category Theorem for complete pseudometric spaces, and the latter implies the Axiom of Countable Choice.
(参考) ja.wikipedia.org/wiki/%E3%82%BD%E3%83%AD%E3%83%B4%E3%82%A7%E3%82%A4%E3%83%A2%E3%83%87%E3%83%AB ソロヴェイモデルはロバート M. ソロヴェイ (1970)によって構成されたモデルでツェルメロ=フレンケル集合論 (ZF) の全ての公理が成り立ち、選択公理を除去し、実数の集合が全てルベーグ可測であるようにしたものである。この構成は到達不能基数の存在に依拠している。 構成 ソロヴェイはそのモデルを二つのステップによって構成した。まず初めに、到達不能基数 κ を含む ZFC のモデル M から始める。 略す 二つ目のステップではソロヴェイのモデル N として、M[G] の中で順序数の可算列で遺伝的に定義可能な集合全てからなるクラスを考える。このモデル N は M[G] の内部モデルであって ZF + DC を満たし、実数集合が全てルベーグ可測で perfect set property を持ち、ベールの性質を持つものになっている。この証明には、M[G] の実数は全て順序数の可算列を用いて定義可能であり、N と M[G] が同じ実数を持っていることを使う。 略す (引用終り) 以上
(参考) archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich P546 2. In the realm of pseudometric spaces In this section we consider (pseudo)metric spaces and various compactness-notions for them.
Definition 2.2. A pseudometric space X is called 1. Heine-Borel-compact provided every open cover of X contains a finite one, 2. Weierstraß-compact provided for every infinite subset of X there exists an accumulation point, 3. Alexandroff-Urysohn-compact provided for every infinite subset of X there exists a complete accumulation point, 4. sequentially-compact provided every sequence in X has a convergent subsequence. Under the Axiom of Choice the above compactness concepts are equivalent. This is no longer the case in ZF.
Theorem 2.4 ([4], [14]). Equivalent are: 1. in a (pseudo)metric space X, a point x is an accumulation point of a subset A iff there exists a sequence in A\ {x} that converges to x, 略す 17. the Axiom of Countable Choice. The Axiom of Dependent Choices implies the Baire Category Theorem for complete pseudometric spaces, and the latter implies the Axiom of Countable Choice.
>>270 >Choice principles in elementary topology and analysis Horst Herrlich
Horst Herrlichは、下記か 大物ですな (^^
(参考) en.wikipedia.org/wiki/Horst_Herrlich Horst Herrlich (11 September 1937, in Berlin – 13
304 名前: March 2015, in Bremen) was a German mathematician, known as a pioneer of categorical topology.
Education and career From 1971 to 2002 Herrlich was a professor of mathematics with a focus on general topology and category theory at the University of Bremen.
He was an Invited Speaker of the International Congress of Mathematicians in 1974 in Vancouver.[4] He is regarded as a founder of categorical topology, which deals with general topology using the methods of category theory.
books.google.co.jp/books?id=_0cDCAAAQBAJ&redir_esc=y Axiom of Choice 前表紙 Horst Herrlich Springer, 2006/07/21 - 198 ページ AC, the axiom of choice, because of its non-constructive character, is the most controversial mathematical axiom, shunned by some, used indiscriminately by others. This treatise shows paradigmatically that:
- Disasters happen without AC: Many fundamental mathematical results fail (being equivalent in ZF to AC or to some weak form of AC).
- Disasters happen with AC: Many undesirable mathematical monsters are being created (e.g., non measurable sets and undeterminate games).
- Some beautiful mathematical theorems hold only if AC is replaced by some alternative axiom, contradicting AC (e.g., by AD, the axiom of determinateness).
Illuminating examples are drawn from diverse areas of mathematics, particularly from general topology, but also from algebra, order theory, elementary analysis, measure theory, game theory, and graph theory. []
下記”The axiom of choice in metric measure spaces and maximal δ-separated sets” ”可算選択公理は、擬距離空間上のボレル測度の存在が、開球の測度が正で有限であることから、その空間の可分性を意味することを証明するのに必要かつ十分であることを示す” ボレル測度や、ルベーグ測度を作るのに、ZFCが必要か はたまた ZF+DC(従属選択)でよいのか? それが問題だ by ハムレット ;p) 調査中
(参考) link.springer.com/article/10.1007/s00153-023-00868-4 Archive for Mathematical Logic The axiom of choice in metric measure spaces and maximal δ-separated sets Michał Dybowski & Przemysław Górka Volume 62 (2023) Abstract We show that the Axiom of Countable Choice is necessary and sufficient to prove that the existence of a Borel measure on a pseudometric space such that the measure of open balls is positive and finite implies separability of the space. In this way a negative answer to an open problem formulated in Górka (Am Math Mon 128:84–86, 2020) is given. Moreover, we study existence of maximal δ-separated sets in metric and pseudometric spaces from the point of view the Axiom of Choice and its weaker forms. (google訳) 可算選択公理は、擬距離空間上のボレル測度の存在が、開球の測度が正で有限であることから、その空間の可分性を意味することを証明するのに必要かつ十分であることを示す このようにして、Górka (Am Math Mon 128:84–86, 2020) で定式化された未解決問題に対する否定的な答えが与えられる
www.sciencedirect.com/science/article/pii/S0166864197000400?via%3Dihub Topology and its Applications Volume 82, Issues 1–3, 23 January 1998, Pages 3-14 T. Hoshina 、J.
Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9]
Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}.
>> 「A∖{aξ∣ξ<α} が空となれば完結する、ということだと思うけど >> そのようなξが存在する、という保証は?」 > wikipedia の証明の最後 > ”a well-order of A as desired, of order type sup{α∣aα is defined}.” > が、”そのようなξが存在する、という保証”だね
それ、肝心の sup{α∣aα is defined} の存在を保証してないけど 英語読めない? それとも日本語に翻訳してもそもそも文章が読めない? 前者なら、英語勉強して 後者なら、国語勉強して
集合の濃度と基数 →詳細は「濃度 (数学)」を参照 集合 A から集合 B への全単射が存在するとき、A と B は同数 (equinumerous) であるといい、A ≈ B で表す。 選択公理を仮定すれば、整列定理により任意の集合 A に対して A と同数であるような順序数が存在することが言える。***) そこで、集合 A と同数であるような順序数の中で最小のものを A の濃度 (cardinality of A) といい、これを |A| あるいは card(A) で表す。ある集合 A に対して α = |A| である順序数 α を基数 (cardinal number) と呼ぶ。集合の濃度に関して次が成り立つ: |A| = |B| ⇔ A ≈ B A が有限集合のとき、|A| は A の要素の個数に等しい。 基数に対しても、上で定義した順序数の演算とは別に和、積、冪を定義することができる。
en.wikipedia.org/wiki/Scott%27s_trick Scott's trick In set theory, Scott's trick is a method for giving a definition of equivalence classes for equivalence relations on a proper class (Jech 2003:65) by referring to levels of the cumulative hierarchy. The method relies on the axiom of regularity but not on the axiom of choice. It can be used to define representatives for ordinal numbers in ZF, Zermelo–Fraenkel set theory without the axiom of choice (Forster 2003:182). The method was introduced by Dana Scott (1955).
377 名前:Eスチュアート・スコット (英語:Dana Stewart Scott、1932年10月11日 - )はアメリカの計算機科学者、数学者、論理学者。数学的に難しい問題についての素養に基づき、非形式的だが厳格な方法で計算機科学・論理学・哲学にまたがる領域の根本的概念を明確化させてきた。オートマトン理論についての業績により1976年にチューリング賞を受賞。1970年代にはクリストファー・ストレイチーと共同でプログラム意味論への新たなアプローチを基礎付けた。様相論理、位相幾何学、圏論などでも業績を残している。
en.wikipedia.org/wiki/Dana_Scott Dana Stewart Scott (born October 11, 1932) is an American logician who is the emeritus Hillman University Professor of Computer Science, Philosophy, and Mathematical Logic at Carnegie Mellon University;[1] he is now retired and lives in Berkeley, California. (引用終り) 以上 []
>>363 Cantor en.wikipedia に、興味深い記述があった(下記) ”彼はユリウス・ケーニヒが第三回国際数学者会議で発表した論文に憤慨し動揺した。その論文は超限集合論の基本原理が誤りであることを証明しようとしたものだった。その論文が娘たちや同僚の前で読まれたため、カントルは公に辱められたと感じた。エルンスト・ツェルメロが1日も経たないうちにケーニッヒの証明が失敗したことを証明したが、カントルは動揺したままで、一瞬神に疑問を抱いた。カントルはその後生涯慢性的な鬱病に苦しみ・・” とある
en.wikipedia.org/wiki/Georg_Cantor Georg 略 Cantor ( March 1845 – 6 January 1918) (google訳) Teacher and researcher 1889年、カントルはドイツ数学会の設立に尽力し、1891年にハレで開催された同会の第一回会合で議長を務め、対角線上の議論を初めて発表した。カントルの評判は高く、クロネッカーが反対したにもかかわらず、同会の初代会長に選出された。クロネッカーがカントルに対して示した敵意をよそに、カントルはクロネッカーを会合で講演するよう招いたが、当時、妻がスキー事故で負傷し瀕死の状態だったため、講演はできなかった。ゲオルク・カントルは、1897年にスイスのチューリッヒで開催された第一回国際数学者会議の設立にも尽力した
Later years and death 2度目の入院から間もなく、12月16日にカントルの末息子ルドルフが急死し(カントルはベーコン理論とウィリアム・シェイクスピアについての自身の見解を講義中だった)、この悲劇でカントルの数学に対する情熱は大きく失われた 1年後、彼はユリウス・ケーニヒが第三回国際数学者会議で発表した論文に憤慨し動揺した。その論文は超限集合論の基本原理が誤りであることを証明しようとしたものだった。その論文が娘たちや同僚の前で読まれたため、カントルは公に辱められたと感じた。エルンスト・ツェルメロが1日も経たないうちにケーニッヒの証明が失敗したことを証明したが、カントルは動揺したままで、一瞬神に疑問を抱いた。 カントルはその後生涯慢性的な鬱病に苦しみ、そのために何度か教職を免除され、さまざまな療養所に繰り返し入所した。1904年の出来事の後、2、3年の間隔で入院を繰り返した。しかし、彼は数学を完全に放棄したわけではなく、 1903年にドイツ数学者協会の会合で集合論のパラドックス(ブラーリ・フォルティのパラドックス、カントルのパラドックス、ラッセルのパラドックス)について講義し、1904年にはハイデルベルクで開催された国際数学者会議に出席した
(参考) en.wikipedia.org/wiki/Gyula_K%C5%91nig Gyula Kőnig (16 December 1849 – 8 April 1913) was a mathematician from Hungary. His mathematical publications in German appeared under the name Julius König.
Kőnig and set theory he published a paper that claimed to prove that not all sets could be well-ordered. Contrary to Cantor, presently the majority of mathematicians considers undefinable numbers not as absurdities. This assumption leads, according to Kőnig, in a strangely simple way to the result that the continuum cannot get well-ordered. If we imagine the elements of the continuum as a well-ordered set, those elements which cannot be finitely defined form a subset of that well-ordered set which certainly contains elements of the continuum. Hence in this well-order there should be a first not finitely definable element, following upon all finitely definable numbers. This is impossible. This number has just been finitely defined by the last sentence. The assumption that the continuum could be well-ordered has led to a contradiction.
Kőnig's conclusion is not stringent. His argument does not rule out the possibility that the continuum can be well-ordered; rather, it rules out the conjunction of "the continuum can be well-ordered by a definition in language L" and "the property of being definable in language L is itself definable in language L". The latter is no longer generally held to be true. For an explanation compare Richard's paradox.
en.wikipedia.org/wiki/Paradoxes_of_set_theory Paradoxes of set theory Paradoxes by change of language König's paradox In 1905, the Hungarian mathematician Julius König published a paradox based on the fact that there are only countably many finite definitions. If we imagine the real numbers as a well-ordered set, those real numbers which can be finitely defined form a subset. Hence in this well-order there should be a first real number that is not finitely definable. This is paradoxical, because this real number has just been finitely defined by the last sentence. This leads to a contradiction in naive set theory. This paradox is avoided in axiomatic set theory. Although it is possible to represent a proposition about a set as a set, by a system of codes known as Gödel numbers, there is no formula φ(a,x) in the language of set theory which holds exactly when a is a code for a finite proposition about a set, x is a set, and a holds for x. This result is known as Tarski's indefinability theorem; it applies to a wide class of formal systems including all commonly studied axiomatizations of set theory.
In 1905 he published a paper that claimed to prove that not all sets could be well-ordered. It is easy to show that the finitely defined elements of the continuum form a subset of the continuum of cardinality ℵ0. The reason is that such a definition must be given completely by a finite number of letters and punctuation marks, only a finite number of which is available. (引用終り) 以上
>>102 より 2)次に、下記 Well-ordering theorem :the well-ordering theorem is equivalent to the axiom of choice 要するに 選択公理(無制限) ←→ 整列可能定理 (列長さ 無制限) 従属選択公理(可算無限ω以上だが制限あり) ←→ 従属整列可能定理 (列長さ 可算無限以上だが制限あり)*) 可算選択公理(可算無限ωに制限) ←→ 可算整列可能定理 (列長さ 可算無限ωに制限) *) 有限選択定理(有限に制限) ←→ 有限整列可能定理 (列長さ 有限に制限) 追加の注) *) 逆 ←は、可算和定理を認めた上で、選択公理の集合族について、各集合を可算に制限することとする そうすると、可算和定理より 可算の集合の 可算個の族は可算になる なお、可算和定理は選択公理が無ければ導けないが、逆の可算和定理→選択公理は導けないと思われる なので、可算和定理は選択公理より弱い仮定になる(可算和定理→可算選択公理が導けないかどうかは知らず) なお、限られた条件下を前提として、可算選択公理と 可算整列可能定理の類似が、equivalent 例えば下記のHorst Herrlich ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,”と”9. the Axiom of Choice for countable collections of subsets of R.” ∵A\{x} ∪{x} を 一種の可算無限列構成と見て equivalent to "the Axiom of Choice for countable collections of subsets of R"だと (引用終り)
>>154より alg-d.com/math/ac/countable_union.html 可算和定理 壱大整域 命題「可算個の可算集合の和集合は可算集合」を可算和定理という.可算和定理は選択公理が無ければ証明できない. 証明 M を ZFC+GCH の可算推移的モデルとする.以下を満たす関数 p 全体がなす集合を P とする.以下略
>>84より archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). (引用終り) 以上
>>310より再録と補足 en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal (number) α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り)
1)さて 海賊版サイトより (.pdf 正確なリンクは貼らない。著作権問題は 各人の責任でお願いいたします) Set Theory T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) 冒頭 ”Proof. Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence{ aα : α < θ }that enumerates A . と始まり 途中は ほぼ上記と同じ(記法が少し異なっている) 最後 ”Clearly, {aα : α <θ} enumerates A.”となっている (enumerate = 列挙 また、α は 順序数の添え字。α <θ は、ある順序数θ未満のα という意味だろう)
>>404 戻る (引用開始) en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice Let the set we are trying to well-order be A, (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) 冒頭 ”Proof. Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence{ aα : α < θ }that enumerates A . と始まり 途中は ほぼ上記と同じ(記法が少し異なっている) 最後 ”Clearly, {aα : α <θ} enumerates A.”となっている (enumerate = 列挙 また、α は 順序数の添え字。α <θ は、ある順序数θ未満のα という意味だろう) (引用終り)
さて、 1)冒頭 ”of order type sup{α∣aα is defined}.”の部分は、平たくいえば 整列させようとする集合Aについて、集合Aは濃度を持つので、その濃度から 対応する 順序数の列長さが決まる それを、”of order type sup{α∣aα is defined}.”と書いたり、 ” it suffices to construct a transfinite one-to-one sequence{ aα : α < θ }that enumerates A”、最後 ”Clearly, {aα : α <θ} enumerates A.” としているのでしょう 2)なお、トマーシュ・イェフ(Tomáš Jech, 1944年1月29日 - )さん、基礎論の世界では有名らしい で、”大著『集合論』(Set Theory)はその後も改訂を重ね、公理的集合論における代表的な教科書として読み継がれている” とあります。en.wikipediaの証明は、そこに依拠している
1978年に出版された大著『集合論』(Set Theory)はその後も改訂を重ね、公理的集合論における代表的な教科書として読み継がれている。 Thomas J. Jech, Set Theory, Academic Press, 1978. 2nd ed., Springer, 1997. 3rd ed., Springer, 2002 (ISBN 9783540440857).
https://en.wikipedia.org/wiki/Thomas_Jech Thomas J. Jech (Czech: Tomáš Jech, pronounced [ˈtomaːʃ ˈjɛx]; born 29 January 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years.
External links https://web.archive.org/web/20120504114504/www.math.cas.cz/~jech/ Home page Archived 2012-05-04 at the Wayback Machine, with a copy at Penn state.
>>422 (引用開始) en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice Let the set we are trying to well-order be A, (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) 冒頭 ”Proof. Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence{ aα : α < θ }that enumerates A . と始まり 途中は ほぼ上記と同じ(記法が少し異なっている) 最後 ”Clearly, {aα : α <θ} enumerates A.”となっている (enumerate = 列挙 また、α は 順序数の添え字。α <θ は、ある順序数θ未満のα という意味だろう) (引用終り)
それでは、海賊版のThomas Jechの 証明を 転記しておくからw 頑張れぇ〜!ww ;p) P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■ 以上
>>464 > おサルか サルは大学1年の4月で数学落ちこぼれた阪大工学部卒の凡人君だろ > 自分が書いた証明を、他人になりすまして評論か? ばれて居るぞ! 誰でも彼でも皆同一人物と思い込むのは妄想性人格障害 > それでは、海賊版のThomas Jechの 証明を 転記しておくから 頑張れぇ〜! 頑張るのは阪大工学部卒の君だよ、キミ この文章読める? ”we can do by induction, using a choice function f for the family S of all nonempty subsets of A.” ああ、ごめんごめん。きみ、英語全く読めないニホンザルだったな。翻訳しとくわ。 「Aのすべての空でない部分集合の族Sに対する選択関数fを用いて、帰納的に行うことができる。」
Aのすべての空でない部分集合の族S(family S of all nonempty subsets of A)って書いてあるの読める?
さて >>465 より (引用開始) ”we can do by induction, using a choice function f for the family S of all nonempty subsets of A.” ああ、ごめんごめん。きみ、英語全く読めないニホンザルだったな。翻訳しとくわ。 「Aのすべての空でない部分集合の族Sに対する選択関数fを用いて、帰納的に行うことができる。」 (引用終り)
一方 >>464 より それでは、海賊版のThomas Jechの 証明を 転記しておくからw P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
5)また、上記 Jech ”That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A.”は 下記のen.wikipedia の Well-ordering theoremの証明では、省かれているよ 溺れる者は藁をもつかむだろうw ;p) さらに、Jech ”Let θ be the least ordinal such that A = {αξ: ξ < θ}.” が、下記 en.wikipedia の Well-ordering theoremの証明の ”of order type sup{α∣aα is defined}.”に対応している
(参考)>>310より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. (引用終り) 以上
>Jech ”That we can do by induction, using a choice function f for the family S of all nonempty subsets of A.”は >下記のen.wikipedia の Well-ordering theoremの証明では、省かれているよ 省けると思ってる? どうやって? 論理が分からんサルは「ウィキにそう書いてあるから正しい」とかいうのかい? そもそも並べる前から集合族A-{aξ:ξ<α}だけ取り出せるわけないだろ 脳味噌真空の白●か?
Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. 整序しようとする集合をAとし、fをAの空でない部分集合の族に対する選択関数とする。
>>478に対する阪大工学部卒の凡人の返し(予想) 「a choice function for the family of non-empty subsets of A. であって a choice function f for the family S of ”all” nonempty subsets of A. ではない!」
>>472 追加 >>385より再録 要するに ・選択公理(無制限) ←→ 整列可能定理 (列長さ 無制限) ・従属選択公理(可算無限ω以上だが制限あり) ←→ 従属整列可能定理 (列長さ 可算無限以上だが制限あり)*) ・可算選択公理(可算無限ωに制限) ←→ 可算整列可能定理 (列長さ 可算無限ωに制限) *) ・有限選択定理(有限に制限) ←→ 有限整列可能定理 (列長さ 有限に制限) 追加の注) *) 逆 ←は、可算和定理を認めた上で、選択公理の集合族について、各集合を可算に制限することとする そうすると、可算和定理より 可算の集合の 可算個の族は可算になる なお、可算和定理は選択公理が無ければ導けないが、逆の可算和定理→選択公理は導けないと思われる なので、可算和定理は選択公理より弱い仮定になる(可算和定理→可算選択公理が導けないかどうかは知らず) なお、限られた条件下を前提として、可算選択公理と 可算整列可能定理の類似が、equivalent 例えば下記のHorst Herrlich ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,”と”9. the Axiom of Choice for countable collections of subsets of R.” ∵A\{x} ∪{x} を 一種の可算無限列構成と見て equivalent to "the Axiom of Choice for countable collections of subsets of R"だと (引用終り)
また、下記 Horst Herrlich にあるように ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” と ”9. the Axiom of Choice for countable collections of subsets of R.” とが、Equivalent A\{x} ∪{x} を 一種の可算無限列ωの構成と見て equivalent to "the Axiom of Choice for countable collections of subsets of R"だと>>385 (”9. the Axiom of Choice for countable collections of subsets of R.”ぼ正確な定義が不明だが、最弱の可算選択公理(可算無限ωに制限) を、 さらに ”for countable collections of subsets of R.”に制限している ) なので ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ↓↑ ”9. the Axiom of Choice for countable collections of subsets of R.” 証明は、文献 [15], [29], [30]にあるらしい ;p)
>>154より alg-d.com/math/ac/countable_union.html 可算和定理 壱大整域 命題「可算個の可算集合の和集合は可算集合」を可算和定理という.可算和定理は選択公理が無ければ証明できない. 証明 M を ZFC+GCH の可算推移的モデルとする.以下を満たす関数 p 全体がなす集合を P とする.以下略
>>84より archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 4. each subspace of R is separable, 5. R is a
517 名前:Lindel¨ of space, 6. Q is a Lindel¨ of space, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). (引用終り) 以上 []
>>477-478 >Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. >(訳)整序しようとする集合をAとし、fをAの空でない部分集合の族に対する選択関数とする。
(参考) https://en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Statement A choice function (also called selector or selection) is a function f, defined on a collection X of nonempty sets, such that for every set A in X, f(A) is an element of A. With this concept, the axiom can be stated: Axiom — For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set.
有名な ケネス・キューネンの海賊版を覗いてみた 下記 1)2)と4)を見たが、本件の記述はあまりなかった ( 3)は、期待できそうになかったので、海賊版検索はしなかった) 記 ja.wikipedia.org/wiki/%E3%82%B1%E3%83%8D%E3%82%B9%E3%83%BB%E3%82%AD%E3%83%A5%E3%83%BC%E3%83%8D%E3%83%B3 ケネス・キューネン 主な著作 1)Set Theory. College Publications, 2011. ISBN 978-1848900509. 2)The Foundations of Mathematics. College Publications, 2009. ISBN 978-1904987147. 翻訳『キューネン数学基礎論講義』藤田博司 訳 日本評論社 2016年 ISBN 978-4-535-78748-3 3)Set Theory: An Introduction to Independence Proofs. North-Holland, 1980. ISBN 0-444-85401-0. 翻訳『集合論―独立性証明への案内』藤田博司 訳 日本評論社 2008年 ISBN 4535783829 4)(co-edited with Jerry E. Vaughan). Handbook of Set-Theoretic Topology. North-Holland, 1984. ISBN 0-444-86580-2. (引用終り)
再度転記しよう T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics) Thomas Jechの 証明 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
おサルは、『並べる前から集合族 A∖{aξ∣ξ<α}だけ取り出せるか? 答えは否』というけれど おサルは、Jech氏の証明について ”That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A.” を、集合Xに対して、任意の部分集合に対して、順序数との対応が 付けられて それを使って”induction”が可能だと 読んだ
>>486 >『並べる前から集合族 A∖{aξ∣ξ<α}だけ取り出せるか? 答えは否』というけれど >Jech氏の証明 >”That we can do by induction, using a choice function f for the family S of all nonempty subsets of A.” >を、集合Xに対して、任意の部分集合に対して、順序数との対応が 付けられて それを使って”induction”が可能だと読んだ
”That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A.” ↓ ”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.”
”That we can do by induction, using a choicc fimction f for the family S of all nonempty subsets of A.” ↓ ”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.”
>>486より 再度転記しよう T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics) Thomas Jechの 証明 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
対比で(参考)>>310より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り)
さて 1)前段のT Jech 著 では ”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.”とあるが 後段の それによる en.wikipedia では、この1行は 省かれている 2)また、en.wikipediaから、他国のwikipedia 記載ぶりを見てみると 中国:en.wikipediaと同じ (仏、伊などは Zornの補題使用) 3)思うに、T Jech 著 ”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.” は、単なるイクスキューズ(excuse)で A-{aξ:ξ<α}(=A∖{aξ∣ξ<α})は、全部”the family S of all nonempty subsets of A”の中にあって 単に その部分集合を 使っていますと 言い訳と補強をしているだけのこと と言いたいんじゃね? (無くても良いと多くの人は 判断している)
>T Jech 著 >”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.” >は、単なるイクスキューズ(excuse)で >A-{aξ:ξ<α}(=A∖{aξ∣ξ<α})は、全部”the family S of all nonempty subsets of A”の中にあって >単に その部分集合を 使っていますと 言い訳と補強をしているだけのこと と言いたいんじゃね? >>(無くても良いと多くの人は 判断している)
自称阪大工学部卒の大学数学オチコボレ「六甲山のサル」は文字は読めるが文章は読めない
Q1.aαの定義は? A1. Aからα未満の順序数ξに対応するaξすべてを取り除いた集合に関数fを適用したもの We let for every α aα=f(A-{aξ:ξ<α}) For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) Q2.A1のaαの定義の中の関数fの定義は? A2.Aの任意の空でない集合に対してその要素を取りだす選択関数 …we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. Q3.fの定義域は? A3.Aの任意の空でない集合 all nonempty subsets of A. non-empty subsets of A.
>>498 (再掲)>>497より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. 注)* For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. 注)* That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.
という具合に、後付けで、簡単に ”注)*” とでも やっておけば、それで済む話では? 要するに、 ”the family S of all nonempty subsets of A.”は、ZFのべき集合公理から従う Aのべき集合公理を、いつものようにP(A)と書く。P(A)は、空集合Φを含むので the family S=P(A)\Φ と書ける 分出公理を使うと、Sの部分集合として {A∖Φ,A∖{Φ,a1},A∖{Φ,a1,a2},A∖{Φ,a1,a2,a3},・・ A∖{aξ∣ξ<α}・・} これから 集合族 が出来て A∖Φ,A∖{Φ,a1},A∖{Φ,a1,a2},A∖{Φ,a1,a2,a3},・・ A∖{aξ∣ξ<α}・・ 集合族は、順序数で添え字付けられている と考えることができる この集合族に、選択関数を適用すれば良い
”Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A.” で大概の人は分かる
初学者向けに(君のために ;p) ”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.” と書けば、多少親切ってことかな ;p)
(再掲)>>504より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. 注)* For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. 注)* That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. (引用終り)
さて、この en.wikipedia Well-ordering theorem の Proof from axiom of choice by 9^ Jech, Thomas (2002). Set Theory で ここの記載 ”For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.” が、循環論法だと? 気は確かか?w
”aα= f(A∖{aξ∣ξ<α})”において 明らかに f 選択関数 で 定義域の集合族 A∖{aξ∣ξ<α} これが、関数の入力で aα が、関数 fの出力で a ∈A で aα は aが順序数αで添え字付けできたことを表す 順序を ”defined by aα<aβ if and only if α<β”とすれば aは、整列できたことになる (ここ aα<a'β とでもしておく方がいいかもね ;p)
で、循環論法だと? おれに言わずに、Jech, Thomas にお手紙書いてね 返事が来たら、ここにアップしてくれww ;p) 笑える おサルさんよ>>7-10 www ;p)
>>510 >さて、この en.wikipedia Well-ordering theorem の >Proof from axiom of choice by 9^ Jech, Thomas (2002). Set Theory での記載 >”For every ordinal α, define an element aα that is in A by setting >aα= f(A∖{aξ∣ξ<α}) >if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.” >が、循環論法だと?
そもそも、>>504 en.wikipedia 9^ Jech, Thomas (2002). Set Theory ”For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.” だった
>>504の en.wikipedia 9^ Jech, Thomas (2002). Set Theory ”For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.”
で、 ”A∖{aξ∣ξ<α}”から初めて、この段階では選択関数 f は、使われていない ”A∖{aξ∣ξ<α}”が、最初の定義だよ
そして、循環論法でないことは、”最初は グー”だから、すぐ分ることよ ”A∖{aξ∣ξ<α}”から初めて、この段階では選択関数 f は、使われていない A∖{aξ∣ξ<α}”が、最初の定義だよ”ってこと!■
実際の勝負のジャンケンで、グーでも 循環してないよwww ;p) あたま 弱そうだなw
(参考) ja.wikipedia.org/wiki/%E3%82%B9%E3%82%B3%E3%83%83%E3%83%88%E3%81%AE%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF スコットのトリック(英: Scott's trick)とは真クラス上の同値関係についての同値類の定義を、累積的階層のレベルを参照することによって与える方法である[1]。 この方法は選択公理でなく正則性公理に依存している。選択公理を仮定しないZFにおいて順序数の代表元を定義するのに用いることができる[2]。この方法は Dana Scott (1955) によって導入された。 順序数の代表元を集合として定義する問題を超えて、スコットのトリックは基数の代表元を得たり、もっと一般的な同型類(英語版)にも用いることができる。例えば、全順序集合の順序型はその一例である[1]。
en.wikipedia.org/wiki/Scott%27s_trick Scott's trick In set theory, Scott's trick is a method for giving a definition of equivalence classes for equivalence relations on a proper class (Jech 2003:65) by referring to levels of the cumulative hierarchy.
The method relies on the axiom of regularity but not on the axiom of choice. It can be used to define representatives for ordinal numbers in ZF, Zermelo–Fraenkel set theory without the axiom of choice (Forster 2003:182). The method was introduced by Dana Scott (1955).
Beyond the problem of defining set representatives for ordinal numbers, Scott's trick can be used to obtain representatives for cardinal numbers and more generally for isomorphism types, for example, order types of linearly ordered sets (Jech 2003:65). It is credited to be indispensable (even in the presence of the axiom of choice) when taking ultrapowers of proper classes in model theory. (Kanamori 1994:47)
えーと (再掲)>>510より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] だった
下記の(参考)を使って 状況を整理しよう 1)従属選択公理:『従属選択公理は可算選択公理を導き、それより真に強い公理である。[4][5] 従属選択公理の一般化としてさらに長い超限列の生成を認めるものを考えることができる。認める長さを際限なくした場合、それは完全な選択公理と同値になる』 2)可算選択公理:『ZF に ACωを付け加えた公理系では、可算集合の可算和が可算であること 略 が証明できる』 3)独語(google英訳)Countable Axiom of Choice:”if the association ∪A well-ordered , because then the smallest element in terms of well-ordering can be taken from any set” (補足:the association ∪A が、可算で収まれば、これを 可算整列させて 各Aからその最小元への選択関数が定義できる) 4)Axiom of choice Weaker forms:”Given an ordinal parameter α ≥ ω+2 — for every set S with rank less than α, S is well-orderable. Given an ordinal parameter α ≥ 1 — for every set S with Hartogs number less than ωα, S is well-orderable. As the ordinal parameter is increased, these approximate the full axiom of choice more and more closely.” つまり、”As the ordinal parameter is increased, these approximate the full axiom of choice more and more closely.” これを、百回音読して 噛みしめましょう!!www ;p)
573 名前:%E6%8A%9E%E5%85%AC%E7%90%86 従属選択公理 このような公理が無いとしても、各 n について普通の帰納法によって最初の n 項を有限列としてとることはできる。 従属選択公理が主張しているのは、その極限であるような可算無限列が取れるということである。 公理 DC は AC の断片であって、超限帰納法の各ステップで選択をする必要があって、それまでの選択に独立した選択ができない場合に、可算長の列を構成するのに必要である。 DCはツォルンの補題の弱い形と同値である; 具体的には DC は全ての整列された鎖が有限で有界であるような半順序は必ず極大元を持つという命題と同値である。[3]
他の公理との関連 完全な AC と違って、DC は(ZF の下で) 実数の不可測集合やベールの性質を持たない集合や perfect set property を持たない集合の存在を証明するのに不十分である。 これはソロヴェイモデルにおいては ZF+DC が成り立ちながら実数の集合が全てルベーグ可測でベールの性質を持ち perfect set property を持つからである。 従属選択公理は可算選択公理を導き、それより真に強い公理である。[4][5] 従属選択公理の一般化としてさらに長い超限列の生成を認めるものを考えることができる。認める長さを際限なくした場合、それは完全な選択公理と同値になる。
de.wikipedia.org/wiki/Abz%C3%A4hlbares_Auswahlaxiom 独語(google英訳) Countable Axiom of Choice Of course, for certain (possibly uncountable) sets of nonempty sets, a selection function can also be specified without the (countable) selection axiom, e.g. ・when the cut ∩A is not empty, because then there is a constant selection function, ・if the association ∪A well-ordered , because then the smallest element in terms of well-ordering can be taken from any set, and ・if it is a family of intervals of real numbers, because then the midpoint of each interval can be taken. On the other hand, even for a countable family of two-element sets, the existence of a selection function cannot be proven in ZF.
ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理 en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Weaker forms There are several weaker statements that are not equivalent to the axiom of choice but are closely related. One example is the axiom of dependent choice (DC). A still weaker example is the axiom of countable choice (ACω or CC), which states that a choice function exists for any countable set of nonempty sets. These axioms are sufficient for many proofs in elementary mathematical analysis, and are consistent with some principles, such as the Lebesgue measurability of all sets of reals, that are disprovable from the full axiom of choice.
Given an ordinal parameter α ≥ ω+2 — for every set S with rank less than α, S is well-orderable. Given an ordinal parameter α ≥ 1 — for every set S with Hartogs number less than ωα, S is well-orderable. As the ordinal parameter is increased, these approximate the full axiom of choice more and more closely.
集合の濃度と基数 →詳細は「濃度 (数学)」を参照 集合 A から集合 B への全単射が存在するとき、A と B は同数 (equinumerous) であるといい、 A ≈ B で表す。 選択公理を仮定すれば、整列定理により任意の集合 A に対して A と同数であるような順序数が存在することが言える。 そこで、集合 A と同数であるような順序数の中で最小のものを A の濃度 (cardinality of A) といい、 これを |A| あるいは card(A) で表す。 ある集合 A に対して α = |A| である順序数 α を基数 (cardinal number) と呼ぶ。集合の濃度に関して次が成り立つ: |A| = |B| ⇔ A ≈ B A が有限集合のとき、|A| は A の要素の個数に等しい。 基数に対しても、上で定義した順序数の演算とは別に和、積、冪を定義することができる。
en.wikipedia.org/wiki/Countable_set Countable set Theorem — (Assuming the axiom of countable choice) The union of countably many countable sets is countable.[f] We need the axiom of countable choice to index all the sets a,b,c,… simultaneously.
>>544 お愉しみを邪魔して悪いが ちょっと、『 ZF上で実数は どこまで定義可能なのか?』に戻る 結論は 1)ZF上で、コーシー列が収束することは言える 2)ZFC上でならば、コーシー列が収束することが、実数の定義として成り立ち 従来知られている 実数の位相的な性質 完備距離空間だとか なんだとか いろいろ 言える 3)下記 ZF+可算選択公理では、”9. the Axiom of Choice for countable collections of subsets of R.” ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ”5. R is a Lindel¨ of space,”(リンデレーエフ空間になる) が、 Equivalent が言える。が、そこまでで詰み(従属選択公理DCでどうなるかは 不明だが、ソロベイモデルがあるので もっと言えそう) 4)以上より、ZF上で なんらの選択公理を仮定しないならば、”コーシー列が収束すること”までで詰みかも ;p)
(参考) >>84より 再録 archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis
588 名前:Horst Herrlich 1. In the realm of the reals We start by observing that several familiar topological properties of the reals are equivalent to each other and to rather natural choice-principles. Theorem 1.1 ([15], [29], [30]). Equivalent are: 1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x, 2. a function f : R → R is continuous at a point x iff it is sequentially continuous at x, 3. a real-valued function f : A → R from a subspace A of R is continuous iff it is sequentially continuous, 4. each subspace of R is separable, 5. R is a Lindel¨ of space, 6. Q is a Lindel¨ of space, 7. N is a Lindel¨ of space, 8. each unbounded subset of R contains an unbounded sequence, 9. the Axiom of Choice for countable collections of subsets of R. There exist models of ZF that violate the above conditions ([17], [18]). Observe the fine distinction between conditions 2 and 3 of Theorem 1.1.
(参考 追加) en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice Equivalent forms There are many equivalent forms to the axiom of countable choice, in the sense that any one of them can be proven in ZF assuming any other of them. They include the following:[8][9] ・Every countable collection of non-empty sets has a choice function.[8] ・Every infinite collection of non-empty sets has an infinite sub-collection with a choice function.[8] ・Every σ-compact space (the union of countably many compact spaces) is a Lindelöf space (every open cover has a countable subcover).[8] A metric space is σ-compact if and only if it is Lindelöf.[9] ・Every second-countable space (it has a countable base of open sets) is a separable space (it has a countable dense subset).[8] A metric space is separable if and only if it is σ-compact.[9] ・Every sequentially continuous real-valued function in a metric space is a continuous function.[8] ・Every accumulation point of a subset of a metric space is a limit of a sequence of points from the subset.[9] ・The Rasiowa–Sikorski lemma MA(ℵ0), a countable form of Martin's axiom: in a preorder with the countable chain condition, every countable family of dense subsets has a filter intersecting all the subsets. (In this context, a set is called dense if every element of the preorder has a lower bound in the set.)[8]
References 8^ Howard, Paul; Rubin, Jean E. (1998). Consequences of the axiom of choice. Providence, Rhode Island: American Mathematical Society. ISBN 978-0-8218-0977-8. See in particular Form 8, p. 17–18. 9^ Herrlich, Horst (1997). "Choice principles in elementary topology and analysis" (PDF). Comment. Math. Univ. Carolinae. 38 (3): 545. See, in particular, Theorem 2.4, pp. 547–548.
en.wikipedia.org/wiki/Construction_of_the_real_numbers Construction of the real numbers
en.wikipedia.org/wiki/Constructivism_(philosophy_of_mathematics)#Example_from_real_analysis Constructivism (philosophy of mathematics) Example from real analysis In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.
en.wikipedia.org/wiki/Complete_metric_space Complete metric space
よって、結論 ・ZFで、コーシー列の収束は証明できる。そこで詰み ・ZF+可算選択公理で、先に進める。例えば、”5. R is a Lindel¨ of space,”(リンデレーエフ空間になる)>>547 (”5. R is a Lindel¨ of space,”では、まだ不十分) ・さらに先に進むには、さらなる強いパワーの従属選択公理DCかAC(フルパワー選択公理)が必要
(参考) https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0%E3%81%AE%E9%80%A3%E7%B6%9A%E6%80%A7 実数の連続性(continuity of real numbers)とは、実数の集合がもつ性質である。有理数はこの性質を持たない。 実数の連続性は、実数の完備性 (completeness of the real numbers) とも言われる。また、実数の連続性を議論の前提とする立場であれば実数の公理と記述する場合もある。 なお、ここで言う連続性は、関数の連続性とは別の概念である。 実数の連続性と同値な命題 実数の連続性と同値な命題は多数存在する。順序体(位相は順序位相を入れる)において、実数の公理は 1.デデキントの公理 2.上限性質を持つ 3.有界単調数列の収束定理 4.アルキメデス性と区間縮小法の原理を満たす 5.ボルツァーノ=ワイエルシュトラスの定理 6.次の2条件を満たす ・アルキメデス性を持つ ・コーシー列は収束する 7.中間値の定理 8.最大値の定理 9.ロルの定理 10.ラグランジュの平均値の定理 11.コーシーの平均値の定理 12.ハイネ・ボレルの定理 と同値である。 赤摂也『実数論講義』 には、これらの命題を含めて22個の同値な命題とその証明が記されている。
https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number. Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction. There are many equivalent forms of completeness, the most prominent being Dedekind completeness and Cauchy completeness (completeness as a metric space).
https://en.wikipedia.org/wiki/Complete_metric_space Complete metric space In mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. √2 is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below
594 名前:). It is always possible to "fill all the holes", leading to the completion of a given space, as explained below. (引用終り) 以上 []
(参考) https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem Schröder–Bernstein theorem Prerequisites The 1895 proof by Cantor relied, in effect, on the axiom of choice by inferring the result as a corollary of the well-ordering theorem.[8][9] However, König's proof given above shows that the result can also be proved without using the axiom of choice.
On the other hand, König's proof uses the principle of excluded middle to draw a conclusion through case analysis. As such, the above proof is not a constructive one. In fact, in a constructive set theory such as intuitionistic set theory IZF, which adopts the full axiom of separation but dispenses with the principle of excluded middle, assuming the Schröder–Bernstein theorem implies the latter.[19] In turn, there is no proof of König's conclusion in this or weaker constructive theories. Therefore, intuitionists do not accept the statement of the Schröder–Bernstein theorem.[20]
There is also a proof which uses Tarski's fixed point theorem.[21]
https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86 ベルンシュタインの定理(ベルンシュタインのていり、カントール=ベルンシュタイン=シュレーダーの定理、シュレーダー=ベルンシュタインの定理、カントール=ベルンシュタインの定理とも、英: Schröder–Bernstein theorem)とは、集合 A から集合 B に単射 があり、集合 B から集合 A へも単射があれば、集合 A から集合 B への全単射があるというものである。濃度においては、これは |A| ≤ |B| かつ |B| ≤ |A| ならば |A| = |B| である、ということを言っているわけで、非常に基本的な要請がこの定理によって満たされることになる。
math.stackexchange で Feferman has, I think, spent quite a bit of intellectual effort on just this question; see, for example, math.stanford.edu/~feferman/papers/psa1992.pdf. – LSpice CommentedAug 29, 2014 at 23:51 とあったので、下記貼ります
(参考) math.stanford.edu/~feferman/papers/psa1992.pdf From PSA 1992, vol. 2 (1993), pp. 442–455 (with with corrections)
Why a little bit goes a long way: Logical foundations of scientifically applicable mathematics*1 Solomon Feferman
(Notes *1. Invited lecture in the Symposium, "Is foundational work in mathematics relevant to the philosophy of science?" at the meeting of the Philosophy of Science Association, Chicago, Nov. 1, 1992.)
8. Final remarks. Like most scientists, philosophers of science could simply take mathematics for granted and not concern themselves with its foundations, as being irrelevant to their main concerns. But, as Hellman has emphasized in his introduction to his article in this volume, debates like those discussed here as to realism vs. (e.g.) instrumentalism, and as to the indispensability of highly theoretical concepts and principles, are equally central to the philosophy of science. Whether the kind of logical results described here will be more directly relevant to those debates remains to be seen. But as long as science takes the real number system for granted, its philosophers must eventually engage the basic foundational question of modern mathematics: "What are the real numbers, really?"
同意です その筋は、ツォルンの補題の証明に書いてあった 『この列は本当に長い、添え字の範囲は単なる自然数ではなく、全ての順序数を動く。実は P と比較しても長すぎる。順序数の全体は真クラスを成すほど大きすぎて、普通の集合より大きくなる。そして、この長さにより集合 P の元を使い尽くすことで矛盾を得る。』 とか。(まだ、分ってないので、ツッコミなしね)
(参考) ja.wikipedia.org/wiki/%E3%83%84%E3%82%A9%E3%83%AB%E3%83%B3%E3%81%AE%E8%A3%9C%E9%A1%8C ツォルンの補題(英: Zorn's lemma)またはクラトフスキ・ツォルンの補題 証明の概略 選択公理を仮定したツォルンの補題の証明を概略する。補題が成り立たないと仮定する。このとき半順序集合 P を、全ての鎖が上界を持つにもかかわらず、どの元もそれより大きな元を持つように取れる。 関数 b を実際に定義するには選択公理を使う必要がある。 この関数 b を使うことで、P の元の列 a0 < a1 < a2 < a3 < ... を定めることができる。この列は本当に長い、添え字の範囲は単なる自然数ではなく、全ての順序数を動く。実は P と比較しても長すぎる。順序数の全体は真クラスを成すほど大きすぎて、普通の集合より大きくなる。そして、この長さにより集合 P の元を使い尽くすことで矛盾を得る。 aiは次の超限帰納法で定義する。 略す (引用終り)
・ZFで、有理数のコーシー列の収束が言えて それらの集合の存在が言える ・それらの集合をRと名付ける では、集合Rの性質はどうか? ・>>547にあるように、ZF+可算選択公理と、下記がEquivalent ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ”5. R is a Lindel¨ of space,”(リンデレーエフ空間になる) ・ここから先、つまりリンデレーエフ空間より先 デデキントやカントールが成したような 実数の公理を満たすところまで進むには、 可算選択公理とのEquivalentを破る 可算選択公理の上位の選択公理(従属選択公理DC や フルパワー選択公理AC)が必要■
じゃあ、何が言えるか書いてみて!w ;p) <先制攻撃> 下記 ZF+可算選択公理では、下記 Equivalent ”9. the Axiom of Choice for countable collections of subsets of R.” ”1. in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” ”5. R is a Lindel¨ of space,”(リンデレーエフ空間になる) archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf Comment.Math.Univ.Carolin. 38,3(1997)545–552 545 Choice principles in elementary topology and analysis Horst Herrlich
さて ”in R, a point x is an accumulation point of a subset A iff there exists a sequence in A\{x} that converges to x,” を平たくいえば、a subset A:x0,x1,x2・・・ ,x なる
(参考) sites.google.com/view/stakeda 武田 秀一郎 Associate Professor Department of Mathematics Osaka University Education Ph.D Mathematics,University of Pennsylvania,2006 M.A. Mathematics, San Francisco State University,2001 M.A. Philosophy, San Francisco State University,2000 B.E. Engineering, Science University of Tokyo,1997
researchmap.jp/read0078210/education 渕野昌 1979年4月-1984年3月Freie Universität Berlin, Fachbereich Mathemtatik(ベルリン自由大学) 1977年4月-1979年3月早稲田大学, 理工学部, 数学科
ふと思いついたが >>404より 海賊版サイトより (.pdf 正確なリンクは貼らない。著作権問題は 各人の責任でお願いいたします) Set Theory T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) 冒頭 ”Proof. Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence{ aα : α < θ }that enumerates A . と始まり 途中は ほぼ上記と同じ(記法が少し異なっている) 最後 ”Clearly, {aα : α <θ} enumerates A.”となっている (enumerate = 列挙 また、α は 順序数の添え字。α <θ は、ある順序数θ未満のα という意味だろう)
これで、全752ページだが 目次を見ると 下記なので Theorem 5.1より前に ”2. Ordinal Numbers”と ”3. Cardinal Numbers”が終わっている が、よく読むと(実は ななめ読みw) 上記の2つの章は、ガチガチのZFではなく カントールなどの古典的な集合論の議論中心だった ;p) 5章でまた、”Cardinal Arithmetic.”を取り上げている ともかく、T Jech の内心では、”of order type sup{α∣aα is defined}”の部分は、 テキストとして それなりに 納得できているのかもしれない ;p)
記 Part I. Basic Set Theory 1. Axioms of Set Theory Axioms of Zermelo-Praenkel. Why Axiomatic Set Theory? Language of Set Theory, Formulas. Classes. Extensionality. Pairing. Separation Schema. Union. Power Set. Infinity. Replacement Schema. Ex
620 名前:ercises. Historical Notes.
2. Ordinal Numbers Linear and Partial Ordering. Well-Ordering. Ordinal Numbers. Induction and Recursion. Ordinal Arithmetic. Well-Founded Relations. Exercises. Historical Notes.
3. Cardinal Numbers Cardinality. Alephs. The Canonical Well-Ordering of a x o. Cofinality. Ex ercises. Historical Notes.
4. Real Numbers The Cardinality of the Continuum. The Ordering of R. Suslin’s Problem. The Topology of the Real Line. Borel Sets. Lebesgue Measure. The Baire Space. Polish Spaces. Exercises. Historical Notes.
5. The Axiom of Choice and Cardinal Arithmetic The Axiom of Choice. Using the Axiom of Choice in Mathematics. The Count able Axiom of Choice. Cardinal Arithmetic. Infinite Sums and Products. The Continuum Function. Cardinal Exponentiation. The Singular Cardinal Hy pothesis. Exercises. Historical Notes.
6. The Axiom of Regularity The Cumulative Hierarchy of Sets. G-Induction. Well-Founded Relations. The Bernays-Godel Axiomatic Set Theory. Exercises. Historical Notes.
7. Filters, Ultrafilters and Boolean Algebras Filters and Ultrafilters. Ultrafilters on cj. /^-Complete Filters and Ideals. Boolean Algebras. Ideals and Filters on Boolean Algebras. Complete Boolean Algebras. Complete and Regular Subalgebras. Saturation. Distributivity of Complete Boolean Algebras. Exercises. Historical Notes. (引用終り) 以上
fuchino.ddo.jp/misc/set-theory.pdf 集合論は矛盾する?!1渕野昌 1『数学セミナー』2002年2月号,52–56 掲載. ただし,本稿は『数学セミナー』掲載予定のテキストからは削除されたリマークや,その後の補筆を,幾つか含むものとなっている.[last updated on: March 21, 2024]
だった つまり、 en.wikipedia.org/wiki/Well-ordering_theorem >>404 (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7.
あるいは 海賊版のThomas Jechの 証明を 転記>>464 if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A.
ここで order type sup{α∣aα is defined} と Let θ be the least ordinal such that A = {αξ: ξ < θ}. とが対応して、同じ意味だと思う
いまの議論で、選択公理→整列可能定理 の証明中で ”order type sup{α∣aα is defined}”を使って良いかどうか?
整理すると ZFCで、任意集合Aが、必ず濃度を持つということが言えて 一方で、順序数の理論体系が出来ていれば 集合Aの濃度は、冪集合P(A)の濃度を超えないから ”order type sup{α∣aα is defined}”が言える(なにか上限があるってこと) 但し、整列可能定理を陽に使っていないこと
それ以外にも、 任意集合Aが、必ず濃度を持つということが言えれば ”order type sup{α∣aα is defined}”がなければ、それはクラスでしょ? (背理法) も考えられる
>>404より 海賊版サイトより (.pdf 正確なリンクは貼らない。著作権問題は 各人の責任でお願いいたします) Set Theory T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem)
いま手元の 海賊版 ”The Third Millennium Edition, revised and ... 2002.” で、初版が 1978年とある
随分 いろんな人の目に触れたと思うよ 問題点は、殆ど出尽くしじゃない? (^^
そして、”Theorem 5.1 (Zermelo’s Well-Ordering Theorem)” この ”5.The Axiom of Choice and Cardinal Arithmetic ” より前に
>>598 補足 (再掲)>>504より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. 注)* For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. 注)* That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. (引用終り)
厳密な定義 (カントールによって暗に、フレーゲやプリンキピア・マテマティカにおいて明確に示されていた)集合 X の濃度の最も古い定義は、X と一対一対応のつくすべての集合からなるクラス [X] としての定義である。これは、ZFCや関連する集合論の公理系ではうまく機能しない。それは、X が空でないならば、一対一対応のつくすべての集合を集めたものは集合にしては大きすぎるからである。実際、X を空でない集合としたとき、集合 S に {S} × X を対応させる写像を考えることによって、宇宙から [X] への単射が存在し、サイズの限界(英語版)より、[X] は真のクラスである。
フォン・ノイマンの割り当て 選択公理を仮定すると集合 X に対し濃度 | X | を | X | := min{α ∈ ON : |α| = | X | } と定義できる 。 これをフォン・ノイマンの割り当てという。
スコットのトリック 正則性公理の元、任意のクラスに対し画一的に(そのクラスの部分クラスとなる)集合を割り当てる方法であるスコットのトリックを使うと、 整列可能とは限らない集合 X に濃度 | X | を以下のように割り当てることができる(詳しくはスコットのトリックを参照)。 | X | := {A : | A | = | X | かつ、任意の集合 B に対し「| B | = | X | → rank( A) ≤ rank( B)} 」 どのような定義を採用するにしろ集合の濃度が等しいのは、それらの間に全単射が構成できるちょうどそのときである。
Then the order < on A defined by aα<aβ if and only if α<β(in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α|aα is defined}. すると「α<β(順序数の通常の整列順序において)のときそのときのみaα<aβ」で定義されるA上の順序関係<は、望み通りAの整列順序であり、sup{α|aα is defined}順序型のものである。
>>616 >>よって|sup{α|aα is defined}|=|A|でなければならない。 >??? なんだそれ? なんだそれじゃないよw sup{α|aα is defined}の特定によって
Then the order < on A defined by aα<aβ if and only if α<β(in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α|aα is defined}. すると「α<β(順序数の通常の整列順序において)のときそのときのみaα<aβ」で定義されるA上の順序関係<は、望み通りAの整列順序であり、sup{α|aα is defined}順序型のものである。
が言えるんだよ。 sup{α|aα is defined}が特定されなきゃ、「α<β(順序数の通常の整列順序において)のときそのときのみaα<aβ」による(A,<)の定義がwell-definedと言えんだろ?
(参考) en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Statement A choice function (also called selector or selection) is a function f, defined on a collection X of nonempty sets, such that for every set A in X, f(A) is an element of A. With this concept, the axiom can be stated: Axiom — For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set. Formally, this may be expressed as follows: ∀X[Φ not∈X ⟹ ∃f:X→⋃A∈X A ∀A∈X(f(A)∈A)].
1) >>486より 再度転記しよう T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics) Thomas Jechの 証明 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
2) また (再掲)>>504より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り)
>>631 >"P(A)-Φを定義域とする選択関数が必要"? うん >using a choice fiunction f for the family S of all nonempty subsets of A あるいは >let f be a choice function for the family of non-empty subsets of A の通りだよ 君、英文読めないの?
>>630より 再度転記 T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics) Thomas Jechの 証明 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enume
準備 この補題で使われている用語の定義は以下のとおりである。集合 P と順序関係 ≤ によって定まる半順序集合を(P, ≤) とする。順序関係において、元 s とt が s ≤ t かつ s ≠ t であるとき、s < tと表す。部分集合 T が 全順序 であるとは、 T の各元 s と t について、s ≤ t または t ≤ s が必ず成り立つことを言う。T が P に上界 u を持つとは、T の元 t がつねに t ≤ u を満たすことをいう。注意として、u は P の元であればよく、T の元である必要はない。P の元 m が 極大元 であるとは、P の元 x で、 m < x となるものは存在しないことをいう。
命題 Pを空でない半順序集合で、その任意の空でない鎖は P に上界を持つとする。このとき P は少なくともひとつ極大元を持つ。 これらの違いは微妙なものであるが、ツォルンの補題を使った証明において半順序として包含関係に代表されるような集合同士の関係を用いる場合、鎖を集合族として/その上界を鎖となった集合族の合併としてとる事があり、その際に空な族の合併は空集合になる一方で空なる鎖の上界は任意の「空でない集合」であるという不一致が、台集合に元として空集合が所属していない場合に起こるので、予め定義において空な鎖について考えなくてよいとの明言が議論を簡単にするという点で使い分けることができる。
1)ふっふ、ほっほ >>631より 再度転記しますww T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics) Thomas Jechの 証明 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■ (引用終り)
2)で 上記 T Jechの証明で尽くされているんじゃない? 何も足さない。何も引かない。他には 何も必要ないw w ;p) 3)現代的定義では、関数とは 写像(対応)だよね いま 実数R→R の指数関数f(x) =a^x (a > 0)があったとする 定義域 R を、有理数Qにする、あるいは整数Zに、あるいは自然数N に狭めることは可能だ なぜならば、関数とは 写像(対応)だから それぞれ 関数を Q→R,Z→R,N→R の対応と考えれば良いだけのこと 逆に、定義域 R を、複素数Cに拡張することもできる。そのとき、値域もCになるが 複素数関数 C→C f(z) =a^z | z∈C となる
ja.wikipedia.org/wiki/%E3%83%84%E3%82%A9%E3%83%AB%E3%83%B3%E3%81%AE%E8%A3%9C%E9%A1%8C ツォルンの補題 証明の概略 選択公理を仮定したツォルンの補題の証明を概略する。 補題が成り立たないと仮定する。このとき半順序集合 P を、全ての鎖が上界を持つにもかかわらず、どの元もそれより大きな元を持つように取れる。 各鎖 T について、それより真に大きな元 b(T) が存在する。なぜなら、T は上界を持ち、さらにそれより大きな元が存在するからである。関数 b を実際に定義するには選択公理を使う必要がある。
この関数 b を使うことで、P の元の列 a0 < a1 < a2 < a3 < ... を定めることができる。この列は本当に長い、添え字の範囲は単なる自然数ではなく、全ての順序数を動く。実は P と比較しても長すぎる。 順序数の全体は真クラスを成すほど大きすぎて、普通の集合より大きくなる。そして、この長さにより集合 P の元を使い尽くすことで矛盾を得る。 aiは次の超限帰納法で定義する。まず、a0 は P の元から勝手に選ぶ(これは P が空の鎖の上界を持ち、空でないことから可能である)。 他の順序数 w については、aw = b({av: v < w}) で定める。{av: v < w} は全順序であるので、この定義は正しい超限帰納法である。
en.wikipedia.org/wiki/Zorn%27s_lemma Zorn's lemma Proof sketch A sketch of the proof of Zorn's lemma follows, assuming the axiom of choice. Suppose the lemma is false. Then there exists a partially ordered set, or poset, P such that every totally ordered subset has an upper bound, and that for every element in P there is another element bigger than it. For every totally ordered subset T we may then define a bigger element b(T), because T has an upper bound, and that upper bound has a bigger element. To actually define the function b, we need to employ the axiom of choice (explicitly: let B(T)={b∈P:∀t∈T,b≥t}, that is, the set of upper bounds for T. The axiom of choice furnishes b:b(T)∈B(T). Using the function b, we are going to define elements a0 < a1 < a2 < a3 < ... < aω < aω+1 <…, in P. 略す
>>652より ”We let for everv α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempt. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■”
>”We let for every α > aα=f(A-{aξ:ξ<α}) > if A-{aξ:ξ<α} is nonempt. > Let θ be the least ordinal such that A = {αξ: ξ < θ}. > Clearly,(aα:α< θ) enumerates A. ■”
>>660 (引用開始) >”We let for every α > aα=f(A-{aξ:ξ<α}) > if A-{aξ:ξ<α} is nonempt. > Let θ be the least ordinal such that A = {αξ: ξ < θ}. > Clearly,(aα:α< θ) enumerates A. ■” >これで良いんじゃないの? fって何? (引用終り)
まず 海賊版サイトより (.pdf 正確なリンクは貼らない。著作権問題は 各人の責任でお願いいたします) Set Theory T Jech 著 · 1997 · The Third Millennium Edition, revised and ... 2002. (Springer monographs in mathematics). 冒頭 1.Axiomls of Set Theory, Axiomns of Zerlmelo-Fraenkel で
1.3. Axiom Scbema Of Sepamtion. If P is a propety (with parameter p), then for any X and p there exist a set Y = {u∈X : P(u,p)} that contains all those u∈X that have property P.
1.7. Axiom Schema of Replacement. If a class F is a function, then for any X there exists α set Y=F(X)={F(x):x∈X}. (なお、Jech氏は、ここで選択公理も記載し ZFCにも触れている)
さて >>652より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
ここで、まず 集合族 A-{aξ:ξ<α} に 注目しよう ( なお A-{aξ:ξ<α} ⊂ A も注意しておく) これは、上記 1.7. Axiom Schema of Replacementで class F function, exists α set Y=F(X)={F(x):x∈X}. における F(X)のネタを仕込んでいると思え
そして、次に the family S of all nonempty subsets of A の部分に注目すると Aのべき集合P(A)から空集合Φを覗いた P(A)-Φ の要素が、the family Sってことだね さらに、A-{aξ:ξ<α} ∈ P(A)-Φ だね
ここから Axiom Schema of Replacementの class F function を使って P(A)-Φの部分集合として 集合族 A-{aξ:ξ<α} を要素とする 部分集合を構成できる {A,A-{a1},A-{a2},・・・}だね
ここで、Axiom Schema of Replacementの class F function を使っていることを念押ししておく これが、選択関数と異なることは、”Y=F(X)={F(x):x∈X”とあって、F(X)の定義域は ただ一つ Xから分かる(いまの場合 X=P(A)-Φ)
"Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice function f for the family S of all nonempty subsets of A."
つぎに >"Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence >(aα: α < θ) that enumerates A. >
731 名前:That we can do by induction, using a choice function f for the family S of all nonempty subsets of A." >「Aを集合とする。Aを整序するには、Aを列挙する超限的一対一列(aα:α<θ)を構成すれば十分である。 > これは、Aのすべての空でない部分集合の族Sに対する選択関数fを用いて、帰納的に行うことができる。」 >「Aは集合である」はともかく「Aのすべての空でない部分集合の族Sに対する選択関数f」を抜いたよな なんで?
さて、以前にも書いたが、 1)Aに 順序数の付番付け をするために、そのべき集合P(A)-Φの 順序数の付番付け が必要とする考えは 無限後退になるので まずい。(そのまた べき集合・・・となるから) 2)また、べき集合P(A)-Φに 順序数の付番付けができたとしよう そのままでは、>>667の Jech氏の意図した {A,A-{a1},A-{a2},・・・} の 順序数の付番付けにならない ∵ 例えば、Aが可算だとして べき集合P(A)-Φの 順序数の付番付けそのままでは 非可算レベルの順序数の付番付けが混じってしまう から 3)よって、"Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence >(aα: α < θ) that enumerates A. That we can do by induction, using a choice function f for the family S of all nonempty subsets of A." のJech氏の意図は、べき集合P(A)-Φの部分集合として {A,A-{a1},A-{a2},・・・} が、置換公理で取り出せるってことだね そして、a1、a2、・・・は、決して一意ではなく、as desired であることも注意しておく(>>631 en.wikipedia.org/wiki/Well-ordering_theorem ご参照 ) []
>>697 ふと思ったが 酒井 拓史氏に >>667より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
>>504 >”the family S of all nonempty subsets of A.”は、ZFのべき集合公理から従う >Aのべき集合公理を、いつものようにP(A)と書く。P(A)は、空集合Φを含むので >the family S=P(A)\Φ と書ける 良く考えたらS=P(A)\{Φ}じゃんw 騙されたw
>>667より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
1)これで、キモは aα=f(A-{aξ:ξ<α}) だ f 選択関数、A-{aξ:ξ<α} が、定義域(入力)の集合族で 順序数の添え字が α 値域(出力)が aαで、Aの要素a∈Aに、順序数の添え字 α がついて aα となっている 2)そうすると、定義域(入力)の集合族 A-{aξ:ξ<α} が、どうやって出来たのか? それが、問題となる Jechは、”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.”と記す 以下、くだけた表現を使う 繰り返しになるが 集合Aのべき集合P(A) (Aの任意部分集合)は、空集合を含む そこで、空集合を除いたものを P(A) -Φ と書く(これは定義です。Φは空集合) そして、P(A) -Φ を再度 P'と略記しよう 3)上記の Jech証明と照らすと、A-{aξ:ξ<α} ∈ P' である なので、P' から A-{aξ:ξ<α} を要素として取り出して 部分集合 を 形成することを考えると 4)やっていることは、P' から まず Aを取る 次に Aから一つ要素が減った A-{a0} を取り さらに、二つ要素が減った A-{a0,a1} を取り・・と続ける 5)Jech 流の表記では、A-{aξ:ξ<α}となる こうして、P'の部分集合 として 集合族の A-{aξ:ξ<α}が取り出せて aα=f(A-{aξ:ξ<α}) つまり f:A-{aξ:ξ<α} → aαができる この関数は、選択公理で許される 選択関数である P'の部分集合 として 集合族 A-{aξ:ξ<α} を取り出すところは、置換公理が使える(>>667) また、順序数の添え字 α による 超限帰納(or 超限再帰)も使える 6)さらに付言しておくと、集合Aから最初に どの要素を取り出して、次に どの要素を取り出して ・・・ と続けることを考えると、集合Aの並びは 大きな自由度があり、aα=f(A-{aξ:ξ<α}) は P' 全体に広がる可能性がある つまり、いま A={a,b,c,d}と4つの要素からなるとすると 最初の文字は4通り、次は3通り・・ となり 全体で4!通りになる(要素 有限nなら
”That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.” は、ヒントでしょ? 数学科生なら、この1行のヒントで ”aα=f(A-{aξ:ξ<α})”の構成を悟れ! ということ■ 以上
>>730 >そこから >>709 Thomas Jechの "aα=f(A-{aξ:ξ<α})" をどうやって出すの?ww ;p) どうやって出すも何も We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. と、Thomas Jechが定義してるんだけど? 君はεN論法による数列の極限の定義をどうやって出したのか疑問で教員に尋ねたと? で、納得する答えが得られなかったからブチギレて解析学の単位を放棄したと? そりゃ大学1年の4月に落ちこぼれますわ。
ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理 選択公理の変種 可算選択公理 →詳細は「可算選択公理」を参照 選択公理よりも弱い公理として、可算選択公理(英: countable axiom of choice,denumerable axiom of choice)というものも考えられている[2]。全ての集合は可算集合を含むこと、可算集合の可算和が可算集合であることは、この公理により証明できる。 カントール、ラッセル、ボレル、ルベーグなどは、無意識のうちに可算選択公理を使ってしまっている。 ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 可算選択公理 可算選択公理(英: Axiom of countable choice)とは、公理的集合論における公理のひとつで、空でない集合からなる可算な集合族があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるという公理である。ACωとも表記される。名前の通り、選択公理を可算集合族に限定したものになっている。 応用 ZF に ACωを付け加えた公理系では、可算集合の可算和が可算であることや、任意の無限集合がデデキント無限であることなどが証明できる[1]。 実数論においては選択公理ではなく可算選択公理で事足りる場合が多い[1]。例えばすべての集積点 xがある数列の極限点であること、すなわち「xが実数Rの部分集合Sの集積点ならば、xに収束する数列S∖{x}が存在する」 という命題を証明したい場合には(フルパワーのACでなく)ACωを用いれば十分である。 また、距離空間論において、可分距離空間の任意の部分集合が可分であることを示す際にも用いられる[1]。 ポール・コーエンはACωがZF集合論から証明できないことを示した。
en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice Weaker systems ZF+ACω suffices to prove that the union of countably many countable sets is countable. These statements are not equivalent: Cohen's First Model supplies an example where countable unions of countable sets are countable, but where ACω does not hold.[7] Equivalent forms There are many equivalent forms to the axiom of countable choice, in the sense that any one of them can be proven in ZF assuming any other of them. They include the following:[8][9] 略す (引用終り) 以上
>>752-753 さて >>667より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
>>667より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
整列定理の証明の胆は全単射φ:sup{α|aα is defined}→Aが存在することだと思う。が、 en.wikipedia.org/wiki/Well-ordering_theorem の証明ではsup{α|aα is defined}がwell-definedであることが示されていないね。 これで証明になってるのだろうか。
en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice Axiom — For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set. Formally, this may be expressed as follows: ∀X[Φ not∈ X⟹∃f:X→⋃A∈X A ∀A∈X(f(A)∈A) ]
これを踏まえて >>763 Thomas Jech To well-order A, it suffices to construct a transfinite one-to-one sequence (aα:α<θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A■
<補足> 1)かように、Aのべき集合全体(空集合抜き)の選択関数は不要 2)Aと同じ順序数(超限帰納)の選択関数で間に合うことを指摘しておく 3)調べると 可算集合Aを整列させるためには、従属選択公理が必要とある (下記の独 de.wikipedia ご参照。en.wikipediaにも類似記載あり。 即ち、”to construct a sequence using countable transfinite recursion” なお、Axiom of countable choice en.wikipedia は、”for every n∈N”つまり、順序数の長さでω(=N)が限界)
(参考) de.wikipedia.org/wiki/Axiom_der_abh%C3%A4ngigen_Auswahl Axiom der abhängigen Auswahl (google 英訳) axiom of dependent choice use The axiom of dependent choice is a sufficient fragment of the axiom of choice to construct a sequence using countable transfinite recursion .
en.wikipedia.org/wiki/Axiom_of_dependent_choice Axiom of dependent choice Use The axiom DC is the fragment of AC that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.
en.wikipedia.org/wiki/Axiom_of_countable_choice Axiom of countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n∈N, there exists a function f with domain N such that f(n)∈A(n) for every n∈N.
>>801 >選択公理→整列可能定理の証明で >集合Aの整列に、Aのべき集合(空集合を除く)の選択関数が必要って >書いてあるかな? using a choice fiunction f for the family S of all nonempty subsets of A 思いっきり書いてあるんですけど? あなた文盲ですか?
まず >>763より Thomas Jechの 証明 再録 P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
意味不明。上記”the family S of all nonempty subsets of A” から、どうやって A-{aξ:ξ<α} たちを取り出す? 先制攻撃しておくが、集合A':={A-{aξ:ξ<α}|α < θ} は、Sの部分集合を成すよ つまり、A' ⊂ S で、部分集合を構成する公理は、置換公理(or 分出公理)を使うのが基本です
(参考)(再掲)>>631より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り) 以上
>>808 補足 >if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. >That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated).
ここ ”leave aα undefined if it is. ”は、 A∖{aξ∣ξ<α} が empty のときは 関数”aα= f(A∖{aξ∣ξ<α})”が undefinedで良いってことだね(ちょっと 分かり難いが)
そして、次の行で補足している(”That is”だね) ”or undefined if the entirety of A has been successfully enumerated” だが、この意味は 集合Aの整列が完成すれば、あとの選択関数は”undefined”だってこと!
>>811 define an element aα that is in A by setting aα=f(A-{aξ|ξ<α}) if this complement A-{aξ|ξ<α} is nonempty, or leave aα undefined if it is. Aの元aαを、補集合A-{aξ|ξ<α}が空でないなら aα=f(A-{aξ|ξ<α}) なる設定により定義せよ、あるいはそれが空ならaαを未定義のままとせよ。 選択関数ではなくaαの定義。君は文盲かい?
>つまりは、選択関数は Aの整列までで 十分なのです!! ;p) 独善妄想。 using a choice fiunction f for the family S of all nonempty subsets of A の通り、選択関数の定義域はP(A)-{{}}。
Jech, Thomas では、”we can do by induction”(超限帰納)と、 ”it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A” という 順序数αによる添え字付け手法を使っているんだ
で、君は ある証明で ある手法が使われていることをもって 証明には、その手法が”必須”だと主張する
しかし、ある手法が使われていることから、”必須”は言えない なお、下記の Akihiko Koga の記載は参考になるね(自分の数学認識をクリアにするために)。それは認める
(参考) www.cs-study.com/koga/set/pointsOfSetTheory.html#WellOrder04 集合論の学習での重要なポイント Some Important Topics in Basic Set Theory by Akihiko Koga 10th Sep. 2018 (Update)
選択公理からの直接の証明 [前置き] まず,選択公理を使って,A 以外の P(A) の集合,すなわち A の真部分集合 X ⊂ A に対して,X 以外の元を 選ぶ関数 f f : P(A) - {A} → A f(X) ∈ A - X を一つ決めておく.
対応の相手は定義されている。 なぜなら選択公理が選択関数f:P(A)-{{}}→Aの存在を保証しており、存在例化によりfは一意に定まるから。 尚、定義域がP(A)-{{}}であることは a choice fiunction f for the family S of all nonempty subsets of A の通り。
>>830 define an element aα that is in A by setting aα=f(A-{aξ|ξ<α}) if this complement A-{aξ|ξ<α} is nonempty, or leave aα undefined if it is. Aの元aαを、補集合A-{aξ|ξ<α}が空でないなら aα=f(A-{aξ|ξ<α}) なる設定により定義せよ、あるいはそれが空ならaαを未定義のままとせよ。
define の目的語は何? an element aα では? ならこの文はaαの定義であってfの定義じゃないじゃん
>>776より Thomas Jechの 証明 再録(>>667より) P48 Theorem 5.1 (Zermelo’s Well-Ordering Theorem) Every set can be well-orderd. Proof: Let A be a set. To well-order A, it suffices to construct a transfinite one-to-one sequence (aα: α < θ) that enumerates A. That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A. We let for every α aα=f(A-{aξ:ξ<α}) if A-{aξ:ξ<α} is nonempty. Let θ be the least ordinal such that A = {αξ: ξ < θ}. Clearly,(aα:α< θ) enumerates A. ■
alg-d.com/math/ac/tsudoi3.pdf 第三回関西すうがく徒のつどい 数学の諸定理と選択公理の関係 alg d 2013
2 濃度選択公理がないとまずヤバイのが濃度に関する話題で,まずはその辺りを見ていきます.
4 弱い選択公理
ja.wikipedia.org/wiki/%E3%82%B9%E3%82%B3%E3%83%83%E3%83%88%E3%81%AE%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF スコットのトリックとは真クラス上の同値関係についての同値類の定義を、累積的階層のレベルを参照することによって与える方法である この方法は選択公理でなく正則性公理に依存している。選択公理を仮定しないZFにおいて順序数の代表元を定義するのに用いることができる[2]。この方法は Dana Scott (1955) によって導入された。 順序数の代表元を集合として定義する問題を超えて、スコットのトリックは基数の代表元を得たり、もっと一般的な同型類(英語版)にも用いることができる。例えば、全順序集合の順序型はその一例である
en.wikipedia.org/wiki/Scott%27s_trick Scott's trick The method relies on the axiom of regularity but not on the axiom of choice. It can be used to define representatives for ordinal numbers in ZF, Zermelo–Fraenkel set theory without the axiom of choice (Forster 2003:182). The method was introduced by Dana Scott (1955). Beyond the problem of defining set representatives for ordinal numbers, Scott's trick can be used to obtain representatives for cardinal numbers and more generally for isomorphism types, for example, order types of linearly ordered sets (Jech 2003:65). 略す
で、ZFCには ルールがあって 直接πや 11を選ぶのではなく 一旦、A-{π}やA-{11}という Aから一つ要素の減った部分集合の族を作る そうやって、以下2番目に好き、3番目に好き とやって {A,A-{a0},A-{a0,a1},A-{a0,a1,a2},・・,A-{aξ:ξ<α},・・} という集合族を作る これが、”the family S of all nonempty subsets of A”>>848の Sの部分集合だ (familyは、訳すと”族”だ)
>>808(参考)(再掲)>>631より en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Proof from axiom of choice The well-ordering theorem follows from the axiom of choice as follows.[9] Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. For every ordinal α, define an element aα that is in A by setting aα= f(A∖{aξ∣ξ<α}) if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is. That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated). Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}. Notes 9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7. (引用終り)
ここで ”Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired,” の部分、”the order < on A defined by aα<aβ”だね αとβが順序数で 順序数の添え字を使って、Aに順序を導入する 順序数は、整列順序であるから Aに整列順序が導入できた