- 556 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 11:54:59 ]
- 補題
D > 0 を平方数でない有理整数で、D ≡ 1 (mod 4) とする。 a と b を正の奇数で a ≡ b (mod D) とする。 このとき (D/a) = (D/b) である。 ここで (D/a) と (D/b) は Jacobi の記号(過去スレ4の890)である。 証明 過去スレの895より (D/a) = (-1)^((D-1)/2)((a-1)/2)(a/D) (D/b) = (-1)^((D-1)/2)((b-1)/2)(a/D) D ≡ 1 (mod 4) だから (D-1)/2 ≡ 0 (mnod 2) よって (D/a) = (a/D) (D/b) = (b/D) a ≡ b (mod D) だから過去スレ4の891より (a/D) = (b/D) である。 証明終
|

|