[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



561 名前:Kummer ◆g2BU0D6YN2 [2007/07/01(日) 12:54:52 ]
補題
D < 0 を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
a と b を正の奇数で a ≡ b (mod D) とする。
a と b を正の奇数で a ≡ b (mod D) とする。
このとき (D/a) = (D/b) である。
ここで (D/a) と (D/b) は Jacobi の記号(過去スレ4の890)である。

証明
D = -(2^α)m と書ける。ここで α ≧ 2、m は正の奇数である。

(D/a) = (-1/a)(-D/a)
(D/b) = (-1/b)(-D/b)
である。

-D ≡ 0 (mod 4) だから >>559>>560 より
(-D/a) = (-D/b) である。
よって
(-1/a) = (-1/b) を示せばよい。

過去スレ4の896より、
(-1/a) = (-1)^((a-1)/2)
(-1/b) = (-1)^((b-1)/2)

a ≡ b (mod 4) だから
(-1/a) = (-1/b) である。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef