[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



1 名前:132人目の素数さん [2007/03/16(金) 07:45:20 ]
Kummer ◆g2BU0D6YN2氏が代数的整数論を語るスレです。

前スレ
science6.2ch.net/test/read.cgi/math/1164286624/

560 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 12:48:51 ]
補題
D > 0 を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
D = (2^α)m と書ける。ここで α ≧ 2、m は正の奇数である。
α は奇数とする。
a と b を正の奇数で a ≡ b (mod D) とする。
このとき (D/a) = (D/b) である。
ここで (D/a) と (D/b) は Jacobi の記号(過去スレ4の890)である。

証明
α は奇数だから (D/a) = (2/a)(m/a), (D/b) = (2/b)(m/b)
過去スレ4の895より、
(2/a) = (-1)^((a^2 - 1)/8)
(2/b) = (-1)^((b^2 - 1)/8)
a ≡ b (mod D) だから a ≡ b (mod 8)
よって (2/a) = (2/b)、よって (m/a) = (m/b) を示せばよい。

過去スレ4の895より、
(m/a) = (-1)^((m-1)/2)((a-1)/2)(a/m)
(m/b) = (-1)^((m-1)/2)((b-1)/2)(b/m)

m ≡ 1 (mod 4) なら (m/a) = (a/m), (m/b) = (b/m)
a ≡ b (mod D) だから a ≡ b (mod m)
よって (a/m) = (b/m) 即ち (m/a) = (m/b)

m ≡ 3 (mod 4) なら
(m/a) = (-1)^((a-1)/2)(a/m)
(m/b) = (-1)^((b-1)/2)(b/m)

a ≡ b (mod 4) だから (-1)^((a-1)/2) = (-1)^((b-1)/2)
a ≡ b (mod D) だから a ≡ b (mod m)
よって (a/m) = (b/m) 即ち (m/a) = (m/b)
証明終

561 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 12:54:52 ]
補題
D < 0 を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
a と b を正の奇数で a ≡ b (mod D) とする。
a と b を正の奇数で a ≡ b (mod D) とする。
このとき (D/a) = (D/b) である。
ここで (D/a) と (D/b) は Jacobi の記号(過去スレ4の890)である。

証明
D = -(2^α)m と書ける。ここで α ≧ 2、m は正の奇数である。

(D/a) = (-1/a)(-D/a)
(D/b) = (-1/b)(-D/b)
である。

-D ≡ 0 (mod 4) だから >>559>>560 より
(-D/a) = (-D/b) である。
よって
(-1/a) = (-1/b) を示せばよい。

過去スレ4の896より、
(-1/a) = (-1)^((a-1)/2)
(-1/b) = (-1)^((b-1)/2)

a ≡ b (mod 4) だから
(-1/a) = (-1/b) である。
証明終

562 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 12:57:55 ]
>>556, >>558, >>559, >>560, >>561 をまとめると次の命題が得られる。

命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
a と b を正の奇数で a ≡ b (mod D) とする。
このとき (D/a) = (D/b) である。

563 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 13:32:19 ]
補題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。

(Z/DZ)^* の任意の類 C に対して正の奇数 m を適当にとれば
C = [m] と書ける。

証明
D ≡ 0 (mod 4) ならこれは明らかである。

よって D ≡ 1 (mod 4) とする。

(Z/DZ)^* の任意の類 C は [a] と書ける。
ここで a > 0 は D と素である。

a が奇数なら m = a とすればよい。

a が偶数なら m = a + nD とすればよい。
ここで n は奇数で a + nD > 0 となる任意の有理整数である。
証明終

564 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 13:39:26 ]
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。

(Z/DZ)^* から {±1} へのアーベル群としての準同型 χ を
以下のように定義する。

>>563 より (Z/DZ)^* の任意の類 C の代表として正の奇数 m が取れる。
χ(C) = (D/m) とする。
>>562 より χ(C) は m の取り方によらない。
これが アーベル群の準同型であることは Jacobi 記号の性質
(過去スレ4の892)から明らかである。

565 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 13:48:37 ]
>>556, >>558, >>559, >>560, >>561, >>562 において
a, b はそれぞれ D と素であることを仮定している。

566 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 14:21:58 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

D > 0 のとき χ([-1]) = 1
D < 0 のとき χ([-1]) = -1

証明
1) D > 0 で D ≡ 0 (mod 4) とする。

χ([-1]) = χ([D-1]) = (D/D - 1) = (D - 1 + 1/D - 1)
= (1/D - 1) = 1

2) D > 0 で D ≡ 1 (mod 4) とする。
χ([-1]) = χ([2D-1]) = (D/2D - 1) = (2D - 1/D) = (-1/D) = 1

3) D < 0 で D ≡ 0 (mod 4) とする。

-D - 1 ≡ -1 (mod 4) だから
χ([-1]) = χ([-D-1]) = (D/-D - 1) = (-(-D - 1) - 1/-D - 1)
= (-1/-D - 1) = -1

4) D < 0 で D ≡ 1 (mod 4) とする。

-2D - 1 ≡ -1 (mod 4) だから
χ([-1]) = χ([-2D-1]) = (D/-2D - 1) = (-1/-2D - 1)(-D/-2D - 1)
= (-2D - 1/-D) = (-1/-D) =-1
証明終

567 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 14:33:39 ]
命題
D を平方数でない有理整数で、D ≡ 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

D ≡ 1 (mod 8) のとき χ([2]) = 1
D ≡ 5 (mod 8) のとき χ([2]) = -1

証明
1) D > 0 のとき。

χ([2]) = χ([D + 2]) = (D/D + 2) = (D + 2/D)
= (2/D) = (-1)^(D^2 - 1)/8

よって
D ≡ 1 (mod 8) のとき χ([2]) = 1
D ≡ 5 (mod 8) のとき χ([2]) = -1

2) D < 0 のとき。
χ([2]) = χ([-D + 2]) = (D/-D + 2) = (-1/-D + 2)(-D/-D + 2)
= (-D/-D + 2) = (-D + 2/-D) = (2/-D) = (-1)^(D^2 - 1)/8

よって
D ≡ 1 (mod 8) のとき χ([2]) = 1
D ≡ 5 (mod 8) のとき χ([2]) = -1
証明終

568 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 15:24:14 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
m を D と素な奇数とする。

m が判別式 D のある原始的2次形式により固有に表現される
(過去スレ4の701)ためには D が m を法として平方剰余になることが
必要十分である。

証明
m が判別式 D のある原始的2次形式により固有に表現されるなら
過去スレ4の717より D は m を法として平方剰余である。

逆に D ≡ b^2 (mod m) となる b があるとする。

m は奇数だから b が偶数なら b + m は奇数であり、
b が奇数なら b + m は偶数である。
よって D と b は偶奇が一致すると仮定してよい。
このとき D ≡ b^2 (mod 4m) となる。
b^2 - D = 4mc とする。

f(x, y) = mx^2 + bxy + cy^2 は判別式 D の2次形式で、
gcd(m, D) = 1 だから f は原始的である。
m = f(1, 0) だから m は f による固有に表現される。
証明終



569 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 15:45:43 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

D を割らない奇素数 p に対して χ([p]) = 1 となるためには
p が判別式 D のある原始的2次形式により固有に表現されることが
必要十分である。

証明
χ の定義から χ([p]) = (D/p) である。
よって >>568 より明らかである。
証明終

570 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 21:08:35 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

m を D と素な有理整数で、判別式 D の原始的2次形式 f により
表現されるとする。ここで表現は必ずしも固有とは限らない。
さらに、D < 0 のときは f は正定値とする。

ことき χ([m]) = 1 である。

証明
f = ax^2 + bxy + cy^2 とする。
m は f で表現されるから m = as^2 + bst + ct^2 となる有理整数
s, t がある。d = gcd(s, t) とおくと、m = (d^2)n となる n があり
n は f により固有に表現される。
χ([m]) = χ([d])^2 χ([n]) = χ([n]) である。
よって m は初めから f により固有に表現されると仮定してよい。

よって過去スレ4の717より D ≡ b^2 (mod 4m) となる有理整数 b が
存在する。

1) D ≡ 0 (mod 4) で m > 0 のとき。

m は D と素だから m は奇数である。
D ≡ b^2 (mod 4m) となる b があるから
χ([m]) = (D/m) = (b^2/m) = (b/m)^2 = 1

(続く)

571 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 21:14:59 ]
2) D ≡ 0 (mod 4) で m < 0 のとき。
D < 0 なら、仮定より f は正定値だから m < 0 とはならない。
よって D > 0 である。

m は D と素だから m は奇数である。
D ≡ b^2 (mod 4m) より
D ≡ b^2 (mod -m) でもある。
よって χ([-m]) = (D/-m) = (b^2/-m) = (b/-m)^2 = 1

D > 0 だから >>566 より χ([-1]) = 1 である。
よって χ([m]) = χ([-1])χ([-m]) = χ([-1]) = 1

3) D ≡ 1 (mod 4) で m > 0 のとき。
m が奇数なら D ≡ b^2 (mod 4m) より
χ([m]) = (D/m) = (b^2/m) = (b/m)^2 = 1

m が偶数なら m = (2^α)n, α ≧ 1, n ≧ 1 は奇数と書ける。
D ≡ b^2 (mod 4m) より
D ≡ b^2 (mod n) である。
よって χ(n) = (D/n) = (b^2/n) = (b/n)^2 = 1

よって αが偶数なら
χ([m]) = χ(2^α) χ(n) = χ(n) = 1

αが奇数なら
χ([m]) = χ(2) χ(n) = χ(2)

D ≡ b^2 (mod 4(2^α)n) だから D ≡ b^2 (mod 8)
よって D ≡ 1 (mod 8) である。
>>567 より χ(2) = 1 である。
よって χ([m]) = 1 である。
(続く)

572 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 21:17:23 ]
4) D ≡ 1 (mod 4) で m < 0 のとき。
D < 0 なら、仮定より f は正定値だから m < 0 とはならない。
よって D > 0 である。

m が奇数なら
D ≡ b^2 (mod 4m) より
χ([m]) = χ([-1])χ([-m]) = χ([-1]) = 1

m が偶数なら m = -(2^α)n, α ≧ 1, n ≧ 1 は奇数と書ける。
αが偶数なら
χ([m]) = χ([-1])χ(2^α)χ([n]) = χ([-1]) = 1

αが奇数なら
χ([m]) = χ([-1])χ(2)χ([n]) = χ(2)

D ≡ b^2 (mod 4(2^α)n) だから D ≡ b^2 (mod 8)
よって D ≡ 1 (mod 8) である。
>>567 より χ(2) = 1 である。
よって χ([m]) = 1 である。
証明終

573 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 00:09:23 ]
補題
D を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
f = x^2 - (D/4)y^2 を判別式 D の主形式(>>523)とする。
m と n が f により表現されるなら mn もf により表現される。

証明
m = u^2 - (D/4)v^2 となる有理整数 u, v がある。

>>500 より
α= u + v(√D)/2 とおく
N(α) = (u + v(√D)/2)(u - v(√D)/2) = u^2 - (D/4)v^2 = m

同様に n = z^2 - (D/4)w^2 となる有理整数 z, w がある。
β= z + w(√D)/2 とおく
N(β) = (z + w(√D)/2)(z - w(√D)/2) = z^2 - (D/4)w^2 = n

nm = N(α)N(β) = N(αβ)
である。

αβ = (u + v(√D)/2)(z + w(√D)/2)
= uz + vwD/4 + (uw + vz)(√D)/2

よって
N(αβ) = (uz + vwD/4)^2 - (D/4)(uw + vz)^2

よって nm は f により表現される。
証明終

574 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:10:01 ]
45

575 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:11:00 ]
44

576 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:12:00 ]
43

577 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:13:00 ]
42

578 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:14:01 ]
41



579 名前:132人目の素数さん mailto:sage [2007/07/02(月) 04:15:00 ]
40

580 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 07:48:43 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
f を判別式 D の主形式(>>523)とする。

即ち
D ≡ 0 (mod 4) のとき f = x^2 - (D/4)y^2
D ≡ 1 (mod 4) のとき f = x^2 + xy + ((1 - D)/4)D

R を判別式 D 整環とする。

f で表現される有理整数の全体は { N(θ) ; θ ∈ R } と一致する。

証明

D ≡ 0 (mod 4) のとき b = 0
D ≡ 1 (mod 4) のとき b = 1
とおく。

>>242 より f には R = [1, (-b + √D)/2] が対応する。

α = 1
β = (-b + √D)/2 とおく。

>>248 より
f(x, y) = N(xα - yβ)
証明終

581 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 07:53:20 ]
>>580 より >>573 が直ちに得られる。
さらに D ≡ 1 (mod 4) の場合も証明される。

補題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
f を判別式 D の主形式(>>523)とする。
m と n が f により表現されるなら mn もf により表現される。

証明
>>580 より明らかである。

582 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 08:02:54 ]
>>580
>>R を判別式 D 整環とする。

R を判別式 D の整環とする。

583 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 10:15:13 ]
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

H = { [m] ∈ (Z/DZ)^* ; m は D と素で主形式により表現される }
とおく。

>>581 より H は (Z/DZ)^* の部分群である。
さらに >>570 より H は Ker(χ) に含まれる。

584 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 10:21:10 ]
補題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。
f = (a, b, c) を判別式 D の原始的2次形式とする。
さらに、D < 0 のときは f は正定値と仮定する。

集合 { [m] ∈ (Z/DZ)^* ; m は D と素で f により表現される }
は Ker(χ)/H のある剰余類に含まれる。

証明
>>534 より f により固有に表現される数 n で D と素であるもの
が存在する。

過去スレ4の716より f と同値な形式 g = (n, l, k) がある。
f と g がそれぞれ表現する数の全体は一致するから、
f の代わりに g を使ってもよい。
よって初めから、a は D と素であると仮定してよい。

m を D と素な有理整数で、f により表現されるとする。
よって m = f(u, v) となる有理整数 u, v がある。
α = au + (b + √D)v/2 とおく。

N(α) = (au + (b + √D)v/2)(au + (b - √D)v/2)
= a^2u^2 + auv(b - √D)/2 + auv(b + √D)/2) + (4acv^2)/4
= a^2u^2 + abuv + acv^2
= am

α は判別式 D の整環の元である。
従って >>580 より [a][m] ∈ H
a は D と素であると仮定したから >>570 より [a] ∈ Ker(χ)
[m] ∈ [a]^(-1)H
証明終

585 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 10:39:27 ]
補題
D を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。
f = (a, b, c) を判別式 D の原始的2次形式とする。
さらに、D < 0 のときは f は正定値と仮定する。
H = { [m] ∈ (Z/DZ)^* ; m は D と素で主形式により表現される }
とおく。
集合 S = { [m] ∈ (Z/DZ)^* ; m は D と素で f により表現される }
は Ker(χ)/H のある剰余類に一致する。

証明
>>584 より S ⊂ [a]^(-1)H
よって逆の包含関係を証明すればよい。
>>584 の証明と同様の理由により a は D と素であると仮定してよい。
[m] ∈ [a]^(-1)H とする。
[a][m] ∈ H だから
am ≡ u^2 - (D/4)v^2 (mod D)
となる有理整数 u, v がある。

4af(x, y) = (2ax + by)^2 - Dy^2
D ≡ 0 (mod 4) だから D = b^2 - 4ac より b は偶数である。
よって af(x, y) = (ax + (b/2)y)^2 - (D/4)y^2

w = v
u ≡ az + (b/2)w (mod D)
を満たす有理整数 z, w を取る。
a は D と素だから、このような z, w は存在する。
af(z, w) ≡ u^2 - (D/4)v^2 (mod D)
am ≡ af(z, w) (mod D)
よって m ≡ f(z, w) (mod D)
よって [a]^(-1)H ⊂ S である。
証明終

586 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 10:51:59 ]
補題
D を平方数でない有理整数で、D ≡ 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。
f = (a, b, c) を判別式 D の原始的2次形式とする。
さらに、D < 0 のときは f は正定値と仮定する。
H = { [m] ∈ (Z/DZ)^* ; m は D と素で主形式により表現される }
とおく。
集合 S = { [m] ∈ (Z/DZ)^* ; m は D と素で f により表現される }
は Ker(χ)/H のある剰余類に一致する。

証明
>>584 より S ⊂ [a]^(-1)H
よって逆の包含関係を証明すればよい。
>>584 の証明と同様の理由により a は D と素であると仮定してよい。
[m] ∈ [a]^(-1)H とする。

[a][m] ∈ H だから
am ≡ u^2 + uv + (1 - D)/4)v^2 (mod D)
となる有理整数 u, v がある。

4(u^2 + uv + (1 - D)/4)v^2) ≡ (2u + v)^2 (mod D)
よって
4am ≡ (2u + v)^2 (mod D)
一方
4af(x, y) = (2ax + by)^2 - Dy^2

2u + v ≡ 2az + bw (mod D)
を満たす z, w を取る(例えば w = 1 として z を求めればよい)。

4af(z, w) ≡ 4am (mod D)
f(z, w) ≡ m (mod D)
証明終

587 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 11:23:04 ]
補題
D を平方数でない有理整数で、D ≡ 1 (mod 4) とする。
H = { [m] ∈ (Z/DZ)^* ; m は D と素で主形式により表現される }
とおく。

G = (Z/DZ)^* とおくと H = G^2 である。

証明

[m] ∈ H とする。
m = u^2 + uv + (1 - D)/4)v^2 となる有理整数 u, v がある。

4(u^2 + uv + (1 - D)/4)v^2) ≡ (2u + v)^2 (mod D)
よって
[4m] ∈ G^2 である。
4 は D と素だから [m] ∈ G^2 である。
よって H ⊂ G^2 である。

逆に z を D と素な有理整数とすると、
z^2 は主形式 x^2 + xy + (1 - D)/4)y^2 により表現される
(x = z, y = 0 とおけばよい)。
よって G^2 ⊂ H である。
証明終






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef