定義 K を可換体とする。 L/K を拡大(過去スレpart4の512)とする。 S を L の部分集合で K 上代数的独立(過去スレpart5の7)であるとする。 L = K(S)(過去スレpart4の539)となるとき L を K 上の純超越拡大体 または L/K は純超越拡大であるとも言う。 このとき L は S を不定元の集合とする K 上の有理関数体とも言う。
S = {X_1、...、X_n} のとき K(S) = K(X_1、...、X_n) は K 上の n 変数の有理関数体とも言う。
定義 G を群とする。 G の単位群を e とする。 H = {e} とおく。 G は G の H による左剰余類全体の集合 G/H と同一視される。 よって、過去スレpart5の108より G は推移的(過去スレpart5の107)な G-集合となる。 このとき G は忠実(過去スレpart5の843)な G-集合である。 よって、忠実な表現(過去スレpart5の843)G → Sym(G)(>>6)が得られる。 この表現を G の正則表現と呼ぶ。 このとき G は G 上の置換群(>>7)と見なされる。
命題 (G_i)、i ∈ I を群の族とする。 G = ΠG_i を (G_i)、i ∈ I の直積とする。 各 i ∈ I に対して S_i を (G_i)-集合(過去スレpart5の77)とする。 S = ΣS_i を族 (S_i)、i ∈ I の直和集合とする。 σ = (σ_i) ∈ G と x ∈ S_i に対して σx = (σ_i)x と定義することにより S は G-集合となる。 このとき、各 S_i が忠実(過去スレpart5の843)な (G_i)-集合であれば S は忠実な G-集合である。
命題 (G_i)、i ∈ I を有限群の族とする。 G = ΠG_i を (G_i)、i ∈ I の直積とする。 このとき、ある可換体 K と Galois拡大(過去スレpart4の848)L/K が存在し G は Aut(L/K)(過去スレpart4の847)と同型になる。 このとき K の標数(過去スレpart4の667)は任意に取れる。
命題 (G_i)、i ∈ I を有限群の族とする。 G = ΠG_i を (G_i)、i ∈ I の直積とする。 各 i に対して忠実(過去スレpart5の843)な (G_i)-集合(過去スレpart5の77)S_i が存在する。 例えば S_i として G_i を取り G_i の正則表現をとればよい(>>11)。 S = ΣS_i を族 (S_i)、i ∈ I の直和集合とする。 >>13より S は忠実な G-集合(過去スレpart5の77)となる。 k を任意の可換体とする。 >>9より S を不定元の集合とする k 上の有理関数体 k(S)(>>8)が存在する。 L = k(S) とおく。 >>10より G は Aut(L/k) の部分群と見なされる。 K = {x ∈ L;各σ ∈ G に対して σ(x) = x } とおく。 このとき L/K はGalois拡大(過去スレpart4の848)である。
証明 L は G-集合と見なされる。 x を L の任意の元とする。 過去スレpart5の848より x の軌道(過去スレpart5の92)O(x) = {σ(x); σ ∈ G} が 有限集合であることを示せば良い。 各 i ∈ I に対して G_i は G の部分群と見なされる。 I の有限部分集合 J があり x ∈ k(∪{S_j;j ∈ J}) となる。 σ = (σ_i) を G = ΠG_i の任意の元とする。 J = {j_1、...、j_n} のとき σ(x) = σ_(j_1)...σ_(j_n)(x) となる。 よって、|O(x)| ≦ Π[i ∈ J] |G_j| である。 ここで |O(x)| と各 |G_j| はそれぞれ O(x) と G_j の集合としての濃度を表す(過去スレpart1の180)。 各 G_j は有限群であるから |O(x)| は有限である。 証明終
補題 X を位相空間とする。 A と B を X の部分集合で B ⊂ A とする。 B の X における閉包を B~ とする。 このとき B~ ∩ A は部分空間 A における B の閉包である。
証明 A における B の閉包を B’とする。 B ⊂ B~ ∩ A であり B~ ∩ A は A の閉集合であるから B’⊂ B~ ∩ A である。 逆の包含関係を示せば良い。 x ∈ B~ ∩ A のとき x ∈ B’を示せば良い。 V を x の A における任意の開近傍とする。 V = U ∩ A となる X の開集合がある。 x ∈ B~ で x ∈ U だから U ∩ B ≠ φ である。 U ∩ B = U ∩ A ∩ B = V ∩ B だから V ∩ B ≠ φ である。 よって、x ∈ B’である。 証明終
命題 (G_i)、i ∈ I を有限群の族とする。 G = ΠG_i を (G_i)、i ∈ I の直積とする。 各 i ∈ I に対して G_i に離散位相を与えて G = ΠG_i を位相群と見なす。 このとき、ある可換体 K と Galois拡大(過去スレpart4の848)L/K が存在し G は Aut(L/K)(過去スレpart4の847)と位相群として同型になる。 このとき K の標数(過去スレpart4の667)は任意に取れる。
命題 G を任意の副有限群(過去スレpart5の705)とする。 このとき、ある可換体 K と Galois拡大(過去スレpart4の848)L/K が存在し G は Aut(L/K)(過去スレpart4の847)と位相群として同型になる。 このとき K の標数(過去スレpart4の667)は任意に取れる。
証明 >>38より、有限離散群(過去スレpart5の712)の族 (G_i)、i ∈ I があり G は G’= ΠG_i の閉部分群と見なされる。 >>36より、ある可換体 F と Galois拡大 L/F が存在し G’は Aut(L/F) と位相群として同型になる。 このとき F の標数は任意に取れる。 G’と Aut(L/F) をこの同型で同一視したときの G の固定体(過去スレpart4の863)を K とする。 Galois理論の基本定理(過去スレpart5の288)より Aut(L/K) = G である。 証明終
任意の有限群 G は副有限群であるから>>39より G はあるGalois拡大のGalois群と同型になる。 しかし、この事実は次のように簡単に証明出来る。
命題 G を任意の有限群とする。 このとき、ある可換体 K と Galois拡大(過去スレpart4の848)L/K が存在し G は Aut(L/K)(過去スレpart4の847)と同型になる。 このとき K の標数(過去スレpart4の667)は任意に取れる。
証明 忠実(過去スレpart5の843)な G-集合(過去スレpart5の77)S を任意にとる。 例えば S として G をとり G の正則表現をとればよい(>>11)。 k を任意の可換体とする。 >>9より S を不定元の集合とする k 上の有理関数体 k(S)(>>8)が存在する。 L = k(S) とおく。 >>10より G は Aut(L/k) の部分群と見なされる。 K = {x ∈ L;各σ ∈ G に対して σ(x) = x } とおく。 Artinの定理(過去スレpart1の438)より L/K はGalois拡大で G = Aut(L/K) である。 証明終
[与えられた可換体上のGaloisの逆問題] 有限群 G と可換体 K を任意に与えたときに Galois拡大(過去スレpart4の848)L/K で G が Aut(L/K)(過去スレpart4の847)と同型になるようなものが存在するか?
この問題は K が素体(過去スレpart4の667)の時が最も重要である。 K が有限体(過去スレpart4の681)であれば後で示すように G としては巡回群しか有りえない。 よって、K が有理数体の場合が問題になる。
この問題は現在のところ未解決であるが種々の結果が知られている。 例えば G が次の場合は上の問題は肯定的である。 ・対称群(Hilbert 1892) ・交代群(Hilbert 1892) ・可解群(Shafarevich 1954, 訂正 1989) ・Mathieu 群 M23 を除く25個の散在単純群(Matzat et al 1986, the Monster group Thompson 1984)
定義 K を可換体とする。 過去スレpart4の636より K は代数的閉包(過去スレpart4の634)K~ を持つ。 K の K~ における相対分離的閉包(過去スレpart4の890)を K の分離代数的閉包と言う。 過去スレpart4の648より K の代数的閉包は K-同型(過去スレpart4の514)を除いて一意に定まる。 よって、>>44より K の分離代数的閉包は K-同型を除いて一意に定まる。
定義 K を可換体とする。 K の代数的閉包(過去スレpart4の634)を K~ とする。 K の分離代数的閉包(>>45)を K^sep とする。 >>46より K^sep/K はGalois拡大であり G = Aut(K^sep/K) は Aut(K~/K) に位相群として同型である。 K^sep/K を K の絶対Galois拡大と言い、G を K の絶対Galois群と呼ぶ。
K を可換体とする。 K の絶対Galois拡大(>>47)K^sep/K は>>45より K が定まれば K-同型を除いて一意に定まる。 K^sep は K の分離代数的拡大、特にGalois拡大を K-同型を除いて全て含む。 よって、Galois理論の基本定理(過去スレpart5の288)より K の絶対Galois群(>>47)G は K の分離代数的拡大のほとんど全ての情報を含むと考えられる。 K が与えられたとき G の構造を決定することは可換体論において重要な問題である。 特に有理数体の絶対Galois群の構造を決定することは未解決の非常に重要な問題と考えられている。
命題 K を可換体とする。 L/K をGalois拡大(過去スレpart4の844)とする。 G = Aut(L/K)(過去スレpart4の847)とする。 G に標準位相(過去スレpart5の216)を入れる。 G の開部分群全体を Ψ とする。 L/K の中間体 M で M/K が有限次拡大となるもの全体を Φ とする。 H ∈ Ψ に対して H の固定体(過去スレpart4の863)を k(H) と書く。 M ∈ Φ に対して Aut(L/M) を g(M) と書く。 このとき k(Ψ) ⊂ Φ、g(Φ) ⊂ Ψ であり k:Ψ → Φ と g:Φ → Ψ は互いに逆写像である。
証明 H ∈ Ψ に対して M = k(H) とする。 H は過去スレpart5の249より G の閉部分群である。 よって、Galois理論の基本定理(過去スレpart5の288)より H = g(M) 過去スレpart5の325より [M_s : K] は有限である。 ここで、M_s は M における K の相対分離的閉包(過去スレpart4の890)である。 L/K はGalois拡大であるから M/K は分離代数的である。 よって、M_s = M である。 よって、M ∈ Φ である。
逆に任意の M ∈ Φ に対して標準位相の定義より g(M) は開部分群である。 よって、g(M) ∈ Ψ
命題 K を可換体とする。 L/K をGalois拡大(過去スレpart4の844)とする。 G = Aut(L/K)(過去スレpart4の847)とする。 G に標準位相(過去スレpart5の216)を入れる。 G の開正規部分群全体を Ψ とする。 L/K の中間体 M で M/K が有限次の正規拡大となるもの全体を Φ とする。 H ∈ Ψ に対して H の固定体(過去スレpart4の863)を k(H) と書く。 M ∈ Φ に対して Aut(L/M) を g(M) と書く。 このとき k(Ψ) ⊂ Φ、g(Φ) ⊂ Ψ であり k:Ψ → Φ と g:Φ → Ψ は互いに逆写像である。
証明 H ∈ Ψ に対して M = k(H) とする。 H は過去スレpart5の249より G の閉部分群である。 よって、Galois理論の基本定理(過去スレpart5の288)より H = g(M) よって、過去スレpart5の308より M/K は正規拡大である。 よって、>>49より M ∈ Φ である。
命題 K を有限体(過去スレpart4の681)とする。 L/K を有限次拡大とする。 n = [L : K](過去スレpart4の560)とする。 過去スレpart4の686より |K| は素数冪 q = p^m である。 このとき L は X^(q^n) - X ∈ K[X] の根全体と一致する。 従って L は X^(q^n) - X の K 上の最小分解体(過去スレpart4の542)である。
証明 |L| = q^n である。 過去スレpart1の332より L の乗法群 L^* は巡回群である。 |L^*| = q^n - 1 である。 よって、L^* の任意の元 α に対して α^(q^n - 1) = 1 である。 よって、α^(q^n) = α である。 即ち α は多項式 X^(q^n) - X の根である。 0 は X^(q^n) - X の根であるから L の全ての元は X^(q^n) - X の根である。 |L| = q^n であるから L は X^(q^n) - X の根全体と一致する。 証明終
証明 K を有限体とする。 K の標数(過去スレpart4の667)を p とする。 ψ:K → K をFrobenius自己準同型(過去スレpart1の220)とする。 ψ は単射で K は有限集合だから ψ は全射である。 よって、K = K^p(過去スレpart1の229)である。 よって、過去スレpart1の238より K は完全体(過去スレpart1の222)である。 証明終
補題 K を可換体とする。 K 係数の奇数次の多項式は K において常に根を持つとする。 L/K を任意の有限次Galois拡大(過去スレpart4の844)とする。 このとき G = Aut(L/K)(過去スレpart4の847)の位数は 2 の冪である。
証明 L ≠ K と仮定してよい。 原始要素の定理(過去スレpart1の335)より L = K(α) となる α ∈ L がある。 仮定より α の K 上の最小多項式(過去スレpart4の557)の次数は奇数では有り得ない よって、G の位数は偶数である。 |G| = (2^n)m で m は奇数とする。 過去スレpart5の802より G は位数 2^n の部分群 P を持つ。 P で固定される L の部分体を M とする。 [M : K] = m は奇数だから上と同様の理由により m = 1 である。 即ち M = K である。 よって Galois理論の基本定理(過去スレpart5の288)より G = P である。 証明終
証明 R を実数体とし C を複素数体とする。 過去スレpart4の635より R 係数の次数 ≧ 1 の任意の多項式 f(X) が C において1次式の積に分解することを証明すればよい。 f(X) の C 上の最小分解体(過去スレpart4の542)を L とする。 L は (X^2 + 1)f(X) の R 上の最小分解体であるから L/R はGalois拡大(過去スレpart4の844)である。 >>61の(1)と>>62より G = Aut(L/R) の位数は 2 の冪である。 よって、H = Aut(L/C) の位数も 2 の冪である。 過去スレpart5の782より H は可解群(過去スレpart1の550)である。 よって、|H| > 1 とすると過去スレpart1の564より H は指数 2 の正規部分群 N を持つ。 N で固定される L の部分体を F とすると [F : C] = 2 である。 これは>>61の(2)に矛盾する。 よって |H| = 1、即ち L = C となり f(X) は C において1次式の積に分解する。 証明終
定義 A を可換環とする。 B = A[X_1、...、X_n] を n 変数の多項式環とする。 各整数 k、0 ≦ k ≦ n に対して集合 {1、...、n} の部分集合 H で k 個の要素からなるもの全体を P_k とする。 各 k に対して s_k = Σ[H ∈ P_k] Π[i ∈ H] X_i とおく。 s_k は明らかに k 次の同次多項式であり対称多項式(>>64)である。 s_k を次数 k の基本対称多項式と言う。
定義 n ≧ 1 を整数とする。 (Z+)^n を Z+(>>71)の n 個の直積集合とする。 a = (a_i) と b = (b_i) を (Z+)^n の元とする。 a ≠ b のとき k = min{i;a_i ≠ b_i} が定まる。 a_k < b_k のとき a < b と書く。 a = b または a < b のとき a ≦ b と書く。
命題 I を順序集合とする。 I が整列集合(>>84)であるためには I の空でない任意の部分集合が最小元を持つことが必要十分である。
証明 必要性: I を整列集合とする。 J を I の空でない任意の部分集合とする。 仮定より J は極小元(>>77) a を持つ。 I は全順序集合であるから J の任意の元 x に対して a ≦ x または x ≦ a x < a では有り得ないから a ≦ x よって、a は J の最小元である。
十分性: I の空でない任意の部分集合が最小元を持つとする。 I の任意の2元 a, b に対して {a, b} は最小元をもつ。 よって、a ≦ b または b ≦ a よって、I は全順序集合である。 I の空でない任意の部分集合の最小元はその集合の極小元でもあるから I は整列集合である。 証明終
定義 I が整列集合(>>84)とする。 (M_i)、i ∈ I を順序集合の族とする。 M = ΠM_i を族 (M_i)、i ∈ I の直積集合とする。 a = (a_i) と b = (b_i) を M の元とする。 I は整列集合だから a ≠ b のとき k = min { i ∈ I;a_i ≠ b_i} が定まる。 a_k < b_k のとき a < b と書く。 a = b または a < b のとき a ≦ b と書く。
命題 I を整列集合(>>84)とする。 (M_i)、i ∈ I を順序集合の族とする。 各 M_i は空でないとする。 M = ΠM_i を族 (M_i)、i ∈ I の直積集合とする。 このとき M が辞書式順序(>>88)により全順序集合となるためには 各 M_i が全順序集合であることが必要十分である。
証明 必要性: M が辞書式順序で全順序集合であるとする。 ある k ∈ I に対して M_k が全順序集合でないと仮定して矛盾を導けば良い。 M_k の元 x、y で x ≦ y でも y ≦ x でもないものがある。
1)k が I の最小元の場合: 各 M_i は空でないから選択公理より M の元 a = (a_i) で x = a_k となるものがある。 同様に M の元 b = (b_i) で y = b_k となるものがある。 このとき辞書式順序で a ≦ b でも b ≦ a でもない。 これは M が全順序集合であることに矛盾する。
2)k が I の最小元でない場合: 各 M_i は空でないから選択公理より M の元 a = (a_i) で x = a_k となるものがある。 同様に M の元 b = (b_i) で y = b_k となるものがある。 M の元 c = (c_i) を以下のように定義する。 i < k のとき c_i = a_i k ≦ i のとき c_i = b_i このとき辞書式順序で a ≦ c でも c ≦ a でもない。 これは M が全順序集合であることに矛盾する。
記法 A を可換環とする。 B = A[X_1、...、X_n] を n 変数の多項式環とする。 B の元 f は f(X_1、...、X_n) = Σc_(a_1、...、a_n) (X_1)^(a_1)...(X_n)^(a_n) と書ける。 ここで (a_1、...、a_n) は (Z+)^n(>>73)の元であり、 c_(a_1、...、a_n) は A の元である。
このとき a = (a_1、...、a_n) X = (X_1、...、X_n) X^a = (X_1)^(a_1)...(X_n)^(a_n) c_a = c_(a_1、...、a_n) と略記する。 よって、f = Σc_a X^a である。