[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 05/02 03:21 / Filesize : 739 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ12



138 名前:現代数学の系譜 雑談 [2025/01/11(土) 17:35:08.29 ID:TvN85EDR.net]
>>120-128
ふっふ、ほっほ
出かけていました

5ch便所板らしいなぁ〜w

アホとバカが大きな顔をして
自分たちはバカですと、騒ぐ

数学の情報は、英語が日本語の十倍という人がいる
いまの場合も、該当するよなw

下記で
”assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers.”
google訳
”可算選択公理を前提とすると、集合の濃度(集合の要素の数)が自然数の濃度より大きくない場合、その集合は可算です。有限でない可算集合は可算無限であると言われます。”

これ
百回音読してね ;p)

(参考)
https://en.wikipedia.org/wiki/Countable_set
Countable set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers.[a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In more technical terms, assuming the axiom of countable choice, a set is countable if its cardinality (the number of elements of the set) is not greater than that of the natural numbers.
A countable set that is not finite is said to be countably infinite.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<739KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef