[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



589 名前:132人目の素数さん [03/11/03 04:42]
補題
f: X = Spec(A) → Y = Spec(B) をアフィンスキームの射とする。
A, B は整域とする。
f が支配的かつ生成的に有限な有限型射とする。
このとき、X の関数体は Y の関数体の有限次拡大である

証明
>>587の補題より、B ⊆ A と考えてよい。
>>528の補題より、Y の生成点 ζにたいして、
f^(-1)(ζ) = Spec(A (x) K) と見なせる。
ここに、K は Y の関数体、即ち B の商体であり、
A (x) K は A と K の B 上のテンソル積である。
f は有限型射だから>>511より A は B 上の有限生成の代数である。
従がって、A (x) K も K 上有限生成な代数である。
A (x) K は、A の 積閉集合 B - {0} による局所化であるから、
L を X の関数体としたとき、A (x) K ⊆ L と考えてよい。
さらに、A (x) K の商体が L であることも明らか。
さて、f は生成的に有限だから、Spec(A (x) K) は有限集合である。
即ち、dim A (x) K = 0。これは、L が K 上代数的であることを意味する。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef