[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 05/02 03:21 / Filesize : 739 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ12



294 名前:現代数学の系譜 雑談 [2025/01/14(火) 20:05:34.99 ID:V0GJJBJ/.net]
>>272
>>整列可能定理は公理として
>整列可能定理無しでは有理数Qの完備化は不可能 が君の主張との理解でよろしい?

まず 下記>>273 より転記
これを、百回音読してね
それで、尽くされているよね

(参考)
archive.wikiwix.com/cache/display2.php?url=http%3A%2F%2Fwww.emis.de%2Fjournals%2FCMUC%2Fpdf%2Fcmuc9703%2Fherrli.pdf
Comment.Math.Univ.Carolin. 38,3(1997)545–552 545
Choice principles in elementary topology and analysis Horst Herrlich
P546
2. In the realm of pseudometric spaces In this section we consider (pseudo)metric spaces and various compactness-notions for them.

Definition 2.2. A pseudometric space X is called
1. Heine-Borel-compact provided every open cover of X contains a finite one,
2. Weierstraß-compact provided for every infinite subset of X there exists an accumulation point,
3. Alexandroff-Urysohn-compact provided for every infinite subset of X there exists a complete accumulation point,
4. sequentially-compact provided every sequence in X has a convergent subsequence.
Under the Axiom of Choice the above compactness concepts are equivalent.
This is no longer the case in ZF.

Theorem 2.4 ([4], [14]). Equivalent are:
1. in a (pseudo)metric space X, a point x is an accumulation point of a subset A iff there exists a sequence in A\ {x} that converges to x,
略す
17. the Axiom of Countable Choice.
The Axiom of Dependent Choices implies the Baire Category Theorem for complete pseudometric spaces, and the latter implies the Axiom of Countable Choice.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<739KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef