[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 05/02 03:21 / Filesize : 739 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ12



547 名前:現代数学の系譜 雑談 [2025/01/22(水) 16:07:47.30 ID:XJPGzntw.net]
>>508
(引用開始)
じゃ、fを表に出しなよ
A,A∖f(A),(A∖f(A))∖f(A∖f(A)),…

f(A),f(A∖f(A)),f((A∖f(A))∖f(A∖f(A))),…
定義域の集合族を{A,A∖f(A),(A∖f(A))∖f(A∖f(A)),…}に制限したいらしいけど
それ中のfを全部消さないと、循環論法でアウトだから
(引用終り)

ふっふ、ほっほw ;p)

(再掲)>>504より
en.wikipedia.org/wiki/Well-ordering_theorem
Well-ordering theorem
Proof from axiom of choice
The well-ordering theorem follows from the axiom of choice as follows.[9]
Let the set we are trying to well-order be A, and let f be a choice function for the family of non-empty subsets of A. 注)*
For every ordinal α, define an element aα that is in A by setting
aα= f(A∖{aξ∣ξ<α})
if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.
That is, aα is chosen from the set of elements of A that have not yet been assigned a place in the ordering (or undefined if the entirety of A has been successfully enumerated).
Then the order < on A defined by aα<aβ if and only if α<β (in the usual well-order of the ordinals) is a well-order of A as desired, of order type sup{α∣aα is defined}.
Notes
9^ Jech, Thomas (2002). Set Theory (Third Millennium Edition). Springer. p. 48. ISBN 978-3-540-44085-7.
注)*
That we can do by induction, using a choice fiunction f for the family S of all nonempty subsets of A.
(引用終り)

さて、この en.wikipedia Well-ordering theorem の
Proof from axiom of choice by 9^ Jech, Thomas (2002). Set Theory で
ここの記載 ”For every ordinal α, define an element aα that is in A by setting
aα= f(A∖{aξ∣ξ<α})
if this complement A∖{aξ∣ξ<α} is nonempty, or leave aα undefined if it is.”
が、循環論法だと? 気は確かか?w

”aα= f(A∖{aξ∣ξ<α})”において
明らかに f 選択関数 で
定義域の集合族 A∖{aξ∣ξ<α} これが、関数の入力で
aα が、関数 fの出力で a ∈A で
aα は aが順序数αで添え字付けできたことを表す
順序を ”defined by aα<aβ if and only if α<β”とすれば
aは、整列できたことになる
(ここ aα<a'β とでもしておく方がいいかもね ;p)

で、循環論法だと?
おれに言わずに、Jech, Thomas にお手紙書いてね
返事が来たら、ここにアップしてくれww ;p)
笑える おサルさんよ>>7-10 www ;p)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<739KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef