定義 K を可換体とする。 L/K を拡大(過去スレpart4の512)とする。 S を L の部分集合で K 上代数的独立(過去スレpart5の7)であるとする。 L = K(S)(過去スレpart4の539)となるとき L を K 上の純超越拡大体 または L/K は純超越拡大であるとも言う。 このとき L は S を不定元の集合とする K 上の有理関数体とも言う。
S = {X_1、...、X_n} のとき K(S) = K(X_1、...、X_n) は K 上の n 変数の有理関数体とも言う。