- 573 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 00:09:23 ]
- 補題
D を平方数でない有理整数で、D ≡ 0 (mod 4) とする。 f = x^2 - (D/4)y^2 を判別式 D の主形式(>>523)とする。 m と n が f により表現されるなら mn もf により表現される。 証明 m = u^2 - (D/4)v^2 となる有理整数 u, v がある。 >>500 より α= u + v(√D)/2 とおく N(α) = (u + v(√D)/2)(u - v(√D)/2) = u^2 - (D/4)v^2 = m 同様に n = z^2 - (D/4)w^2 となる有理整数 z, w がある。 β= z + w(√D)/2 とおく N(β) = (z + w(√D)/2)(z - w(√D)/2) = z^2 - (D/4)w^2 = n nm = N(α)N(β) = N(αβ) である。 αβ = (u + v(√D)/2)(z + w(√D)/2) = uz + vwD/4 + (uw + vz)(√D)/2 よって N(αβ) = (uz + vwD/4)^2 - (D/4)(uw + vz)^2 よって nm は f により表現される。 証明終
|

|