補題 X = Spec(A) をアフィン整スキームとする。 X~ を>>610の意味の X の正規化とする。 f: X~ → X を標準射とする。 任意の正規な整スキーム Z と任意の支配的射 g: Z → X に対して、g は Z → X~ → X と一意に分解する。
証明 U = Spec(B) を Z の任意の空でないアフィン開集合とする。 g の制限 U → X を考える。 g は支配的だから、A → B は単射である。 B は整閉だから、A → B は、A → A~ → B と一意に分解する。 即ち、U → X は、U → X~ → X と一意に分解する。 U は任意の空でないアフィン開集合であったから、 補代がいえる。