命題 K を可換体とする。 L/K をGalois拡大(過去スレpart4の844)とする。 G = Aut(L/K)(過去スレpart4の847)とする。 G に標準位相(過去スレpart5の216)を入れる。 G の開部分群全体を Ψ とする。 L/K の中間体 M で M/K が有限次拡大となるもの全体を Φ とする。 H ∈ Ψ に対して H の固定体(過去スレpart4の863)を k(H) と書く。 M ∈ Φ に対して Aut(L/M) を g(M) と書く。 このとき k(Ψ) ⊂ Φ、g(Φ) ⊂ Ψ であり k:Ψ → Φ と g:Φ → Ψ は互いに逆写像である。
証明 H ∈ Ψ に対して M = k(H) とする。 H は過去スレpart5の249より G の閉部分群である。 よって、Galois理論の基本定理(過去スレpart5の288)より H = g(M) 過去スレpart5の325より [M_s : K] は有限である。 ここで、M_s は M における K の相対分離的閉包(過去スレpart4の890)である。 L/K はGalois拡大であるから M/K は分離代数的である。 よって、M_s = M である。 よって、M ∈ Φ である。
逆に任意の M ∈ Φ に対して標準位相の定義より g(M) は開部分群である。 よって、g(M) ∈ Ψ