- 242 名前:Kummer ◆g2BU0D6YN2 [2007/05/03(木) 11:07:24 ]
- >>235 の続き。
D < 0 のとき ψ_IF : Cl(D) → (F_0)+(D)/Γ D > 0 のとき ψ_IF : Cl+(D) → F_0(D)/Γ が定義された。 それぞれの逆写像 ψ_FI を定義しよう。 D < 0 の場合。 (a, b, c) ∈ F_0+(D) のとき ψ_FI({ (a, b, c) }) = { [a, (-b + √D)/2] } と定義する。 D > 0 の場合。 (a, b, c) ∈ F_0(D) のとき ψ_FI({ (a, b, c) }) = { [a, (-b + √D)/2]α } と定義する。 ここで α は sign(N(α)) = sign(a) となる Q(√m) の任意の 元である。 例えば a > 0 のときは α = 1 a < 0 のときは α = √m とすればよい。 以上の定義が2次形式類の代表 (a, b, c) の取り方によらないことを 証明しよう。
|

|