[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



1 名前:132人目の素数さん [03/10/02 00:41]
Grothendieckは代数幾何が大好きだったそうです。

566 名前:132人目の素数さん [03/11/02 21:59]
2ch上級者(・∀・)カコイイ!

567 名前:132人目の素数さん [03/11/02 22:02]
>>564
忠誠98の鍾会って?

568 名前:132人目の素数さん mailto:sage [03/11/02 22:05]
こんなところでしか、ドロップアウターや使えない助手は自尊心を保つことができない。

569 名前:132人目の素数さん [03/11/02 22:08]
>>547を丁寧に書くとこうなる。
スキームなら「仮定」が成り立つんですから、問題ないと思います。
X をスキームと思って読んでいけばいいのではないでしょうか。

前と内容はまったく同じだろ。どこが高飛車なんだよ?

570 名前:132人目の素数さん [03/11/02 22:13]
>>568
馬鹿野郎。

571 名前:132人目の素数さん [03/11/02 22:20]
>>566
とんでもございません。あなた様に較べれば、私なんてとても足元にも及びませんです。

572 名前:132人目の素数さん [03/11/02 22:43]
>>491を誰か解いてくれないか?
俺に見下された思って怒ってる奴、チャンスだぞ。
俺を見返してくれよ。

573 名前:132人目の素数さん mailto:sage [03/11/03 00:04]
その前に572は誰なのか。

574 名前:132人目の素数さん [03/11/03 00:05]
俺だよ、俺



575 名前:132人目の素数さん [03/11/03 00:10]
>>574
勝手に俺に成り代わるなよ。冗談としても許せない。

576 名前:132人目の素数さん mailto:sage [03/11/03 00:12]
俺も俺

577 名前:132人目の素数さん [03/11/03 00:25]
>>576
馬鹿野郎。紛らわしいこと言うなよ。子供じゃないんだろ。
屁理屈こくな。

578 名前:520 ◆gAYBx62iKo [03/11/03 00:25]
520 です。あー、なんかわけわかんなくなってますね・・・

とりえあず「高飛車」って言ったのは謝りますので、その話題はもう
やめませんか?

520 について誰か助言もらえると嬉しいです。

579 名前:132人目の素数さん [03/11/03 00:26]
謝っても高飛車は高飛車。

580 名前:132人目の素数さん mailto:sage [03/11/03 00:32]
問題解けないからって荒らすなっちゅうに。

581 名前:132人目の素数さん [03/11/03 00:33]
自分にとって都合の悪い書き込みは荒らしですか?

582 名前:132人目の素数さん mailto:sage [03/11/03 00:41]
はい

583 名前:132人目の素数さん [03/11/03 00:52]
>>578
EGAのあそこは、非零因子全体が部分層になるような環付き空間を
考えようと言ってるわけです。必ずしもスキームとしないのは、
複素多様体などの例もあるからでしょう。なるべく条件を弱くしようと
するのはGrothendieckの思想でもあるわけです。そのほうが、
問題の本質が見えやすい場合が多いからです。

584 名前:520 ◆gAYBx62iKo [03/11/03 01:47]
>>578
レスありがとうございます。
そうすると、一般に有理形関数っていうのは「非零因子全体が部分層になる」
という仮定の下でのみ考えるっていうことになるわけですか?
たとえば520の例のような特殊な環付き空間では、有理形関数は
定義しない(できない?)ということでしょうか?



585 名前:520 ◆gAYBx62iKo [03/11/03 01:57]
スマソ。
上の「>>578」は「>>583」の間違い。

586 名前:132人目の素数さん [03/11/03 01:59]
>>584
EGAでの定義ではそうなりますね。

587 名前:132人目の素数さん [03/11/03 04:15]
補題
f: X = Spec(A) → Y = Spec(B) をアフィンスキームの射とする。
さらに、A, B は整域とする。
f が支配的なら、付随する射 ψ: B → A は単射である。

証明
Ker(ψ) が 0 でないとする。h を 0 でない Ker(ψ) の元とする。
B は整域だから h はベキ零ではない。従がって、D(h) は空でない。
f^(-1)(D(h)) = D(ψ(h)) = D(0) となるが、D(0) は空集合である。
つまり、D(h) ∩ f(X) は空である。これは、f(X) が Y で稠密で
あることに反する。

588 名前:∩( ・ω・)∩ ばんじゃーい [03/11/03 04:22]
∩( ・ω・)∩ ばんじゃーい


589 名前:132人目の素数さん [03/11/03 04:42]
補題
f: X = Spec(A) → Y = Spec(B) をアフィンスキームの射とする。
A, B は整域とする。
f が支配的かつ生成的に有限な有限型射とする。
このとき、X の関数体は Y の関数体の有限次拡大である

証明
>>587の補題より、B ⊆ A と考えてよい。
>>528の補題より、Y の生成点 ζにたいして、
f^(-1)(ζ) = Spec(A (x) K) と見なせる。
ここに、K は Y の関数体、即ち B の商体であり、
A (x) K は A と K の B 上のテンソル積である。
f は有限型射だから>>511より A は B 上の有限生成の代数である。
従がって、A (x) K も K 上有限生成な代数である。
A (x) K は、A の 積閉集合 B - {0} による局所化であるから、
L を X の関数体としたとき、A (x) K ⊆ L と考えてよい。
さらに、A (x) K の商体が L であることも明らか。
さて、f は生成的に有限だから、Spec(A (x) K) は有限集合である。
即ち、dim A (x) K = 0。これは、L が K 上代数的であることを意味する。

590 名前:132人目の素数さん [03/11/03 05:13]
補題
f: X = Spec(A) → Y = Spec(B) をアフィンスキームの射とする。
A, B は整域とする。
f が支配的かつ生成的に有限な有限型射とする。
このとき Y の稠密な開部分集合 U が存在し、
f により誘導される射 f^(-1)(U) → U が有限射となることを示せ。

証明
>>589の補題より、B ⊆ A と考えてよい。
さらに、A の商体 L は B の商体 K の有限次拡大である。
A は B 上の代数として有限生成だから、その有限個の
生成元を a_i とする。各 a_i は K 上代数的であるから、
b_i0 (a_i)^n + b_i1 (a_i)^(n-1) + ... + b_in = 0 となる
B の元 b_ij が存在する。この式の両辺を b_i0 で割ること
により、a_i は B[1/b_i0] 上整であることがわかる。
各 i にわたる b_i0 の積を b とする。各 a_i は B[1/b]
の上に整となる。従がって、A[1/b] は B[1/b] 上整となる。
A[1/b] は B[1/b] 上の代数として有限生成だから、
加群としても有限生成となる。
U = Spec(B[1/b]) とすれば、f^(-1)(U) = Spec(A[1/b])
だから、>>488より、f^(-1)(U) → U は有限射である。

591 名前:132人目の素数さん [03/11/03 09:43]
まいった。降参。
>>491のHartshorne II Ex. 3.7 がわからない。
>>590で証明したように、X と Y がアフィンなら成り立つ。
しかし、一般の場合の証明が出来ない。
誰か証明してくれ。

592 名前:132人目の素数さん [03/11/03 10:07]
Hartshorne II Ex. 3.8 (正規化)

スキーム X の各局所環 O_x が整閉整域のとき、
X を正規スキームと呼ぶ。
X を整スキームとする。各アフィン開集合 U = Spec(A) に
対して、A~ を A のその商体における整閉包とし、
U~ = Spec(A~) とおく。各 U~ を張り合わせて X の正規化と
呼ばれるスキーム X~ が得られることを示せ。
さらに、射 : X~ → X が存在し、次の普遍性を持つことを
示せ。任意の正規な整スキーム Z と任意の支配的射 f: Z → X
に対して、f は Z → X~ → X と一意に分解する。
もし、X が体 k 上有限型であれば、X~ → X は有限射である。

593 名前:132人目の素数さん [03/11/03 10:33]
Hartshorne II Ex. 3.9 (積の位相空間)

代数多様体の圏においては、二つの代数多様体の積の
ザリスキ位相は、積位相と一致しないことを思い出そう(I Ex.1.4)。
では、スキームの圏では、スキームの積の点集合は、積集合にさえも
ならないことを見よう。

(a) k を体とし、A^1 = Spec(k[x]) を k 上のアフィン直線とする。
A^1 x A^1 = A^2 (同型) を示せ。ここに、A^2 = Spec(k[x, y])
であり、A^1 x A^1 は、A^1 と A^1 の Spec(k) 上のファイバー積
である。さらに、積 A^1 x A^1 の台集合は、各因子の台集合の積
とは一致しないことを示せ(たとえ k が代数的閉体であっても)。

(b) k を体とし、s, t を k 上の不定元とする。Spec(k(s)),
Spec(k(t)), Spec(k) はすべて一点からなる集合である。
Spec(k) 上のファイバー積 Spec(k(s)) x Spec(k(t)) とは何か
を説明せよ。

594 名前:132人目の素数さん [03/11/03 11:07]
俺の目的の一つは、Hartshorneの問題を解くことだ。
一人で解いてるとどうしても甘えが出てくる。
分かるよね? こうやって公に解答を書くことにより
真剣味が出てくる。それと解答のチェックもして欲しい。
もう一つの目的は、他人の解答を見てみたいということ。
それと自分の解答を較べるわけだ。別証を知りたいということも
ある。これらが全ての目的ではないが。例えば、偽善ぽく言うと
解答を提供して誰かの役に立てれば嬉しいとか。
ひとでなしの言うことなんであまり信用出来ないが。



595 名前:132人目の素数さん [03/11/03 15:08]
定義
f: X → Y をスキームの射とする。y ∈ Y を点とする。
k(y) を y の剰余体とし、Spec(k(y)) → Y を標準射とする。
このとき、X_y = X x Spec(k(y)) を 射 f の y 上のファイバー
と呼ぶ。ここで、X x Spec(k(y)) は Y 上のファーバー積である。

596 名前:132人目の素数さん [03/11/03 15:37]
Hartshorne II Ex. 3.10 (射のファイバー)

(a) f: X → Y をスキームの射とする。y ∈ Y を点とする。
sp(X_y) は、f^(-1)(y) と位相同型であることを示せ。
ここで、sp(X_y) は、f の y 上のファイバー X_y の台位相空間を
あらわし、f^(-1)(y) は、X の部分空間としての位相を考える。

(b) X = Spec(k[s, t])/(s - t^2), Y = Spec(k[s]) とし,
f: X → Y を s → s により定義される射とする。
y ∈ Y を点 a ∈ k, a ≠ 0 とする。このとき、ファイバー X_y
は、2点からなり、剰余体は k であることを示せ。
y が点 0 ∈ k に対応する場合は、X_y は被約でない1点からなる
スキームであることを示せ。
ηが Y の生成点のとき、X_ηは1点からなるスキームであり、
その剰余体は、ηの剰余体の2次の拡大体であることを示せ
(k を代数的閉体と仮定せよ)。

597 名前:132人目の素数さん [03/11/03 16:02]
定義
閉埋入とは、スキームの射 f: Y → X で、sp(Y) から sp(X) の
閉部分集合への位相同型を誘導し、さらに
f による誘導射 O_X → f_*(O_Y) が全射となるものをいう。
スキーム X の閉部分スキームとは、閉埋入の同値類をいう。
ここで、f: Y → X と f': Y' → X は、同型 i: Y'→ Y で
f' = fi となるものが存在するとき、同値という。

598 名前:132人目の素数さん [03/11/03 16:17]
Hartshorne II Ex. 3.11 (閉部分スキーム)

(a) 閉埋入は基底の拡大で安定である:
すなわち、f: Y → X を閉埋入とし、X' → X を任意の射とする。
このとき、Y x X' → X' も閉埋入である。
ここで、Y x X' は X 上のファイバー積である。

599 名前:132人目の素数さん [03/11/03 16:22]
今ふと思ったんだが、Hartshorneの演習問題を翻訳したら
まずくないか、著作権上?

600 名前:132人目の素数さん mailto:sage [03/11/03 17:09]
>>599
いまさら何を。
翻訳どころか、解答集を発表するのだって著作権に触れますが何か?

601 名前:132人目の素数さん [03/11/03 17:30]
>>599
別に大丈夫じゃない? Springer や Hartshorne が2チャンを訴えたりするか?

602 名前:132人目の素数さん [03/11/03 17:40]
>>600
解答だけならいいんじゃないか?

603 名前:132人目の素数さん mailto:sage [03/11/03 17:42]
どこの国のどの法律の話をしているのか明確にしなければ意味はない。

604 名前:132人目の素数さん [03/11/03 17:50]
著作権なんてそんな野暮なこと言われるわけない



605 名前:132人目の素数さん mailto:sage [03/11/03 18:57]
「閉埋入」イイ!


606 名前:132人目の素数さん mailto:sage [03/11/03 19:13]
>>604
と言いながら写真屋とかをMXとかNYでパクって来る香具師

607 名前:132人目の素数さん [03/11/03 20:00]
解答だけにするか

608 名前:132人目の素数さん [03/11/03 20:30]
>>607
別に気にしなくていいと思うけど・・・

609 名前:132人目の素数さん [03/11/03 21:37]
ベクトル図形の問題です。
三角形を表すベクトル方程式を1つ作りなさい。


610 名前:132人目の素数さん [03/11/03 22:11]
定義
X を整スキームとする。
X~ を正規な整スキームとし、射 f: X~ → X が以下の性質を
持つとする。
U = Spec(A) を X の任意の空でないアフィン開集合とする。
f^(-1)(U) は、Spec(A~) と同一視され、射 f^(-1)(U) → U は
自然な射 Spec(A~) → Spec(A) と見なせる。ここで、A~ は、A の
商体における A の整閉包である。
このとき、X~ を X の正規化と呼ぶ。

611 名前:132人目の素数さん mailto:sage [03/11/03 22:12]
>>609
スレ違い。

612 名前:132人目の素数さん [03/11/03 22:23]
(´・∀・`)ヘー

613 名前:132人目の素数さん [03/11/03 22:45]
補題
X = Spec(A) をアフィン整スキームとする。
X が正規なら、A は、その商体において整閉である。

証明
定義から A の各局所環は整閉である。
これから、A も整閉である。

614 名前:132人目の素数さん [03/11/03 22:48]
補題
X = Spec(A) をアフィン整スキームとする。
A~ を A の商体における A の整閉包とする。
X~ = Spec(A~) は>>610の意味の X の正規化である。

証明
f: X~ → X を標準射とする。
U = Spec(B) を X のアフィン開集合とする。
f^(-1)(U) は Spec(A~ (x) B) と見なせる。
ここに、A~ (x) B は、A 上のテンソル積。
f^(-1)(U) の商体は、X~ の商体、即ち X の商体である。
f^(-1)(U) は正規であるから、>>613の補代より
A~ (x) B は整閉である。これから、A~ (x) B は B の整閉包
である。



615 名前:132人目の素数さん [03/11/03 22:59]
補題
X = Spec(A) をアフィン整スキームとする。
X~ を>>610の意味の X の正規化とする。
f: X~ → X を標準射とする。
任意の正規な整スキーム Z と任意の支配的射 g: Z → X
に対して、g は Z → X~ → X と一意に分解する。

証明
U = Spec(B) を Z の任意の空でないアフィン開集合とする。
g の制限 U → X を考える。
g は支配的だから、A → B は単射である。
B は整閉だから、A → B は、A → A~ → B と一意に分解する。
即ち、U → X は、U → X~ → X と一意に分解する。
U は任意の空でないアフィン開集合であったから、
補代がいえる。

616 名前:132人目の素数さん [03/11/03 23:05]
補題
X 整スキームとする。
X~ を>>610の意味の X の正規化とする。
f: X~ → X を標準射とする。
任意の正規な整スキーム Z と任意の支配的射 g: Z → X
に対して、g は Z → X~ → X と一意に分解する。

証明
U = Spec(A) を x の任意の空でないアフィン開集合とする。
>>615より、g^(-1)(U) → U は、g^(-1)(U) → f^(-1)(U) → U
と一意に分解する。これより、補題がいえる。

617 名前:132人目の素数さん [03/11/03 23:12]
補題
X = Spec(A) をアフィン整スキームとする。
X~ = Spec(A~) を X の正規化とする。
f: X~ → X を標準射とする。
U を X の任意の空でない開集合とする。
f^(-1)(U) は、U の正規化である。

証明
>>614より明らか。

618 名前:132人目の素数さん [03/11/03 23:14]
ここは派手なオナニースレですね。

619 名前:132人目の素数さん [03/11/03 23:27]
>>592の証明
Hartshorne II Ex. 3.8 (正規化)

証明
整スキーム X の各アフィン開集合 U = Spec(A) に対して、
A~ を A のその商体における整閉包とし、
U~ = Spec(A~) とおく。f_U : U~ → U を標準射とする。
V をもう一つのアフィン開集合 V = Spec(B) とする。
>>617より、(f_U)^(-1)(U ∩ V) は、U ∩ V の正規化である。
同様に、(f_V)^(-1)(U ∩ V) も、U ∩ V の正規化である。
正規化の一意性(>>616)より、(f_U)^(-1)(U ∩ V) と
(f_V)^(-1)(U ∩ V) は同型である。これより、U~ を
張り合わせてスキーム X~ が得られる。
これが X の>>610の意味の正規化であることは、明らか。
普遍性は、>>616から出る。
X が体 k 上有限型であれば、X~ → X が有限射である
ことは、k 上有限生成の整域 A の整閉包が A 上有限加群と
なる(環論の本を参照)ことからわかる。

620 名前:132人目の素数さん [03/11/03 23:35]
>>592は演習問題ってレベルじゃないよな。
こんなの普通の初心者が解けるわけない。

621 名前:132人目の素数さん mailto:sage [03/11/03 23:42]
普通の初心者にはHartshorneはお勧めできない。

622 名前:132人目の素数さん [03/11/04 00:00]
>>621
例えば、Reid の本の知識があったらとしたら?
勿論、環論の知識(A-M 程度)は当然あるとして。

623 名前:132人目の素数さん [03/11/04 15:54]
Reidでは足りない
Mumfordせめてfultonくらいが必要
ここまでが一章
二章以降は
ホモロジー代数も必要
つーか初めてスキーム勉強するのにHartshorneってのはよくなくない?
層だってぜんぜん不十分の記述だしさ
他の本で補いながら進まないと何も身に付かないんじゃないかな
やっぱHartshorneはガイドブックなんだよ 間違いない

624 名前:132人目の素数さん [03/11/04 19:01]
>>623
EGAのほうがある意味で簡単だな。全ての命題に厳密な証明をつけている。
ただし、Bourbakiの可換環論, Zariski-Samuel, Cartan-Eilenberg,
Godement, Tohoku を読んでおく必要がある。w
FACも読んどいたほうがいいな。



625 名前:132人目の素数さん [03/11/04 19:23]
>>489
Hartshorne II Ex. 3.5
(c) 全射で有限型かつ準有限な射で有限射でない例をしめせ。

この間から考えていてやっと見つけた。

A = Z[X] / (2X^2 + 1) とおく。
ここで、Z は有理整数環.
f: Spec(A) → Spec(Z) を標準射とする。
U = Spec(Z) - {(2)} とおく。
f^(-1)(U) → U が (c) の条件を満たす。

626 名前:132人目の素数さん [03/11/04 19:58]
>>624
>EGAのほうがある意味で簡単だな。全ての命題に厳密な証明をつけている。
>ただし、Bourbakiの可換環論, Zariski-Samuel, Cartan-Eilenberg,
>Godement, Tohoku を読んでおく必要がある。w

EGA 読む「前に」これら全部読んどきゃなきゃだめですか? それは
ちょっとキツすぎるっす。

627 名前:132人目の素数さん [03/11/04 20:06]
>>623
>Mumfordせめてfultonくらいが必要
Mumford っていってもいろいろあるけど、Springer の
"Algebraic Geometry I Complex Projective Varieties" のこと?
Fulton は "Algebraic Curves" のことかな?


628 名前:132人目の素数さん [03/11/04 20:11]
>>626
全部読む必要はまるで無い。必要なときに参照すればいい。
ただし、可換代数の基礎的なことはやっておく必要はある。
Atiyah-Macdonald がいいだろう。それとホモロジー代数の
基礎的なこともやっておいたほうがいい。河田なんかいいかも。

629 名前:132人目の素数さん [03/11/04 21:36]
誰か、問題を解いてくれないか?
俺一人解くだけじゃつまらない。

630 名前:132人目の素数さん mailto:sage [03/11/04 21:40]
>>629
解ける香具師がいりゃぁ解くだろぉよ。ウダウダ言うねぃ。

631 名前:132人目の素数さん [03/11/04 21:43]
>>628
助言ありがとうございます。
Atiyah-Macdonald と河田ホモロジー代数はだいたい読み終えているので
EGA チャレンジしてみようと思います。
しかし EGA I〜IV をすべて制覇するのにどのくらい時間かかるかな。
ちょっと怖い気もするが・・・

632 名前:132人目の素数さん [03/11/04 21:49]
実際、今の代数幾何の研究者の中で、EGA を読破した人って何割くらい
なんでしょう? やっぱみんな読んでるんでしょうか?

633 名前:132人目の素数さん mailto:sage [03/11/04 21:51]
研究者なら読んでるんじゃねーの?

634 名前:132人目の素数さん [03/11/04 21:53]
>>631
EGAは通読するものじゃないだろう。レファレンスとして使うのがいい。
Hartshorneの補助として使うのがいいんじゃないか?



635 名前:132人目の素数さん [03/11/04 22:04]
それと前にも書いたが、EGAを読む前にFACを読んどいたほうがいい。
FACは分かりやすいし、重要な論文だ。

636 名前:132人目の素数さん [03/11/04 22:18]
↑本の名前ばっかいってないで問題解けば

637 名前:132人目の素数さん mailto:sage [03/11/04 22:26]
俺は、位相幾何が専門だが、Hartshorneは輪講に参加させてもらった。

638 名前:132人目の素数さん [03/11/04 22:32]
>>636
俺(>>635)がずっと解いてるんだが。
お前こそ解けば。

639 名前:132人目の素数さん [03/11/04 22:33]
おま女

640 名前:132人目の素数さん [03/11/04 22:39]
>>638
解けない

641 名前:132人目の素数さん mailto:sage [03/11/04 22:44]
代数幾何はやることが多すぎで並みの人間には近寄りがたい雰囲気をかもし出している。

642 名前:132人目の素数さん mailto:sage [03/11/04 22:45]
ふと思ったのだけど、これの解析概論バージョンをやれば多くの人が
参加できるんじゃない?

643 名前:132人目の素数さん [03/11/04 22:47]
多くの人が参加できたら何か?

644 名前:132人目の素数さん mailto:sage [03/11/04 22:50]
あんまりうれしくないな。



645 名前:132人目の素数さん [03/11/04 22:54]
>>641
それは言える。代数幾何は数論とならんで深いからね。
他の全数学を道具とすると言っても過言ではない。

646 名前:132人目の素数さん mailto:sage [03/11/04 23:03]
じゃあ p 進(簡約群あたりの)表現論やろうよ。というか、俺は出来ないのでやってくれ。

647 名前:132人目の素数さん [03/11/04 23:43]
>>635
ありがとうございます。FAC 読んでみます。
ところで EGA 全部読んだっていう人いましたら、どの位時間かかったか
参考までに教えてもらえませんか?

648 名前:132人目の素数さん mailto:sage [03/11/05 01:40]
いねーよ

649 名前:132人目の素数さん mailto:sage [03/11/05 01:41]
つーか、そんなことやるぐらいなら、もっとやりたいこと勉強したほうがいいよ。

650 名前:132人目の素数さん [03/11/05 07:48]
>>647
EGAを通読するなんて考えないほうがいい。
それより、シャファレビッチとかマンフォードのred book などの
代数幾何の入門書をまず読んだほうがいい。

651 名前:132人目の素数さん mailto:sage [03/11/05 09:43]
入門書をセミナー用に読んだ人、TeX でうpキボン。

652 名前:132人目の素数さん mailto:sage [03/11/05 12:57]
>>651
ハァ?

653 名前:132人目の素数さん [03/11/05 20:11]
Hartshorne II Ex. 3.9 (積の位相空間)
(a)
k[X] (x) k[Y] = k[X, Y] (同型) だから、A^1 x A^1 = A^2 (同型)
となる。ここで、k[X] (x) k[Y] は k 上のテンソル積。

ここで簡単のため、k を代数的閉体とする。A^2 = Spec(k[X, Y]) は、
集合として、以下の素イデアルからなる。
(1) 生成点: 零イデアル
(2) 既約多項式により生成される単項イデアル
(3) 極大イデアル (X - a, Y - b)。この全体は、k x k の点と1対1に
対応する。

これから、A^1 x A^1 の台集合は、各因子の台集合の積
とは一致しないことがわかる。

654 名前:132人目の素数さん [03/11/05 20:12]
↑は>>593の解答



655 名前:132人目の素数さん [03/11/05 20:28]
>>593の解答
Hartshorne II Ex. 3.9 (積の位相空間)

(b)
Spec(k(s)) x Spec(k(t)) = Spec(k(s) (x) k(t))である。
k(s) (x) k(t) = k(s)[t]_S である。
ここに、S = k[t] - {0} であり、k(s)[t]_S は、環 k(s)[t]
の S による局所化である。
k(s)[t] の素イデアルは、k[s, t] の既約多項式で生成される
単項イデアルで、k[s] に含まれないものと零イデアルに
1対1に対応する。従がって、Spec(k(s) (x) k(t)) は、
k[s, t] の既約多項式で生成される単項イデアルで、k[s] にも
k[t] にも含まれないものと零イデアルに1対1に対応する。

656 名前:132人目の素数さん mailto:sage [03/11/05 21:41]
>>651
そもそも、TeXで書き写すやつなんているのか・・・。

657 名前:132人目の素数さん mailto:sage [03/11/05 21:45]
漏れはM1のときのセミナーでは、やったことをTeXで書いたノートを出せと
言われて、毎週必死こいてTeX打ちしてたぞ。

658 名前:132人目の素数さん [03/11/05 22:27]
>>596の解答
Hartshorne II Ex. 3.10 (射のファイバー)

(a)
f: X → Y をスキームの射とする。y ∈ Y を点とする。
f の y 上のファイバーは、X_y = X x Spec(k(y)) である。
ここで、k(y) は y の剰余体で、X x Spec(k(y)) は
Y 上のファイバー積である。
射影 X x Spec(k(y)) → X を p とする。
射影 X x Spec(k(y)) → Spec(k(y)) を q とする。
以下の図式は可換である。

X x Spec(k(y)) --> Spec(k(y))
↓ ↓
X ---------------> Y

659 名前:132人目の素数さん [03/11/05 22:28]
>>658の続き。

z ∈ X_y とする。
ファイバー積の定義から、
f(p(z)) = j(q(z)) = y である。ここで、j: Spec(k(y)) → Y は
標準射。従がって、p(z) ∈ f^(-1)(y) となる。
逆に、x ∈ f^(-1)(y) とする。
g: Spec(k(x)) → X が存在し、g(ζ) = x となる。
ここで、ζはk(x)の生成点である。
f(x) = y であるから、k(y) ⊆ k(x) と考えられる。
これより、h: Spec(k(x)) → Spec(k(y)) が一意に定まる。
fg = jh だから、φ: Spec(k(x)) → X x Spec(k(y)) が一意に
存在し、pφ = g, qφ = j となる。
φ(ζ) = z とすれば、pφ(ζ) = g(ζ) = x だから、p(z) = x である。
この z は、φの一意製より、一意に定まる。
以上より、p の sp(X_y) への制限写像は、集合として
sp(X_y) と f^(-1)(y) の全単射を与える。
U を X のアフィン開集合とすると、
U x Spec(k(y)) は、U ∩ f^(-1)(y) と位相同型であることは、
>>528よりわかる。故に、sp(X_y) と f^(-1)(y) は位相同型である。

660 名前:132人目の素数さん [03/11/05 22:51]
>>659
>U を X のアフィン開集合とすると、
U x Spec(k(y)) は、U ∩ f^(-1)(y) と位相同型であることは、
>>528よりわかる。故に、sp(X_y) と f^(-1)(y) は位相同型である。

これを、以下のように訂正する。
x ∈ X で f(x) = y
U を X のアフィン開集合、V を Y のアフィン開集合とし、
x ∈ X, y ∈ V, f(U) ⊆ V とする。U x Spec(k(y)) を V 上の
テンソル積とする。U x Spec(k(y)) は、U ∩ f^(-1)(y) と
位相同型であることは、>>528よりわかる。
故に、sp(X_y) と f^(-1)(y) は位相同型である。

661 名前:132人目の素数さん mailto:sage [03/11/05 22:53]
>>657
いい先生だね(マジ

662 名前:132人目の素数さん [03/11/06 00:55]
じゃぼくもHartshorne読むわ
層のとこからゆっくり

61ページの(3)のとこで
Note condition(3)implies that s is unique
ってあるけどどういうこと?何に対してユニーク?
(3)の条件って層の既約性のことだと思うけど
これってかなり特殊な例(例えばA.S.前層)を除くためのものって理解してた
ちがう?

663 名前:132人目の素数さん [03/11/06 01:31]
既約だからユニークなんだろうけど、なんで既約っていうのかは知らん

664 名前:132人目の素数さん [03/11/06 02:13]
>>662
貼り合わせがユニークに存在するっていうこと。
(3) ∀i s|V_i = 0 ⇒ s = 0
っていう条件は、
(3)'∀i s|V_i = t|V_i ⇒ s = t
と書き換えられることに注意。

> (3)の条件って層の既約性のことだと思うけど
> これってかなり特殊な例(例えばA.S.前層)
> を除くためのものって理解してた
> ちがう?

これはちょっと言っていることがいまいち掴めませんが(「A.S.前層」って何でしょう?)、
(3) の条件を満たさない前層なんていくらでも存在しますよ。「特殊な例」っていう感じじゃない。



665 名前:132人目の素数さん [03/11/06 20:42]
>>659
>φ(ζ) = z とすれば、pφ(ζ) = g(ζ) = x だから、p(z) = x である。
この z は、φの一意製より、一意に定まる。

これは、説明不足だった。
p(z) = p(w) として、z = w を言うには、k(z) と k(w) を
共に含む体 K を考え、Spec(K) → X x Spec(k(y)) の一意性を
言う必要がある。後は>>659と同様。

666 名前:132人目の素数さん [03/11/06 21:03]
>>596の解答
Hartshorne II Ex. 3.10 (射のファイバー)

(b)
a ∈ k とし、k[s] のイデアル (s - a) を P とする。
これは、k[s] の極大イデアルである。
B = k[s, t] と置く。
ファイバー X_y は、Spec(B/(s - t^2) (x) k(y)) であり、
これは、B_P/(P(B_P) + (s - t^2)B_P) に
等しい。さらに、これは k[t]/(t^2 - a) に等しい。
これより、(b) の前半がでる。
ηが Y の生成点のとき、X_ηはSpec(k(s)[t]/(s - t^2)) となる。
これより、(b) の後半がでる。






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef