[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 05/02 03:21 / Filesize : 739 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ12



595 名前:現代数学の系譜 雑談 [2025/01/23(木) 21:16:44.08 ID:y/IThbaj.net]
>>545
(引用開始)
>>318
>なんで、必ずある順序数が上限として存在るするといえるのか、わからんから
うん、俺もその辺だいぶ悩んだ
自分では解決できたと思ってるが、正しいかは分からん
(引用終り)

 >>318 より
 個人的には>>309のJechの証明も、ちと不安だ
 なんで、必ずある順序数が上限として存在るするといえるのか、わからんから
 多分、「なんだ、そういうことか!」っていうくらい、つまらんことだと思うけど
(引用終り)

横レス すまん
ベルンシュタインの定理とか、選択公理がいるとか 要らないとか言われるが(下記 en.wikipedia)
それはとこかく、いま Jechの証明 の任意集合Aが、ある集合の濃度を持つとしよう(ZFC内ではね)
そうすると、その濃度から決まる 順序数の上限が存在することが言えるだろう
それは、任意集合Aの冪集合の濃度を超えない
つまり、任意集合Aの冪集合の濃度によって押えられる 集合Aが持ちうる順序数の上限があるのでは?

(参考)
https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem
Schröder–Bernstein theorem
Prerequisites
The 1895 proof by Cantor relied, in effect, on the axiom of choice by inferring the result as a corollary of the well-ordering theorem.[8][9] However, König's proof given above shows that the result can also be proved without using the axiom of choice.

On the other hand, König's proof uses the principle of excluded middle to draw a conclusion through case analysis. As such, the above proof is not a constructive one. In fact, in a constructive set theory such as intuitionistic set theory
IZF, which adopts the full axiom of separation but dispenses with the principle of excluded middle, assuming the Schröder–Bernstein theorem implies the latter.[19] In turn, there is no proof of König's conclusion in this or weaker constructive theories. Therefore, intuitionists do not accept the statement of the Schröder–Bernstein theorem.[20]

There is also a proof which uses Tarski's fixed point theorem.[21]

https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86
ベルンシュタインの定理(ベルンシュタインのていり、カントール=ベルンシュタイン=シュレーダーの定理、シュレーダー=ベルンシュタインの定理、カントール=ベルンシュタインの定理とも、英: Schröder–Bernstein theorem)とは、集合 A から集合 B に単射 があり、集合 B から集合 A へも単射があれば、集合 A から集合 B への全単射があるというものである。濃度においては、これは |A| ≤ |B| かつ |B| ≤ |A| ならば |A| = |B| である、ということを言っているわけで、非常に基本的な要請がこの定理によって満たされることになる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<739KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef