[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 12/23 22:16 / Filesize : 416 KB / Number-of Response : 553
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア生誕200周年記念スレ part 6



44 名前:Kummer ◆SgHZJkrsn08e [2012/03/03(土) 16:40:16.37 ]
命題
K を可換体とする。
E/K と F/K を拡大(>>90)とする。
σ:E → F を K-同型(過去スレpart4の514)とする。
E_s と F_s をそれぞれ K の E と F における相対分離的閉包(過去スレpart4の890)とする。
このとき σ は K-同型 σ’:E_s → F_s を引き起こす。

証明
任意の α ∈ E_s に対して α の K 上の最小多項式(過去スレpart4の557)を f(X) とする。
f(α) = 0 だから σ(f(α)) = f(σ(α)) = 0
よって、σ(α) の K 上の最小多項式を g(X) とすれば f(X) は g(X) で割り切れる。
τ:F → E を σ の逆写像とする。
g(σ(α)) = 0 だから τ(g(σ(α))) = g(α) = 0
よって、g(X) は f(X) で割り切れる。
f(X) と g(X) はモニック(過去スレpart1の115)だから f(X) = g(X) である。
よって、f(X) は σ(α) の K 上の最小多項式である。
α は K 上分離的(過去スレpart4の841)だから f(X) は分離的(過去スレpart4の694)である。
よって、σ(α) ∈ F_s である。
よって、σ(E_s) ⊂ F_s である。

τ は K-同型であるから上記と同様に τ(F_s) ⊂ E_s である。
よって、任意の β ∈ F_s に対して α = τ(β) とすれば α ∈ E_s であり σ(α) = β である。
よって、σ(E_s) = F_s となり σ の E_s への制限は K-同型 σ’:E_s → F_s を引き起こす。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<416KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef