[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2chのread.cgiへ]
Update time : 08/06 14:18 / Filesize : 315 KB / Number-of Response : 588
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 005



573 名前:Kummer ◆g2BU0D6YN2 [2007/07/02(月) 00:09:23 ]
補題
D を平方数でない有理整数で、D ≡ 0 (mod 4) とする。
f = x^2 - (D/4)y^2 を判別式 D の主形式(>>523)とする。
m と n が f により表現されるなら mn もf により表現される。

証明
m = u^2 - (D/4)v^2 となる有理整数 u, v がある。

>>500 より
α= u + v(√D)/2 とおく
N(α) = (u + v(√D)/2)(u - v(√D)/2) = u^2 - (D/4)v^2 = m

同様に n = z^2 - (D/4)w^2 となる有理整数 z, w がある。
β= z + w(√D)/2 とおく
N(β) = (z + w(√D)/2)(z - w(√D)/2) = z^2 - (D/4)w^2 = n

nm = N(α)N(β) = N(αβ)
である。

αβ = (u + v(√D)/2)(z + w(√D)/2)
= uz + vwD/4 + (uw + vz)(√D)/2

よって
N(αβ) = (uz + vwD/4)^2 - (D/4)(uw + vz)^2

よって nm は f により表現される。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<315KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef