[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



570 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 21:08:35 ]
命題
D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。
χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。

m を D と素な有理整数で、判別式 D の原始的2次形式 f により
表現されるとする。ここで表現は必ずしも固有とは限らない。
さらに、D < 0 のときは f は正定値とする。

ことき χ([m]) = 1 である。

証明
f = ax^2 + bxy + cy^2 とする。
m は f で表現されるから m = as^2 + bst + ct^2 となる有理整数
s, t がある。d = gcd(s, t) とおくと、m = (d^2)n となる n があり
n は f により固有に表現される。
χ([m]) = χ([d])^2 χ([n]) = χ([n]) である。
よって m は初めから f により固有に表現されると仮定してよい。

よって過去スレ4の717より D ≡ b^2 (mod 4m) となる有理整数 b が
存在する。

1) D ≡ 0 (mod 4) で m > 0 のとき。

m は D と素だから m は奇数である。
D ≡ b^2 (mod 4m) となる b があるから
χ([m]) = (D/m) = (b^2/m) = (b/m)^2 = 1

(続く)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef