[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 05/02 03:21 / Filesize : 739 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ12



556 名前:現代数学の系譜 雑談 [2025/01/23(木) 07:33:01.69 ID:y/IThbaj.net]
can は、mustではないw ;p)
例えば、下記のスコットのトリック(下記)

そして、循環論法でないことは、”最初は グー”だから、すぐ分ることよ
”A∖{aξ∣ξ<α}”から初めて、この段階では選択関数 f は、使われていない
 A∖{aξ∣ξ<α}”が、最初の定義だよ”ってこと!■

実際の勝負のジャンケンで、グーでも 循環してないよwww ;p)
あたま 弱そうだなw

(参考)
ja.wikipedia.org/wiki/%E3%82%B9%E3%82%B3%E3%83%83%E3%83%88%E3%81%AE%E3%83%88%E3%83%AA%E3%83%83%E3%82%AF
スコットのトリック(英: Scott's trick)とは真クラス上の同値関係についての同値類の定義を、累積的階層のレベルを参照することによって与える方法である[1]。
この方法は選択公理でなく正則性公理に依存している。選択公理を仮定しないZFにおいて順序数の代表元を定義するのに用いることができる[2]。この方法は Dana Scott (1955) によって導入された。
順序数の代表元を集合として定義する問題を超えて、スコットのトリックは基数の代表元を得たり、もっと一般的な同型類(英語版)にも用いることができる。例えば、全順序集合の順序型はその一例である[1]。

en.wikipedia.org/wiki/Scott%27s_trick
Scott's trick
In set theory, Scott's trick is a method for giving a definition of equivalence classes for equivalence relations on a proper class (Jech 2003:65) by referring to levels of the cumulative hierarchy.

The method relies on the axiom of regularity but not on the axiom of choice. It can be used to define representatives for ordinal numbers in ZF, Zermelo–Fraenkel set theory without the axiom of choice (Forster 2003:182). The method was introduced by Dana Scott (1955).

Beyond the problem of defining set representatives for ordinal numbers, Scott's trick can be used to obtain representatives for cardinal numbers and more generally for isomorphism types, for example, order types of linearly ordered sets (Jech 2003:65). It is credited to be indispensable (even in the presence of the axiom of choice) when taking ultrapowers of proper classes in model theory. (Kanamori 1994:47)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<739KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef