[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



659 名前:132人目の素数さん [03/11/05 22:28]
>>658の続き。

z ∈ X_y とする。
ファイバー積の定義から、
f(p(z)) = j(q(z)) = y である。ここで、j: Spec(k(y)) → Y は
標準射。従がって、p(z) ∈ f^(-1)(y) となる。
逆に、x ∈ f^(-1)(y) とする。
g: Spec(k(x)) → X が存在し、g(ζ) = x となる。
ここで、ζはk(x)の生成点である。
f(x) = y であるから、k(y) ⊆ k(x) と考えられる。
これより、h: Spec(k(x)) → Spec(k(y)) が一意に定まる。
fg = jh だから、φ: Spec(k(x)) → X x Spec(k(y)) が一意に
存在し、pφ = g, qφ = j となる。
φ(ζ) = z とすれば、pφ(ζ) = g(ζ) = x だから、p(z) = x である。
この z は、φの一意製より、一意に定まる。
以上より、p の sp(X_y) への制限写像は、集合として
sp(X_y) と f^(-1)(y) の全単射を与える。
U を X のアフィン開集合とすると、
U x Spec(k(y)) は、U ∩ f^(-1)(y) と位相同型であることは、
>>528よりわかる。故に、sp(X_y) と f^(-1)(y) は位相同型である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef