- 488 名前:132人目の素数さん [03/10/31 21:14]
- Hartshorne II Ex. 3.4
f: X → Y をスキームの射とする。 Y がアフィン開集合 V_i = Spec(B_i) による被覆を持ち、 各 f^(-1)(V_i) が アフィン開集合 Spec(A_i) であり、 各 A_i が有限生成の B_i-加群であるとき、 f を有限射という。 以下を証明せよ。 スキームの射 f: X → Y が有限射であるためには、 Y の任意のアフィン開集合 V = Spec(B) に対して、f^(-1)(V) がアフィン開集合 U = Spec(A) となり、 A が有限生成の B-代数となることが必要十分である。
|

|