[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



590 名前:132人目の素数さん [03/11/03 05:13]
補題
f: X = Spec(A) → Y = Spec(B) をアフィンスキームの射とする。
A, B は整域とする。
f が支配的かつ生成的に有限な有限型射とする。
このとき Y の稠密な開部分集合 U が存在し、
f により誘導される射 f^(-1)(U) → U が有限射となることを示せ。

証明
>>589の補題より、B ⊆ A と考えてよい。
さらに、A の商体 L は B の商体 K の有限次拡大である。
A は B 上の代数として有限生成だから、その有限個の
生成元を a_i とする。各 a_i は K 上代数的であるから、
b_i0 (a_i)^n + b_i1 (a_i)^(n-1) + ... + b_in = 0 となる
B の元 b_ij が存在する。この式の両辺を b_i0 で割ること
により、a_i は B[1/b_i0] 上整であることがわかる。
各 i にわたる b_i0 の積を b とする。各 a_i は B[1/b]
の上に整となる。従がって、A[1/b] は B[1/b] 上整となる。
A[1/b] は B[1/b] 上の代数として有限生成だから、
加群としても有限生成となる。
U = Spec(B[1/b]) とすれば、f^(-1)(U) = Spec(A[1/b])
だから、>>488より、f^(-1)(U) → U は有限射である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef