- 616 名前:現代数学の系譜 雑談 [2025/01/24(金) 15:13:58.53 ID:BCvEAUed.net]
- >>526 追加
(引用開始) www.math.is.tohoku.ac.jp/~obata/student/subject/TaikeiBook/Taikei-Book_13.pdf TAIKEI-BOOK : 2019/1/1(22:21) 東北大 尾畑研 第13章 整列集合 定理13.18 (超限帰納法) 略す ふつうの数学的帰納法は超限帰納法の整列集合Xとして自然数Nをとったものである また超限帰納法は証明だけではなく定義にも用いられる たとえば整列集合を定義域とする写像f(x)を{f(y)|y≺x}を用いて定義する手法がある これを再帰的定義または帰納的定義という ここで正確な主張を述べるのは難しいが X=Nの場合は第15.2節で扱う (引用終り) 下記の近藤友祐 集合論ノート0003 「整礎クラス上の超限帰納法と超限再帰法」 が参考になるだろう なお、近藤友祐氏は、神戸大学 工学部出身らしい だれか、「工学部では、数学の難しいことを教えないだろう」とか、テメエのレベルも省みず宣うやつがいるが だれが見ても、おサルより>>7-10 近藤友祐氏のレベルが上でしょw ;p) (参考) https://elecello.com/ 近藤友祐 2014 年 神戸大学 工学部 電気電子工学科 入学 (2011 年 11 月 03 日 第 12 回 日本数学コンクール論文賞 銀賞 受賞 神戸大学数学研究会 POMB で代表を務めたり 略 していました) https://elecello.com/doc/set/set0003.pdf 集合論ノート0003 整礎クラス上の超限帰納法と超限再帰法 近藤友祐 初稿: 2017/09/05 整礎クラス上の超限帰納法と超限再帰法について述べる. 例えば,ONは整列クラスゆえに整礎クラスだから,ON上の超限帰納法や超限再帰法が正当化される.また,メタ数学的な注意を払った上で,整礎集合や整列集合上の超限帰納法や超限再帰法も正当化される. 整礎クラスに対する超限帰納法の証明の中で,推移的閉包を構成する.この構成は,自然数上の再帰によって行われる.超限再帰法を根拠づけるのに再帰を用いるのは循環論法ではないか?と思われるが,事前に順序数論を展開し,自然数全体を有限順序数全体として定義しておくと,の上で帰納法,再帰法が使えることがわかる.
|

|