[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 12/23 22:16 / Filesize : 416 KB / Number-of Response : 553
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア生誕200周年記念スレ part 6



40 名前:Kummer ◆SgHZJkrsn08e [2012/03/03(土) 09:29:24.76 ]
任意の有限群 G は副有限群であるから>>39より G はあるGalois拡大のGalois群と同型になる。
しかし、この事実は次のように簡単に証明出来る。

命題
G を任意の有限群とする。
このとき、ある可換体 K と Galois拡大(過去スレpart4の848)L/K が存在し
G は Aut(L/K)(過去スレpart4の847)と同型になる。
このとき K の標数(過去スレpart4の667)は任意に取れる。

証明
忠実(過去スレpart5の843)な G-集合(過去スレpart5の77)S を任意にとる。
例えば S として G をとり G の正則表現をとればよい(>>11)。
k を任意の可換体とする。
>>9より S を不定元の集合とする k 上の有理関数体 k(S)(>>8)が存在する。
L = k(S) とおく。
>>10より G は Aut(L/k) の部分群と見なされる。
K = {x ∈ L;各σ ∈ G に対して σ(x) = x } とおく。
Artinの定理(過去スレpart1の438)より L/K はGalois拡大で G = Aut(L/K) である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<416KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef