1 名前:132人目の素数さん mailto:sage [2011/12/23(金) 22:19:25.79 ] さあ、今日も1日頑張ろう★☆ 前スレ 分からない問題はここに書いてね363 uni.2ch.net/test/read.cgi/math/1323388666/
2 名前:132人目の素数さん mailto:sage [2011/12/23(金) 22:35:31.58 ] >>1 重複してるよ、削除してね。
3 名前:a [2012/01/03(火) 12:23:51.21 ] 40Wの電球と100Wの電球では抵抗の大きい方はどちらですか。
4 名前:132人目の素数さん mailto:sage [2012/01/03(火) 13:05:46.66 ] P=V^2/R=10000/R
5 名前:132人目の素数さん mailto:sage [2012/01/09(月) 17:30:52.86 ] 1/ (x^2-√2*a*x+a^2)*(x^2+√2*a*x+a^2)、の部分分数分解ってどうなりますか?
6 名前:132人目の素数さん mailto:sage [2012/01/09(月) 17:42:32.00 ] 問題は見てないが 1/(ab) = 1/{a(b-a)} - 1/{b(b-a)}
7 名前:132人目の素数さん mailto:sage [2012/01/09(月) 18:54:10.59 ] >>5 重複スレにマルチか
8 名前:132人目の素数さん [2012/01/15(日) 14:50:32.81 ] <<<<<< 真 の ス レ タ イ >>>>>> 分からない問題はここに書いてね365 さあ、今日も1日頑張ろう★☆ 前スレ 分からない問題はここに書いてね364 uni.2ch.net/test/read.cgi/math/1324646350/
9 名前:132人目の素数さん [2012/01/15(日) 16:50:53.80 ] dz/da=-2kπ/(a^2+4k^2π^2)-∫[0,(2kπ/a)]xsin(ax)/(1+x^2 )dx d^2z/da^2=4kaπ/(a^2+4k^2π^2)^2-∫[0,(2kπ/a)]x^2cos(ax)/(1+x^2 )dx こうじゃないのか
10 名前:132人目の素数さん mailto:sage [2012/01/15(日) 17:06:19.35 ] 文系の大学一年生です 高階偏導関数に関する問題なのですが、 (1) f(x,y)=xsinxy (2) f(x,y)=e^(x^2・y) (3) f(x,y)=Tan^-1 xy のそれぞれについて xで微分したもの、 yで微分したもの、 xで微分したあとにxでまた微分したもの、 yで微分したあとにxでまた微分したもの、 xで微分したあとにyで微分したもの を書け という問題なのですが、 (1)はsinθのθ部分に変数が二つも入ってしまっていて、しかもsinxyの係数のxはどう扱えばいいのか分からず、 (2)はe^xやe^aの微分は知っていますけど2つも変数が入ってしまったら何にもできず、 (3)もTan^-1 xのxに関する微分の公式は分かっていてもxyとなると混乱してしまいます 三角関数はそもそも高校時代でもっとも嫌いな単元だったりでθの中に複雑なものが入った瞬間パーになり、 ネピア数eに関しては文系なので公式以外教えられておらず、ちょっとでも公式から形が変わったりすると対応できません。 どなたかご指導お願いします。
11 名前:132人目の素数さん mailto:sage [2012/01/15(日) 18:01:04.97 ] >>10 機械的に微分することが求められているとすれば、 変数zに関する微分Dについて使う法則は 積の微分 D(f(z)・g(z))=D(f(z))・g(z)+f(z)・D(g(z))、和の微分D(f(z)+g(z))=D(f(z))+D(g(z))、 合成の微分 D(f(g(z)))=(Df)(g(z))・D(g(z))、 あとは 単項式 z^n の微分 D(z^n)=nz^(n-1) や指数関数e^zの微分 D(e^z)=e^z などを適宜使う。 ここで記号Dは d/dz の意味。 f(x,y)=x・sin(x・y) を x で偏微分するなら、 ∂/∂x を D とかくことにする。 xに関する偏微分なのでyはただの定数と見る。 D(f(x,y))=D(x・sin(x・y))=D(x)・sin(x・y)+x・D(sin(x・y))=sin(x・y)+x・cos(x・y)・D(x・y)=sin(x・y)+x・y・cos(x・y) 次に、Dがyに関する偏微分∂/∂yを表すものとすると、今度はxをただの定数と見て D(f(x,y))=D(x・sin(x・y))=x・D(sin(x・y)=x・cos(x・y)D(x・y)=x・cos(x・y)・x=(x^2)・cos(x・y)
12 名前:132人目の素数さん mailto:sage [2012/01/15(日) 19:07:42.40 ] >>11 thx
13 名前:132人目の素数さん [2012/01/15(日) 19:14:36.34 ] あ
14 名前:132人目の素数さん [2012/01/15(日) 19:17:16.83 ] 3次元空間の大域的な曲面(多様体)で、面白い性質をもった曲面って例えば何がありますかね??
15 名前:132人目の素数さん [2012/01/15(日) 19:25:23.44 ] >>9 ひさぶりの数学でどうやっていいかわかんなかった。 まじ、助かった。
16 名前:S. T. K [2012/01/15(日) 20:51:03.62 ] 前スレ964 君そういうことじゃ、こまるんだよね。
17 名前:132人目の素数さん mailto:sage [2012/01/15(日) 21:07:05.86 ] 963+1 :132人目の素数さん [↓] :2012/01/15(日) 00:00:10.92 >>961 > 解析概論は保護期間切れてwikisourceにあった ダウト。 「未だ著作権切れてない第三版を掲載して出版社からNoを突きつけられたのに 未だにwikisourceがごねているので、あった」 が正解。 964 :132人目の素数さん [↓] :2012/01/15(日) 00:21:34.67 >>963 第一版は切れてるんだろ? それなら第一版など既に保護期間が過ぎてるものについては著作権を主張しても対抗出来ないんだよw どうせ概論スレから来たんだろけどそういうのも議論した方がいいんじゃないのか 高木先生も「いつになっても日本数学はレガシーのままだなぁ」とあの世で嘆いてらっしゃるぞ
18 名前:132人目の素数さん mailto:sage [2012/01/15(日) 23:25:31.67 ] 位数4の体を具体的に教えて下さい。
19 名前:132人目の素数さん mailto:sage [2012/01/15(日) 23:53:32.07 ] 標数2の素体って何だ? そしてそこに係数を持つ2次の既約多項式を一つ見つけてみよ。
20 名前:132人目の素数さん mailto:sage [2012/01/16(月) 00:21:23.42 ] >>5 1/(x^4 +a^4) = = 1/{[x^2 -(√2)ax +a^2][x^2 +(√2)ax +a^2]} = {1/(2√2)a^3}{[-x+(√2)a]/[x^2 -(√2)ax +a^2] + [x+(√2)a]/[x^2 +(√2)ax +a^2]}
21 名前:132人目の素数さん mailto:sage [2012/01/16(月) 00:26:28.71 ] クライン四群を用意して, もう1つの演算をうまく定義すればつくれるよ ただし,理知的ではないから, >>19 のように多項式環を既約多項式で"割った"やつを考えなされ
22 名前:132人目の素数さん mailto:sage [2012/01/16(月) 00:30:16.48 ] >>20 >>5 は最近流行りのルアーだよ
23 名前:132人目の素数さん [2012/01/16(月) 00:54:02.56 ] 緯度、経度で130.01234567、30.12345678 とあるとします。 このとき、10メートルまでの精度を知りたい場合は、 少数何桁まであればいいですか?
24 名前:132人目の素数さん mailto:sage [2012/01/16(月) 01:28:28.71 ] だいたい90度で1万km 面倒なんでばっさり1度で100kmと考える 両方1万(=10k)で除すれば1万分の1度でだいたい10m
25 名前:132人目の素数さん [2012/01/16(月) 01:33:15.09 ] 数学の問題です。 aを0≦a≦36を満たす整数とし、X=√6+√√a-√6-√√a とする。 X^2=[ア]-[イ]√[ウ]-√a であるから、X^2が整数となるaの値は [エ]個あり、Xが整数となるaの値は[オ]、[カ]である。 自分が思うようにX=…の式を二乗していったのですが、何度やっても [ア][イ][ウ]の枠に合うような解答になりません。 答えだけでなく、解き方も教えていただけるとありがたいです。 よろしくお願いします。
26 名前:132人目の素数さん [2012/01/16(月) 01:39:19.65 ] >>24 ありがとうございます。 つまり、少数下4桁目が10mぐらいということですか。
27 名前:132人目の素数さん mailto:sage [2012/01/16(月) 01:42:32.12 ] >>25 式を見ると、如何なるaについてもX=0で終わってると思うんですが…。
28 名前:132人目の素数さん [2012/01/16(月) 01:53:13.59 ] >>27 このような穴空き問題になってますし、問題と書き込み文も何度も見直し ているので間違いはないはずなんですが…。 一つ書き方が悪かったと思うのは X=√(6+√a)-√(6-√a) と書くべきでした。
29 名前:132人目の素数さん [2012/01/16(月) 01:57:55.97 ] 大型ルアー投入頂きました!
30 名前:132人目の素数さん [2012/01/16(月) 02:24:59.89 ] しつこいようですが、明日というか今日までにはできなくちゃいけない ので書き直します。 数学の問題です。 aを0≦a≦36を満たす整数とし、X=√(6+√a)-√(6-√a) とする。 X^2=[ア]-[イ]√[ウ]-√a であるから、X^2が整数となるaの値は [エ]個あり、Xが整数となるaの値は[オ]、[カ]である。 自分が思うようにX=…の式を二乗していったのですが、何度やっても [ア][イ][ウ]の枠に合うような解答になりません。 答えだけでなく、解き方も教えていただけるとありがたいです。 よろしくお願いします。
31 名前:132人目の素数さん [2012/01/16(月) 02:27:33.48 ] >>30 つまり、今日というか明日まで解答禁止ということですね わかりました
32 名前:132人目の素数さん mailto:sage [2012/01/16(月) 02:31:05.34 ] >>25 ,30 高校生のための数学の質問スレPART322 uni.2ch.net/test/read.cgi/math/1326138115/452 マルチでいいよなこれ
33 名前:132人目の素数さん mailto:sage [2012/01/16(月) 02:35:09.33 ] だなw
34 名前:132人目の素数さん mailto:age [2012/01/16(月) 06:32:00.81 ] 単純な立体(曲面、曲線を含まないかつ自己交差しないもの)は内部を三角錐で分割できるか? どなたかご教授お願いしますm(_ _)m
35 名前:132人目の素数さん mailto:sage [2012/01/16(月) 06:47:39.60 ] すべての面が平面の一部からなる多面体について… まず、面を含む平面で多面体を分割すれば、各パーツは全て凸多面体になる、はず。 次に凸多面体は内部の一点を頂点とし、各面を底面とする多角錐に分割できる。 最後に多角錐の底面を、内部の一点を頂点とし辺を底辺とする三角形に 分割するような感じで、多角錐も分割すると三角錐 さて問題は各部分が本当なのかということと 本当ならどうやって証明すればいいのかということだが… どうすりゃいいんだろうか。俺の眠い頭ではわからん。
36 名前:132人目の素数さん mailto:sage [2012/01/16(月) 07:23:46.90 ] >>35 多角錐に分割してから三角錐に分割するのはいいアイデアですね!
37 名前:132人目の素数さん mailto:sage [2012/01/16(月) 07:31:24.64 ] >>30 書き換える箇所まだあるぞ
38 名前:132人目の素数さん mailto:sage [2012/01/16(月) 07:44:03.45 ] >>36 ショーンハルト多面体(Schonhardt's polytope )は 内部に点を発生させないなら不可
39 名前:132人目の素数さん mailto:sage [2012/01/16(月) 09:28:37.15 ] ショーンハルト多面体とはどんな多面体ですか?
40 名前:132人目の素数さん [2012/01/16(月) 12:59:14.84 ] xの範囲が0~π/2のとき tan(x/2)=t とおくと、tの範囲はどうなるんでしょうか?
41 名前:132人目の素数さん mailto:sage [2012/01/16(月) 13:04:41.81 ] t(0) = tan(0)、t(π/2) = tan(π/4)
42 名前:132人目の素数さん mailto:sage [2012/01/16(月) 13:17:06.06 ] >>41 ありがとうございます
43 名前:132人目の素数さん mailto:sage [2012/01/16(月) 13:52:38.76 ] 微分方程式の問題なんだが y'=sinx/cosy を解け ていう
44 名前:132人目の素数さん mailto:sage [2012/01/16(月) 14:02:50.49 ] ただの変数分離形だから移項して積分すればいいんだが どうぞ解け ていう
45 名前:132人目の素数さん mailto:sage [2012/01/16(月) 17:20:12.66 ] 前スレが落ちてしまったみたいなので、もう一度投稿させていただきます。 sp.logsoku.com/thread/engawa.2ch.net/news4vip/1325508832/101-200 このスレの111なのですが、eになる過程がわかりません。 階乗を書き下してから整理する過程を教えていただけたら助かります。
46 名前:132人目の素数さん [2012/01/16(月) 17:31:05.61 ] >>45 自然数をランダムに表示するというのがどういう意味なのか定義しないと。
47 名前:132人目の素数さん mailto:sage [2012/01/16(月) 17:38:01.02 ] >>45 分かったとこまで書いてみて
48 名前:132人目の素数さん mailto:sage [2012/01/16(月) 20:54:55.40 ] 遅れて申し訳ありません。 私が作成した問題でないので正確なことはわかりかねますが…… とりあえず、ランダムっていうのは全ての数字の出る確率が同様に確からしいというとで、出る数字の範囲は[1,∞)と汲み取りました。 私は、とりあえず表示される自然数の範囲を1からnまでとしたとき、k回以上表示される確率を求め、全て足せば期待値が出ると考えました。 すると、n_C_k/n^k が1からnのときk回以上表示される確率となり、kの上限はnなので、期待値は Σ[k=1→n]n_C_k/n^k となりました。 しかし、示したスレでは期待値はΣ[k=1→n]k×n_C_k/n^k となっております。 さらに整理すると、(1+1/n)^n になると書かれているのですが、整理の過程も不明です。 教えて頂けたらと思います。
49 名前:132人目の素数さん mailto:sage [2012/01/16(月) 21:04:33.32 ] >>48 >k回以上表示される確率を求め、全て足せば期待値が出ると考えました。 期待値を誤解してるんじゃないか?
50 名前:132人目の素数さん [2012/01/16(月) 21:08:45.47 ] >>39 en.wikipedia.org/wiki/Sch%C3%B6nhardt_polyhedron
51 名前:エトス mailto:sage [2012/01/16(月) 21:25:32.54 ] >>48 『...ランダムっていうのは全ての数字の出る確率が同様に確からしい ということで、出る数字の範囲は[1,∞)と汲み取りました。』 そんな分布は存在しないとおもいますが
52 名前:132人目の素数さん mailto:sage [2012/01/16(月) 21:43:07.16 ] >>49 期待値っていうのは無限に繰り返したときに出る値の平均と考えているのですが…… 間違えていますかね? >>51 申し訳ありません。 当方高校生なもので、分布について勉強しておりません。 分布がわからないと解けない問題なのでしょうか。 大した知識もないのに質問してしまってすみません。 無知は罪であると改めて痛感しました。 猛省致します。
53 名前:132人目の素数さん mailto:sage [2012/01/16(月) 22:07:24.89 ] まず問題を「自然数を表示」じゃなく、「(0,1)の実数を表示する」に変えればいい n回続けて、前回より大きな数が出力される確率は1/n! 求めるべきものは ((k-1)回目までは前回より大きな数がでて、k回目で前回より小さな数がでる確率)×(k) をk=1から無限大まで足しあわせたもの。 Σ[k=1,∞]{(1/(k-1)!)*((k-1)/k)} *k = Σ[k=2,∞]1/(k-2)! = e
54 名前:132人目の素数さん mailto:sage [2012/01/16(月) 22:44:14.29 ] >>52 分布って言うのは、この場合、それぞれの自然数の出る確率のことですよ
55 名前:132人目の素数さん [2012/01/16(月) 23:19:14.42 ] 直円柱の形をした鍋を作りたい. この鍋にはふたはなく,側面はブリキで底面は銅である. 鍋の価格はブリキの価格の6倍である. さて材料費は一定として,鍋の容積を最大にするには この直円柱をどのようなものにすればよいか. という問題なのですが,やり方がわかりません. 教えてください.
56 名前:132人目の素数さん mailto:sage [2012/01/16(月) 23:22:27.62 ] >>55 銅の価格はブリキの価格の6倍? いくらでも薄く延ばせば(ry
57 名前:132人目の素数さん [2012/01/16(月) 23:24:03.14 ] >>56 はいーそうかいてあります… なんか、自分が頭悪いだけかもしれないのですが 問題の日本語的に意味がわからなくなってまいりました!!!
58 名前:132人目の素数さん [2012/01/16(月) 23:25:26.07 ] >>55 ニトリに行きなさい
59 名前:132人目の素数さん mailto:sage [2012/01/16(月) 23:26:44.79 ] ブリキの価格α、銅の価格β=6α 2πhα+πr^2β=γ 容積V=πr^2h ってことじゃないの
60 名前:132人目の素数さん mailto:sage [2012/01/16(月) 23:30:41.06 ] 銅、ブリキの単価設定は(板の)面積単位?
61 名前:132人目の素数さん mailto:sage [2012/01/16(月) 23:41:39.88 ] >>58 なんで?
62 名前:132人目の素数さん [2012/01/16(月) 23:49:37.16 ] >>59 なるほど!!そしたら 容積V=πr^2hの円柱が答えですかね?? 答え方もよくわからないですすみません… >>60 わからないです、問題には書いてありません >>61 >>58 ホームセンターで値段がグラム単位なのか 面積単位なのか見てこいってことですかね…??
63 名前:132人目の素数さん [2012/01/16(月) 23:54:27.28 ] >>59 v=2π^2α(h+3πr^2)^2 h ?
64 名前:132人目の素数さん mailto:sage [2012/01/17(火) 00:00:34.39 ] hrだな
65 名前:132人目の素数さん mailto:sage [2012/01/17(火) 00:05:30.58 ] Log[1 - Log[n]/n] < -(Log[n]/n)って何故ですか?微分では証明できますが・・・
66 名前:132人目の素数さん mailto:sage [2012/01/17(火) 00:17:16.11 ] log(1+x)-x=log{(1+x)^(-x)} y=log(x)は増加関数なので 1/(1+x)^xを考える。 (1+x)もa^x (a>1)も増加関数なので、x>0では (1+x)^x > 1 ∴1/(1+x)^x <1 ∴log{(1+x)^(-x)} < 0 ∴log(1+x) < x (x>0)
67 名前:132人目の素数さん [2012/01/17(火) 01:14:17.88 ] ∬y/√(x^2+y^2)dxdy D={(x,y)|0≦y≦x≦1} この積分お願いします
68 名前:132人目の素数さん mailto:sage [2012/01/17(火) 01:17:29.44 ] a=Rのとき、Aを答えよ 何でしょうこれ
69 名前:132人目の素数さん mailto:sage [2012/01/17(火) 01:56:56.40 ] >>65 1+x ≦ e^x (下に凸) Log[1+x] ≦ x, x = -log[n]/n, >>67 ∫[0,x] y/√(x^2+y^2) dy = [ √(x^2+y^2) ](y=0,x) = (√2 -1)x, (与式) = (√2 -1)∫[0,1] x・dx = (√2 -1)/2,
70 名前:132人目の素数さん mailto:sage [2012/01/17(火) 07:14:21.55 ] 位相の問題です。どうすれば解けるのかさっぱりわかりません。 2次元実数空間R^2に普通の位相をとる。 R^2の部分集合B={(cos(n),sin(n); n=1,2,...}について、Bの閉包B'について、 B'=Sとなることを示せ。ただしSは単位円周を表すものとする。 ただし、次の事実は用いてよい。 (1)円周率πは無理数 (2)R^2の点列{An}(n=1,2,...)ガ有界であるならば、収束する部分列を持つ
71 名前:132人目の素数さん mailto:sage [2012/01/17(火) 07:49:56.82 ] (1) I=[0,1]とRが同相でないこと (2) RとR^2が同相でないこと はどうやって示すのですか?
72 名前:132人目の素数さん mailto:sage [2012/01/17(火) 07:54:48.99 ] >>71 (1) 同相だとすると、f:(0,1]→R-{f(0)}は同相だが、後者は連結でないので矛盾 (2)も同様
73 名前:132人目の素数さん mailto:sage [2012/01/17(火) 07:57:06.59 ] >>72 ありがとうございます。 そんな簡単にやれるんですね…。
74 名前:132人目の素数さん mailto:sage [2012/01/17(火) 07:59:22.89 ] 第二可算空間の可算個の直積空間は、第二可算であることはどうやって示すのですか?
75 名前:132人目の素数さん mailto:sage [2012/01/17(火) 08:33:24.09 ] >>53 ありがとうございます。 参考にさせていただきます。 >>54 ありがとうございます。 だとすると、自然数が出る確率は、全ての自然数について等しい、と考えて下さい。
76 名前:132人目の素数さん mailto:sage [2012/01/17(火) 08:33:52.44 ] 不等式|x-3a|≦2を満たすxは、常に|x|≧a2乗を満たすように、定数aの値の範囲を定めよ。 という問題なのですが、-2≦x-3a≦2 3a-2≦x≦3a+2 これを満たすxが常に|x|≧a2乗を満たすから、 まで分かったんですが、この先が分かりません…。 力をかしていただけませんか。
77 名前:132人目の素数さん mailto:sage [2012/01/17(火) 09:37:30.11 ] >>76 (1) 3a+2<0 (2) 3a-2≦0≦3a+2 (3) 0<3a-2 で場合わけ |x|の最小値は (1) -(3a+2) (2) 0 (3) 3a-2 それぞれの場合において、二次不等式 min|x|≧a^2 を解く
78 名前:132人目の素数さん mailto:sage [2012/01/17(火) 09:40:22.83 ] >>77 ha
79 名前:132人目の素数さん mailto:sage [2012/01/17(火) 10:53:51.50 ] >>77 tks
80 名前:132人目の素数さん [2012/01/17(火) 11:21:07.97 ] (G,*)を群,Hをその部分群,aH={a*h|h∈H}をaを含む剰余類としたとき。HとaHの要素数が等しいことを示すにはどうすればいいですか?
81 名前:132人目の素数さん [2012/01/17(火) 11:27:39.77 ] >>80 そんなことも分からないなら、豆腐に頭でもぶつけろよ 数学科で学ぶ資格のない脳みそだから親を裏目
82 名前:132人目の素数さん mailto:sage [2012/01/17(火) 11:53:49.86 ] >>80 超ゆとり誘導をつけてあげたよ。 問 f: H->aH を h |->a*h で構成する。 (1) f は全射であることを示しなさい。 (2) f は単射であることを示しなさい。 (3) HとaHの(集合としての)濃度が等しいことを示しなさい。
83 名前:132人目の素数さん [2012/01/17(火) 11:56:17.88 ] >>81 数学科ではないです。 勉強不足です。すいませんでした。
84 名前:132人目の素数さん [2012/01/17(火) 11:57:56.67 ] >>82 ありがとうございます。
85 名前:132人目の素数さん [2012/01/17(火) 13:45:08.67 ] 2次元平面上で、2点PとQをとったとき、この2点を結ぶ曲線x(t)を考える。ただし、x(0)=P、x(1)=Qとする。この時、曲線の長さ E(x)=端0,1]{(|dx/dt|^2+|x(t)|^2}^(1/2)dt を考える。この長さを最小にするような曲線を求めなさい。 という問題なのですが、なんとなくPとQを結ぶ線分だと思うのですが、良い示しかたが分かりません。どなたか教えてください。。
86 名前:132人目の素数さん mailto:sage [2012/01/17(火) 13:56:53.92 ] 曲線上の点が線分からはみ出たら、三角不等式でアウト
87 名前:132人目の素数さん [2012/01/17(火) 14:08:36.60 ] >>86 あぁ、そっか!ありがとうございます!! あと、E(x)を使った示しかたとかありますでしょうか??
88 名前:漁協の方からきました [2012/01/17(火) 16:31:49.82 ] いい質問にナイスない解答
89 名前:132人目の素数さん mailto:sage [2012/01/17(火) 16:33:32.90 ] ちっ、漁協に目をつけられたか
90 名前:132人目の素数さん mailto:sage [2012/01/17(火) 18:24:20.88 ] >>86 +|x(t)|^2があるからアウト
91 名前:漁協の方からきました [2012/01/17(火) 19:19:15.16 ] >>85 問題が間違っているような気もするが、変分原理
92 名前:132人目の素数さん [2012/01/17(火) 19:37:38.30 ] 平面上に長さπの線分ABを引き、ABの各点Pを中心とし、半径がsin(AP)の円を描く時、これらの円により掃過される面積を求めよ。 また、この曲線群の包絡線を求めよ。 この問題はどのようにして解けばいいのでしょうか?
93 名前:132人目の素数さん [2012/01/17(火) 19:44:35.55 ] >>91 ありがとうございます
94 名前:132人目の素数さん [2012/01/17(火) 19:55:42.82 ] >>91 どこがどう間違ってるんでしょうか?? あと変分原理をどのように使うのでしょうか?? 度々すみません。
95 名前:132人目の素数さん [2012/01/17(火) 20:12:27.78 ] 微分方程式の問題です dy/dx=y/x+sin(y/x)・・・@ y/x=uとおいてy=ux dydx=x*du/dx+u これらを@に代入して x*du/dx+u=u+sin(u) ∫(1/sin(u))du=∫dx/x ここまで分かったんですが ∫(1/sin(u))duがどうなるか分かりません。 計算ソフトに計算させたところ ∫(1/sin(u))du=log(cos(u)-1)/2-log(cos(u)+1)/2+C (Cは積分定数) となったのですがこの途中式が知りたいです。 どのように解けばいいのでしょうか?
96 名前:132人目の素数さん mailto:sage [2012/01/17(火) 20:13:48.93 ] 微分演算子の問題なんですが Dを微分演算子とするとき y={1/(D^3-2D+4)}(exp(x)cosx) を解けという問題で、 y={1/(D+2)(D^2-2D+2)}(exp(x)cosx) =exp(x)<1/{(D+3)(D^2+1)}>cosx =exp(x){1/(D+3)}(1/2)xsinx =(1/2)exp(x)<1/{(D+3)(D-3)}>(D-3)xsinx =(1/2)exp(x){1/(D^2-9)}(sinx+xcosx-3xsinx) ここで{1/(D^2-9)}(xcosx+ixsinx) ={1/(D^2-9)}x =e^(ix){1/(D^2+2iD-10)}x ={(-1/10)x-(1/50)i}e^(ix) ={(-1/10)x-(1/50)i}(cosx+isinx) ={(-1/10)xcosx+(1/50)sinx}+i{(-1/10)xsinx-(1/50)cosx}より {1/(D^2-9)}xcosx=(-1/10)xcosx+(1/50)sinx {1/(D^2-9)}xsinx=(-1/10)xsinx-(1/50)cosx これらを代入して、出した答が y=(-1/20)exp(x)<sinx{x+(4/5)}+cosx{x+(1/5)}> しかし正解は y=(-1/20)xexp(x)(3sinx-cosx) どこで間違えているのかわかりません 誰か教えてください
97 名前:132人目の素数さん mailto:sage [2012/01/17(火) 20:20:11.02 ] >>95 分母分子にsin(u)かけてv=cos(u)
98 名前:76 mailto:sage [2012/01/17(火) 20:25:28.94 ] ありがとうございます。やってみます。
99 名前:132人目の素数さん mailto:sage [2012/01/17(火) 20:35:28.58 ] >>97 できました。ありがとう。
100 名前:132人目の素数さん mailto:sage [2012/01/17(火) 20:51:32.56 ] >>96 >代入して、出した答が この途中が怪しい
101 名前:132人目の素数さん mailto:sage [2012/01/17(火) 20:55:11.13 ] >>94 E(x)=∫[0,1]|dx/dt|dtじゃないの? 変分原理か変分法を知らないととけない。 この問題の由来は?
102 名前:132人目の素数さん [2012/01/17(火) 21:02:22.20 ] 倍数の問題です。 次の数が〔〕の中の数の倍数となるように、□に数字を入れなさい。 (1)8261□〔6〕 (2)482□3〔9〕 どなたか教えて下さい。
103 名前:132人目の素数さん mailto:sage [2012/01/17(火) 21:04:19.89 ] 算数?
104 名前:132人目の素数さん mailto:sage [2012/01/17(火) 21:10:49.45 ] 4、1
105 名前:132人目の素数さん [2012/01/17(火) 21:14:54.74 ] >>101 いや、問題はそうなってるんですよ;; 変分原理調べてみます。 この問題は大学の教授から幾何学の授業中に出された問題です。
106 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:11:53.28 ] >>85 >>94 >>105 x = q(t), dq(t)/dt = p(t), とおくと (d/dt)δq = δp, E(p,q) = ∫[0,1] L(p,q,t) dt の極値問題を考える。 δE(p,q) = ∫[0,1] δL(p,q,t) dt = ∫[0,1] {(∂L/∂p)δp (∂L/∂q)δq + (∂L/∂t)} dt = ∫[0,1] { -(d/dt)(∂L/∂p) + (∂L/∂q)}δq dt + [ (∂L/∂p)δq + L ](t=0,1) = ∫[0,1] { -(d/dt)(∂L/∂p) + (∂L/∂q) }δq dt, (←境界条件) ∴ δL/δq = - (d/dt)(∂L/∂p) + (∂L/∂q), Eが極値のとき、これが 0 だから (∂L/∂q) - (d/dt)(∂L/∂p) = 0, (オイラの方程式) ja.wikipedia.org/wiki/ 変分原理 ja.wikipedia.org/wiki/ オイラー=ラグランジュ方程式 mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html mathworld.wolfram.com/Euler-LagrangeDerivative.html
107 名前:132人目の素数さん [2012/01/17(火) 23:15:05.32 ] >>106 幾何の問題といってるだから、変分法、フレシェ微分をGGRKS。
108 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:24:43.37 ] >>107 幾何の問題といってるのはお前だけ
109 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:26:22.59 ] >>85 >>94 >>105 L(p,q,t) = √(p^2 +q^2) のとき ∂L/∂p = p / √(p^2 +q^2), ∂L/∂q = q / √(p^2 +q^2), ゆえ δL/δq = {p(p+q ') +q(q-p ')}q/(p^2 +q^2)^(3/2), となるが....
110 名前:132人目の素数さん [2012/01/17(火) 23:36:50.69 ] >>108 あほ 105 > この問題は大学の教授から幾何学の授業中に出された問題です。
111 名前:91,101,110 [2012/01/17(火) 23:40:50.44 ] 91も俺だが
112 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:45:08.70 ] 数学の問題だな
113 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:49:34.93 ] 国語の問題も幾何学の授業中に出されれば幾何学の問題
114 名前:132人目の素数さん [2012/01/17(火) 23:56:53.75 ] >>113 > よく数学の本を読んでいると「 の特徴付け」という言葉が出てきます。 > これは必要十分条件という意味ですか? > それともそれプラス何かニュアンスがあるんですか? これ解答して
115 名前:132人目の素数さん [2012/01/17(火) 23:59:15.71 ] あそこで流行っていたルアーか
116 名前:132人目の素数さん mailto:sage [2012/01/17(火) 23:59:33.73 ] >>85 >>94 >>105 p = q ' より p(p+q ') +q(q-p ') = 2(q')^2 +q^2 -qq" = (Q + Q ")/Q^3, (q=1/Q) よって、解くべき式は Q + Q " = 0,
117 名前:132人目の素数さん mailto:sage [2012/01/18(水) 00:00:59.98 ] >>114 そんなの答はないから。 ちゃらくてりぜd
118 名前:132人目の素数さん [2012/01/18(水) 00:02:37.31 ] >>117 ち、かすか
119 名前:132人目の素数さん mailto:sage [2012/01/18(水) 00:09:01.71 ] オートマトンの問題で、 Σ = { a , b }とする。以下の命題の真偽を簡単な理由(証明は不要)とともにのべよ。 (1) Σ上の言語{ a^n b^n | 1000<= n} は正則である。(nは0を含む自然数) (2)Σ上の言語{ a^m b^n | n + m = 3l を満たすlが存在する} は正則である。 (3)Σ上の言語{ a^m b^n | n = m + 3l を満たすlが存在する} は正則である。 (4)Σ上の言語{ a^n w b^n | w ∈Σ、100 <= |w| } は正則である。 よろしくお願いします
120 名前:132人目の素数さん [2012/01/18(水) 00:13:35.89 ] >>119 情報学板で聞けよ
121 名前:132人目の素数さん mailto:sage [2012/01/18(水) 00:18:30.42 ] >>120 そうでした オートマトンは数学じゃありませんでしたorz
122 名前:132人目の素数さん mailto:sage [2012/01/18(水) 01:25:58.00 ] >>119 (1)、(2)有限集合は正則 (3)、(4)pumping lemma
123 名前:132人目の素数さん mailto:sage [2012/01/18(水) 02:00:08.70 ] ああ、(2)、(3)のlと|見間違えた lは自然数なのかな (2) Myhill-Nerodeというか実際にオートマトン構成 (3) Myhill-Nerodeの同値類が無限
124 名前:106、109、116 mailto:sage [2012/01/18(水) 02:16:23.57 ] >>85 >>94 >>105 p(t), q(t), Q(t) は単なる従属変数の意味で x(0)、x(1) とは関係ないでつ。スマソ x=q → r, t → θ, とした方がいいかも。
125 名前:132人目の素数さん mailto:sage [2012/01/18(水) 11:01:49.09 ] r=a(1+cosΘ)の線の長さとその重心を求めよ。 よろしくお願いします。
126 名前:132人目の素数さん mailto:sage [2012/01/18(水) 11:12:43.16 ] >>125 r=a(1+cosΘ)は面
127 名前:132人目の素数さん mailto:sage [2012/01/18(水) 17:55:45.22 ] >>92 って数値的に計算する以外の方法ある?
128 名前:132人目の素数さん [2012/01/18(水) 18:37:03.63 ] 47^72を71で割った余りは二項定理で計算できますか?
129 名前:132人目の素数さん [2012/01/18(水) 18:52:51.58 ] >>128 計算できるだろうけどフェルマーの小定理使うのが速いと思う。
130 名前:132人目の素数さん mailto:sage [2012/01/18(水) 18:56:46.86 ] >>128 47^72 を 71 で割った余りは 47^2 = 2209 を 71 で割った余りと同じだ。 (余り 8) 理由は聞くな。2項定理なんて知らん。
131 名前:132人目の素数さん mailto:sage [2012/01/18(水) 19:16:25.00 ] なぜ哲也は消えたのか?
132 名前:132人目の素数さん mailto:sage [2012/01/18(水) 19:22:06.79 ] >>125 カージオイド(心臓形)だね。ちょっと計算したところ、 周長は 8a になった。重心は θ=0 の方向で、r = (5/6)a になった。
133 名前:132人目の素数さん [2012/01/18(水) 20:44:52.43 ] ∫[0,a]∫[0,x]y^2/(√(a-x)(x-y))dxdy ∫[0,π]∫[0,2acosθ]r^2(1+cosθ-(r/a))(2-cosθ+(r/a))drdθ これを計算せよという問題です。 お願いします。
134 名前:133 [2012/01/18(水) 20:47:17.23 ] 下の方の積分はこうでした すみません ∫[0,π/2]∫[0,2acosθ]r^2(1+cosθ-(r/a))(2-cosθ+(r/a))sinθdrdθ
135 名前:132人目の素数さん mailto:sage [2012/01/18(水) 23:43:53.54 ] >>92 直感によれば、AB上のどの円も、正負の正弦曲線の中に収まる。 さらに直感に頼れば、そのことを言うには、円の曲率1/rと、そこ(r=AP)での正弦曲線の傾きを比べればいい。
136 名前:132人目の素数さん mailto:sage [2012/01/19(木) 00:13:36.74 ] >>135 その直感は怪しい www.wolframalpha.com/input/?i=Plot[{Sin[x]%2CSqrt[1%2F2-%28x-Pi%2F4%29^2]}%2C{x%2C0%2CPi}]
137 名前:132人目の素数さん mailto:sage [2012/01/19(木) 00:49:56.40 ] >>92 P, Q をそれぞれ (-π/2, π/2) とすると 包絡線はサイクロイドで、 t を媒介変数として x = (1/2) (t + sin(t)) y = ±(1/2) (1 + cos(t)) -π≦t≦π 面積は 3π/2
138 名前:132人目の素数さん mailto:sage [2012/01/19(木) 00:54:04.78 ] × P, Q をそれぞれ (-π/2, π/2) とすると ○ P, Q をそれぞれ (-π/2,0), (π/2,0) とすると
139 名前:132人目の素数さん mailto:sage [2012/01/19(木) 01:11:14.88 ] >>128 gcd(a,p)=1 のとき a^(p-1)≡1 (mod p) p=71 のとき a^70 ≡ 1 (mod 71) >>129 >>133 上 a,yを定数として (2x-a-y)/(a-y) = sinθ とおくと ∫[y,a] 1/√{(a-x)(x-y)} dx = ∫[-π/2,π/2] dθ = π, π∫[0,a] (y^2)dy = (π/3)a^3, >>137 A(-π/2,0)、B(π/2,0)、P((t-π)/2,0) t = 2AP,
140 名前:132人目の素数さん mailto:sage [2012/01/19(木) 01:17:48.89 ] >>85 >>94 >>105 >>116 を解くと Q(t) = Q(0)cos(t+a), x(t)cos(t+a) = x(0)cos(a) = x(1)cos(1+a), これは直線である....
141 名前:132人目の素数さん mailto:sage [2012/01/19(木) 01:35:04.38 ] >>92 >>127 A=(-π/2,0) B=(π/2,0) P=((t-π)/2,0) とおくと AP = t/2, Pを中心とする円は f(x,y,t) = {x-(t-π)/2}^2 +y^2 -sin(t/2)^2, f_t(x,y,t) = -x +(t-π)/2 - sin(t)/2, 包絡線は f(x,y,t) = 0, f_t(x,y,t) = 0, から媒介変数tを消去したもの。 高木:「解析概論」改訂第三版、岩波書店 (1961) 第7章、§88、p.318-320
142 名前:132人目の素数さん [2012/01/19(木) 01:48:12.55 ] [問題] u=5sin(ωt-π/3)を正弦と余弦の成分に分解せよ
143 名前:132人目の素数さん mailto:sage [2012/01/19(木) 01:49:22.45 ] >>85 のx(t)はx座標のことじゃなかろう >>106 の時点で間違っとるわな
144 名前:132人目の素数さん mailto:sage [2012/01/19(木) 01:49:32.35 ] >>142 加法定理
145 名前:132人目の素数さん [2012/01/19(木) 01:52:49.47 ] u=0*cos(ωt-π/3)+5*sin(ωt-π/3)
146 名前:Hide [2012/01/19(木) 02:03:06.85 ] ラプラス変換を使った拡散方程式の解き方を教えていただきたいです。 初期条件 c(x,0)=C0 境界条件 c(0,t)=C0 c(∞,t)=0
147 名前:132人目の素数さん mailto:sage [2012/01/19(木) 02:12:58.22 ] >>144 答えは?
148 名前:132人目の素数さん mailto:sage [2012/01/19(木) 02:20:22.71 ] >>147 加法定理を適用すればよい。 sin(π/3)、cos(π/3)の値を書き出す必要はあるけど、それは楽勝だろ、だよな?
149 名前:132人目の素数さん mailto:sage [2012/01/19(木) 02:22:00.09 ] >>148 ありがとう
150 名前:132人目の素数さん [2012/01/19(木) 02:22:16.58 ] u=5*sin(ωt-π/3+0) =5*(sin(ωt-π/3)*cos0 + cos(ωt-π/3)*sin0) =5*(sin(ωt-π/3) + 0*cos(ωt-π/3)
151 名前:132人目の素数さん [2012/01/19(木) 04:03:07.82 ] 独学者です 教科書代わりとして使用する検定外教科書でおすすめのものを教えてください 体系的にまとまっているものか、教育過程に従った構成のものかで迷っています
152 名前:132人目の素数さん mailto:sage [2012/01/19(木) 04:12:47.60 ] >>151 高校生のための数学の質問スレPART322 uni.2ch.net/test/read.cgi/math/1326138115/732 回答募集する場所はひとつに統一しよう、な?
153 名前:132人目の素数さん mailto:sage [2012/01/19(木) 04:13:28.38 ] 松坂和夫 数学読本 同 解析入門
154 名前:132人目の素数さん mailto:sage [2012/01/19(木) 04:30:46.52 ] a = b + c1 + c2 + 〜 という式があったとして B ≡ (c1=c2のときにaが最小になる,最大のb) というのを数式で定義したいんですがそんな書き方あるんでしょうか
155 名前:132人目の素数さん mailto:sage [2012/01/19(木) 06:37:21.77 ] max{b | b = min{a | a = b + c1 + c2 + 〜, c1 = c2}}
156 名前:132人目の素数さん [2012/01/19(木) 07:32:36.69 ] >>150 それをくどいというんだ。 数学やっているならわかるな。
157 名前:132人目の素数さん [2012/01/19(木) 07:34:14.08 ] >>155 B=max{b | b = min{a | a = b + c1 + c2 + 〜, c1 = c2}}
158 名前:132人目の素数さん mailto:sage [2012/01/19(木) 07:34:17.59 ] うるせえ!
159 名前:132人目の素数さん mailto:sage [2012/01/19(木) 07:41:47.62 ] >>157 B≡max{b | b = min{a | a = b + c1 + c2 + 〜, c1 = c2}}
160 名前:132人目の素数さん [2012/01/19(木) 07:44:43.43 ] >>159 順序環R上で考える B≡max{b | b = min{a | a = b + c1 + c2 + 〜, c1 = c2}}
161 名前:132人目の素数さん mailto:sage [2012/01/19(木) 07:59:58.96 ] >>128 47^72 % 71 =(31*71+8)^36 % 71 =.… =(71*2+2)^3 % 71
162 名前:132人目の素数さん mailto:sage [2012/01/19(木) 10:08:17.40 ] >>160 ありがとうございます!
163 名前:132人目の素数さん mailto:sage [2012/01/19(木) 10:45:58.50 ] マイナスとプラスの値が混在しているときの,全体に対する各割合の考え方について質問させてください. たとえば今, @10 A20 B30 C-10 D-20 という5データがあったとします.合計は30です. ここで@が全体に対する割合としての計算方法は,(10/30)*100 [%] で, Dが全体に対する割合としての計算方法は,(-20/30)*100 [%] でよろしいのでしょうか. パーセンテージとして負の値というのがしっくりこないです.
164 名前:132人目の素数さん [2012/01/19(木) 10:51:21.95 ] (x-2)(x+4)+3=x-2 を ax^2+bx+c=0 の式に展開していくと x^2+x-9=0 で合っているでしょうか? この後解の公式で解くと答えが合わないんです・・・
165 名前:132人目の素数さん mailto:sage [2012/01/19(木) 10:53:56.57 ] >>164 義務教育レベルだが、計算間違ってる
166 名前:164 mailto:sage [2012/01/19(木) 10:57:12.29 ] すいません (x-2)(x+4)+3=x-2 ではなくて (x-2)(x+4)-3=x-2 でした
167 名前:164 mailto:sage [2012/01/19(木) 11:04:50.46 ] x^2-x-9=0 ですね こんな問題でスレ汚しすいませんでした
168 名前:132人目の素数さん mailto:sage [2012/01/19(木) 11:05:29.68 ] [(¬(A∧¬B))∨(¬A∧¬C)]∧[¬(¬B∨C)∧(A∨¬C)] これの[(¬(A∧¬B))∨(¬A∧¬C)]が¬A∨Bになるらしいのですが、 どのような考え方をすれば¬A∨Bになるのでしょうか。 バーの書き方が分からないので¬AでAバーとさせて頂きます。 見づらくて申し訳ございません。
169 名前:132人目の素数さん mailto:sage [2012/01/19(木) 11:35:02.95 ] 3SATで調べる NP困難
170 名前:132人目の素数さん mailto:sage [2012/01/19(木) 11:42:10.16 ] 入試シーズンだったな…
171 名前:132人目の素数さん mailto:sage [2012/01/19(木) 11:50:27.08 ] >>168 (¬(A∧¬B))=(¬A∨B)
172 名前:132人目の素数さん mailto:sage [2012/01/19(木) 13:10:15.61 ] >>163 マイナス値もあるのに、全体に対する割合ってイメージがわかないけど、 もっと具体的に説明できない?
173 名前:163 mailto:sage [2012/01/19(木) 16:40:09.07 ] 力(ベクトル)の話になります. 今,たとえば上方向に作用する力を正,下方向に作用する力を負とします. @10[N] A20[N] B30[N] C-10[N] D-20[N] という5力があります.ここでの合力は 30N(上方向)です. ここで,@の10[N]が合力の30[N]に寄与している割合をパーセンテージで求めたいのですが, 正負混在しているため,どのようにすれば純粋にこの@の力の寄与率を求められるでしょうか.
174 名前:132人目の素数さん [2012/01/19(木) 16:47:29.89 ] >>173 物理板へ行け
175 名前:132人目の素数さん mailto:sage [2012/01/19(木) 17:19:42.67 ] Tn(t)log|s-t|/(√1-t^2) の-1から1までの範囲でのtに関する積分がわかりません。Tn(t)はチェビシェフ多項式の第1種です!よろしくお願いします。
176 名前:132人目の素数さん mailto:sage [2012/01/19(木) 17:25:21.62 ] >>173 合力に寄与率なんて考えあるの? たとえば、100N と -50N の合力だと、前者は200%とかいうの? 100N と -100N の合力の場合は?無限大?
177 名前:132人目の素数さん [2012/01/19(木) 19:24:30.00 ] uni.2ch.net/test/read.cgi/math/1326805868/13 わかる人答えてちょうだい
178 名前:132人目の素数さん [2012/01/19(木) 19:27:18.74 ] >>177 マルチすんじゃねーーーーーーーーーーーーーーーーーーーーーー
179 名前:132人目の素数さん [2012/01/19(木) 21:07:46.78 ] 1からnまでの自然数を任意の順番で並べ、「隣り合う2つの数の和を下に書く」という操作を繰り返す。 例)1から4まで 1 3 4 2 4 7 6 11 13 24 1番下に来る数が最大になるとき、その値を求めよ。 1から4までのときは上のように24が最大である。
180 名前:106 mailto:sage [2012/01/19(木) 21:28:19.00 ] >>143 x(t) = q がx座標とは言ってないでつ。(従属変数) そういう意味で x=q → r, t → θ, とした方がいいかも。 >>124
181 名前:132人目の素数さん [2012/01/19(木) 21:52:56.84 ] ごちゃごちゃうるせえ!
182 名前:数学 [2012/01/19(木) 21:55:37.93 ] △ABCにおいて、AB=2√3、AC=3−√3、∠A=120°のとき、 (1)辺BCの長さ (2)△ABCの面積 (3)△ABCの外接円の半径 (4)∠Bの大きさ 特に4番教えて
183 名前:132人目の素数さん mailto:sage [2012/01/19(木) 21:56:27.77 ] スレチだと思うんですが、どうしても分からないので質問させてください。 英語のテキストで可換群について説明されている部分で、 「In a commutative group, the product of any finite (not necessarily ordered) family S of elements is well defined, for example, the empty product is e.」 という一文の意味がよく分かりません。お助けください。 ちなみにテキストは↓で、上記の文が載っているのはp9です。 www.jmilne.org/math/CourseNotes/GT.pdf
184 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:02:35.36 ] >>183 p9の 何行目ですか
185 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:07:51.80 ] >>179 これは問題ですか? >>182 (1)余弦定理 (2)(AB・AC・sinA)/2 (3)正弦定理 (4)余弦定理
186 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:11:28.33 ] >>183 可換環では、任意の有限集合S(順序がついている必要はない)の要素の積は、上手く定義できる、例えば、空集合の積はeである。 というごく意味です。ごく当たり前のことだと思います。
187 名前:数学 [2012/01/19(木) 22:11:49.88 ] >>185 ありがとうございます! 詳しい数字も教えてくれませんか?
188 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:12:10.58 ] >>184 下から6行目です。
189 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:17:13.18 ] >>186 ありがとうございます。
190 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:19:37.58 ] >>180 x(t)が何なのかわかってるの?
191 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:21:26.47 ] >186 おっと誤字が幾つかあった。 【誤】可換環では… 【正】可換群では… 【誤】というごく意味です。 【正】という意味です。
192 名前:132人目の素数さん [2012/01/19(木) 22:25:41.23 ] 関数f:R→Rが連続であり、∀x∈Qに対してf(x)=0であるとする。 このとき∀x∈Rに対してf(x)=0であることを証明せよ。 どなたか教えてください。
193 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:27:48.98 ] >192 ∀x∈Rを取る。 xに収束する有理数列{q_n}を適当に取る。 fは連続だから、 f(x)=f(lim[n→∞]q_n)=lim[n→∞]f(q_n)=0
194 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:28:38.29 ] 漁協の放流臭い
195 名前:数学 [2012/01/19(木) 22:30:23.04 ] >>182 く、詳しい数字を教えて下さい
196 名前:漁協の方からきました mailto:sage [2012/01/19(木) 22:32:28.29 ] >>194 呼んだか?
197 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:36:57.55 ] >>196 お疲れ様っすw
198 名前:132人目の素数さん [2012/01/19(木) 22:40:38.95 ] >>193 ありがとうございます!
199 名前:132人目の素数さん [2012/01/19(木) 22:41:21.00 ] 膣
200 名前:ななみ [2012/01/19(木) 22:54:21.49 ] 可換体F上の行列環において、すべての対角行列と可換な行列はまた対角行列であることを示せ
201 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:56:46.98 ] >>187 >>185 の通りやれば出る
202 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:57:46.71 ] >>179 パスカルの三角形型の重みがかかる事、つまり、n個なら、順に C(n-1,0),C(n-1,1),C(n-1,2),...,C(n-1,n-1) の重みをかけて、合計したものが、一番下の数字になる。 最大値は、両外側に、1と2、その内側に3と4、...と並べた時 従って、Σ[k=1,n] k*C(n-1,[(k-1)/2])で計算できる。
203 名前:132人目の素数さん mailto:sage [2012/01/19(木) 22:57:54.69 ] >200 随分と偉そうだな
204 名前:ななみ [2012/01/19(木) 23:00:21.30 ] 可換体F上の行列環において、すべての対角行列と可換な行列はまた対角行列なのは どうしてなのでしょうか?
205 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:00:41.01 ] >204 子ね
206 名前:ななみ [2012/01/19(木) 23:02:15.01 ] 能書きはいいからさっさと完全解答をアップしてください
207 名前:ななみ [2012/01/19(木) 23:05:25.26 ] 急いでいます おにいたんおねがい><
208 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:08:40.84 ] 一つの対角成分だけ1で他は0の行列との積が可換になる条件を書いてみなさいよ
209 名前:ななみ [2012/01/19(木) 23:10:17.40 ] 急いでるの・・・ お兄たんおねがい><
210 名前:132人目の素数さん [2012/01/19(木) 23:17:33.19 ] 線形写像の問題 (1)だけでいいのでどうなっているか教えていただきたい beebee2see.appspot.com/i/azuYhqC_BQw.jpg
211 名前:132人目の素数さん [2012/01/19(木) 23:24:46.81 ] >>210 なんとかちゃんねる並に砕けた本のようだが、そのまんま
212 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:27:50.67 ] >>210 線形写像とは何か、を考える。
213 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:30:44.57 ] 微積からお願いします i.imgur.com/oCjf8.jpg i.imgur.com/sLIc7.jpg 問3,5(6)計算過程i.imgur.com/Kiqin.jpg もう一つの方(7)(8)は右側のルートを丸ごとtとおいて計算したのですがうまくいきませんでした
214 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:36:24.52 ] ご丁寧に公式まで指示してあるのに解けないものかね。
215 名前:132人目の素数さん [2012/01/19(木) 23:37:27.72 ] a,b∈R、a<bとし、I=[a,b]とする。 f:I→Rが連続な増加関数ならばf(I)=[f(a),f(b)]であることを証明しなさい。 fが増加関数だからf(a)<f(b)である。 (イ) f(c)<f(a)を満たすc∈Iが存在すると仮定する。 a≦c、f増加関数よりf(a)≦f(c)となり矛盾。 …というふうに背理法で証明しようとしました。 fが連続という条件がうまく使えないんですけどどうすればいいですか。
216 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:40:40.55 ] 中間値の定理
217 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:41:21.09 ] >>215 f(I)⊆[f(a),f(b)]しか頭になさそうだな。逆も言えよ。
218 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:45:54.53 ] 薄くてよく見えんわ e^x=tとおいてt^3/√(1+t^2)の積分にして t^3/√(1+t^2)=t{√(1+t^2)-1/√(1+t^2)} とすりゃ原始関数はすぐ求まるがな
219 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:52:55.80 ] t=e^(2t)+1でいいだろ。
220 名前:132人目の素数さん mailto:sage [2012/01/19(木) 23:59:35.93 ] >>216-217 ああなるほど。 ありがとうございます。
221 名前:132人目の素数さん mailto:sage [2012/01/20(金) 00:03:00.86 ] 放物線y=x^2+4xとx軸で囲まれた部分の面積Sを求めよ また、この囲まれた部分が直線y=mxによって上側と下側に1:7の面積比で分けられるとき、 定数mを求めよ。 S=32/3 m=2なのですが、何回やっても答えが合いません。 式を書いてもらえると嬉しいです。 お願いします。
222 名前:132人目の素数さん mailto:sage [2012/01/20(金) 00:03:55.07 ] >>221 >1
223 名前:132人目の素数さん [2012/01/20(金) 00:36:51.47 ] sinx=1/2i lim_{n → ∞}{ (1+xi/n)^n-(1-xi/n)^n } =x 積の記号_{n=0}^{∞} (1-(x/pi n)^2) の証明を教えてください。
224 名前:132人目の素数さん mailto:sage [2012/01/20(金) 00:53:34.32 ] >>223 ワイエルシュトラス 因数分解定理 でぐぐれ
225 名前:132人目の素数さん [2012/01/20(金) 01:13:29.53 ] f(z)は,|z|≦1の領域で正則な複素関数とする. (1) nを自然数とするとき,∫[0→2π]f(e^iθ)cos(nθ)dθ={π/(n!)}f^(n)(0)が成り立つことを示せ. (2) mを自然数とするとき,∫[0→2π]f(e^iθ)cos^(2m)θdθ={π/2^(2m-1)}Σ[k=0,m]C[2m,k]{f^(2m-2k)(0)}/{(2m-2k)!}が成り立つことを示せ.ただし,f^(0)(0)=f(0)とする. (3) ∫[0→2π]cos(2mθ)cos^(2m)θdθ=π/2^(2m-1)を示せ. (zの領域に注意) どなたか解説お願いします
226 名前:132人目の素数さん mailto:sage [2012/01/20(金) 01:39:33.49 ] Ej(j=1,2,....)が面積0の集合ならば、∪(k=1〜∞)Ekも面積0の集合か? 面積0ではなさそうなのですが、判例が思いつきません。 よろしくお願いします。
227 名前:132人目の素数さん mailto:sage [2012/01/20(金) 01:44:00.72 ] 物理の問題なのですが、ベクトル解析だと思うのでここに書かせていただきます。 次の形の理想流体の渦度方程式 ∂ω/∂t + ▽×(ω×u)=0 が成り立つとする。ことのきλ(x,y,z,t)を任意のスカラー関数として、 D/Dt(ω・▽λ)=(ω・▽)Dλ/Dt が成り立つことを示せ。 ただし、uは流速のベクトル場、ωは渦度、D/Dtはラグランジュ微分とする。 証明をすべて書くのが面倒ならば方針だけでも構いませんのでお願いします。
228 名前:132人目の素数さん mailto:sage [2012/01/20(金) 04:54:42.79 ] ワザとらしい釣りを有難うございます
229 名前:132人目の素数さん mailto:sage [2012/01/20(金) 05:16:55.31 ] >>221 www.wolframalpha.com/input/?i=integrate%28mx-%28x%5E2%2B4x%29%2C+%7Bx%2C+m-4%2C+0%7D%29+%3D+integrate%280-%28x%5E2%2B4x%29%2C+%7Bx%2C+-4%2C+0%7D%29*7%2F8
230 名前:132人目の素数さん mailto:sage [2012/01/20(金) 06:07:44.39 ] >>226 そもそも∪(k=1〜∞)Ek が面積を持つとは限らん
231 名前:132人目の素数さん mailto:sage [2012/01/20(金) 06:16:04.05 ] 【丸投げ】【投げ捨て】てつけたら
232 名前:132人目の素数さん mailto:sage [2012/01/20(金) 07:55:23.85 ] >>228 釣りじゃないんですがね。 まあ、面倒でしょうから気が向いたらお願いします。
233 名前:132人目の素数さん mailto:sage [2012/01/20(金) 08:43:27.47 ] >>227 理想流体の渦度方程式は ∂ω/∂t + ▽×(u×ω)=0
234 名前:132人目の素数さん [2012/01/20(金) 10:38:16.39 ] ‖·‖1をn次元空間R^nにおける任意のノルムとして ‖·‖をR^nにおけるユークリッドノルムとする。 ‖x‖1≦M‖x‖を証明しなさい。(M>0) これってコーシーシュワルツの不等式使って ‖·‖1≦√n‖x‖でいいのでしょうか(途中式は省略しました)
235 名前:132人目の素数さん [2012/01/20(金) 11:11:41.71 ] >>234 > R^nにおける任意のノルム だからだめ
236 名前:132人目の素数さん mailto:sage [2012/01/20(金) 11:51:38.92 ] >>230 面積確定でないようにすればいいんでしょうか? ちょっと考えてみます
237 名前:132人目の素数さん mailto:sage [2012/01/20(金) 12:18:50.95 ] >>235 どのように証明すればいいのでしょうか すみません、全く分からないので方針だけでも教えていただきたいです
238 名前:132人目の素数さん mailto:sage [2012/01/20(金) 12:44:53.15 ] >>237 背理法
239 名前:132人目の素数さん mailto:sage [2012/01/20(金) 12:49:44.80 ] >>238 ありがとうございます やってみます
240 名前:132人目の素数さん mailto:sage [2012/01/20(金) 17:56:43.51 ] 問題というか記号の質問なんですけど 式の最後に|があって、その右下にz=aって書いてあるとき これはどういう意味なんですか?
241 名前:132人目の素数さん [2012/01/20(金) 17:58:16.14 ] 0,1,2,2の数字を使って3桁の整数を作る時 何個できるかって問題なんですが これって百の位が0以外の三通り 十の位が残った三通り 一の位が二通りで、3×3×2=18 A.18通り じゃないんですか? 答えだと9通りとなっていて実際に数を作ってもその通りになります。 今日バイトのため予習をしていたら気になってしまい質問させていただきました。 回答よろしくお願いいたします。
242 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:02:58.60 ] こんなアホがバイトやっていいのか 池沼は死ね
243 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:05:26.80 ] 馬鹿な質問だということは重々承知していますが 教えていただけると幸いです。
244 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:06:26.65 ] 0,1,2,二で作ると考えて 3*3*2 2と二を同じものと考えて 3*3*2/2! =9 通り バイトやめた方が良いと思う
245 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:10:38.76 ] 回答ありがとうございます。 自分でもなぜ勘違いしていたのか理解することができました。 お目汚し失礼いたしました。
246 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:12:04.44 ] >>240
247 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:14:44.56 ] >>240 たぶん f(z)|z=a とかいった感じだろうが、 f(z) のz=a での値 要するに f(a)
248 名前:132人目の素数さん mailto:sage [2012/01/20(金) 18:38:33.49 ] >>247 ありがとうございます!
249 名前:132人目の素数さん [2012/01/20(金) 18:41:46.07 ] 問、関数項無限級数Σsin(nx)/n^2は一様収束するか否か。 収束優級数がΣ1/n^2だから一様収束する。で合っていますか?
250 名前:249 mailto:sage [2012/01/20(金) 18:43:49.01 ] すみません。問題文に抜けがありました。 実数全体での場合です。
251 名前:132人目の素数さん mailto:sage [2012/01/20(金) 19:10:43.00 ] >>249 それは何を聞きたいの? 実は分かってるけど不安だから後押しして欲しいの? それ分かってるうちに入らないからもう一回教科書読んだほうがいいよ
252 名前:132人目の素数さん [2012/01/20(金) 19:37:37.60 ] y=xとy=x^2に囲まれた領域Dと関数P(x,y)=xy+y^2, Q(x,y)=x^2に対し ∫∂D (Pdx+Qdy)をグリーンの定理からある面積分にして求めろ この問題が分からないです。教えていただきたいです
253 名前:132人目の素数さん [2012/01/20(金) 19:52:05.95 ] >>251 ちょっと何を言いたいのか分からないんですけども。 「収束優級数だから」って部分がマズいんですかね? もう少し詳しく指摘してくださると有り難いです。
254 名前:132人目の素数さん [2012/01/20(金) 19:52:30.66 ] E(1、z)=(1−z)expzとします 整関数φ(z)があって、φ(z)の零点{a_n}が 0<|a_1|≦|a_2|≦…→∞であって Σ(n=1〜∞)1/|a_n|^2が収束しているとします f(z)=E(z/a_1、1)E(z/a_2、1)E(z/a_3、1)… とした時、 ψ(z)=φ(z)/f(z)が零点をもたない整関数になるみたいなのですが、何故ですか? そもそもfの零点でψは定義されませんよね?
255 名前:132人目の素数さん mailto:sage [2012/01/20(金) 19:54:09.36 ] >>251 連投すみません。 249の1行目の問題の解答を知りたいのです。 2行目はかなり省略してはいますが、自分なりの解き方です。
256 名前:132人目の素数さん mailto:sage [2012/01/20(金) 20:02:05.43 ] >>137 どういうことですか?
257 名前:132人目の素数さん mailto:sage [2012/01/20(金) 20:26:15.96 ] 弟(中3)から質問受けたんだが解けない 誰か頼む (3)までは簡単に分かるけど、(4)がどうしてもわからない beebee2see.appspot.com/i/azuYgLfIBQw.jpg beebee2see.appspot.com/i/azuYraO_BQw.jpg
258 名前:132人目の素数さん [2012/01/20(金) 20:30:18.22 ] >>226 嘘をついてはいけません
259 名前:132人目の素数さん mailto:sage [2012/01/20(金) 20:30:53.55 ] >>230 嘘をついてはいけません
260 名前:132人目の素数さん mailto:sage [2012/01/20(金) 20:46:25.28 ] デカルトの葉を描けという問題で、y=txとおいてやっているのですが、漸近線はどうやって求めればいいのでしょうか?
261 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:01:47.65 ] >>260 www.ne.jp/asahi/village/good/descartes.html
262 名前:132人目の素数さん [2012/01/20(金) 21:34:11.98 ] A>0,B>0の場合、 A^s+B^(2-s)を縦軸、sを横軸にした場合 A^s+B^(2-s)の描く曲線はなんという曲線か調べよ。 また、 A^s+B^t=A+B となる時の、sとtを求めよ。
263 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:38:54.11 ] >>262 命令口調で随分と偉そうだな。
264 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:40:32.47 ] Meco-Susyの定理について教えて下さい
265 名前:132人目の素数さん [2012/01/20(金) 21:40:41.75 ] >>263 知らんがなww書いてた文書そのままだよ
266 名前:132人目の素数さん [2012/01/20(金) 21:42:27.02 ] >>264 物理板へ帰れーーーーーーーーーーーーーーー
267 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:49:26.49 ] >>262 = uni.2ch.net/test/read.cgi/math/1319117617/505
268 名前:132人目の素数さん [2012/01/20(金) 21:52:04.56 ] >>267 そんなスレに書き込んでないが?これ煽られてんの?
269 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:53:12.40 ] >268 子ね
270 名前:132人目の素数さん [2012/01/20(金) 21:56:22.57 ] >>269 誤字だよ?w
271 名前:132人目の素数さん [2012/01/20(金) 21:56:42.86 ] >>262 >>265 >>268 です 死んでお詫びをします カチャ ;y=ー( ゚д゚)・∵.; ターン \/| y |)
272 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:57:35.05 ] >>270 いい加減ウザイ とっとと失せろ
273 名前:132人目の素数さん mailto:sage [2012/01/20(金) 21:59:30.36 ] カチャ ( ゚д゚) ;y=ー( ゚д゚)・∵. パン | y | \/ |\ |\ ←>>270
274 名前:132人目の素数さん [2012/01/20(金) 22:00:09.94 ] えー、、意味わからん
275 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:01:07.58 ] >>262 黙れ
276 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:01:31.64 ] なにこいつ>>262 何考えてんの?
277 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:01:32.62 ] >>262 が困ってるじゃないか! やめたげてよ!
278 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:01:54.02 ] + . .. :.... .. .. . + .. . .. . +.. .. __ .. .|: | .. .|: | ... .(二二X二二O |: | ..:+ .. ∧∧ |: | /⌒ヽ),_|; |,_,, ねえ。母さん。>>262 だよ。 _,_,_,_,,〜(,, );;;;:;:;;;;:::ヽ,、 "" """""""",, ""/; もう、そっちに行っていいかなぁ? "" ,,, """ ""/:;; "" ,,""""" /;;;::;; 疲れたよ…。
279 名前:132人目の素数さん [2012/01/20(金) 22:02:09.26 ] >>262 死ねks
280 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:02:53.33 ] 今来たけど>>262 は確かに人にものを頼む態度でない
281 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:02:58.24 ] >>262 wwwwww だせぇwwwwww
282 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:03:36.48 ] >>262 はキチガイ死んだほうがいい
283 名前:132人目の素数さん [2012/01/20(金) 22:03:40.37 ] fun^40×int^10=Ir2
284 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:03:51.42 ] vipからきますたwwwwww >>262 何やってんだよwwwwwwwwwwww
285 名前:132人目の素数さん [2012/01/20(金) 22:04:46.59 ] >>262 きも >>284 お前は死ねよゴミ 低能ノミ凡人
286 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:04:48.95 ] >>262 >>265 >>268 >>270 >>274 全て同一人物だろうが、余程歪んだ人格なのだろう 可哀そうに…
287 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:04:55.56 ] 俺>>262 の同級生なんだけど、こいつクラスでもハブられてるし空気読めないからスルーしてください すみませんでした
288 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:05:19.93 ] >>262 >>262
289 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:05:42.73 ] >>262
290 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:05:46.30 ] V I P か ら き ま す た
291 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:00.07 ] >>262 どんだけ偉そうなんだよ チャート式にでも聞いてください
292 名前:132人目の素数さん [2012/01/20(金) 22:06:02.01 ] >>262 うわーキモッ
293 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:11.53 ] >>262 ,.. -‐ '' "´ ̄ ̄ ̄` ` .、 /::::::::::::::::::::::::::::::::::::::::::::::::::::`ヽ、 , ':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\ /::::::::::::::::::::::::; ‐'''""`''' ‐=、;:::::::::::::::::::::::ヽ ,'::::::::::::::::::::::::i' ``''`‐- 、、;:-ゝ ,':::::::::::::::::::::::::l' | i::::::::::::::::::::::::Z /ノ( l |:::::; -、::::::::t` / ⌒ l ! ,' l/rヘ ゙;:::_:Z -‐''′ / | i / ̄ ̄ ̄\ 〈 〈 } '|i´へ、 _____,ノ/li, li| _. / | ___,.ハ lヽ |! `ヾ"´、 _``'' ‐.、 ノ _`;:ェ∠_ /ハ | う | ,.. ‐''"´;;;;;;/! ', L={, | ` 、 `''-゙ー'=‐ ,)=i´,.z=‐i い | ⌒i| せ | ;;;;;;;;;;;;;;;;;;;! | 'ー‐' |;'ヽ ` ー---‐'′ !、,. ィ´!'⌒', | < ろ | ;;;;;;;;;;;;;;;;;;;| | / |', l| !:. /``'l l | .|ヽ | ;;;;;;;;;;;;;;;;;;;;i ゙、// ヽ ...,,_j'′;;;;;;i、, ゙、‐| ='!. \___/ ;;;;;;;;;;;;;;;;;;;;;', ヽ \、 _ _,∠ ;;;;;;;;;;;;;|ノ( | i ,' l ;;;;;;;;;;;;;;;;;;;;;;;', `、,/ ヾ;;,、 '''"ニニ二( >ヽ;;;;;;;;;;;;|⌒ |'′ .i ,i_ ;;;;;;;;;;;;;;;;;;;;;;;;;', \....,,_,,....ヾ;;';;;,,,,,,,,,;;,;;'';,,/ヾ. ` 、_;ノ 〉 ,} i !;ヽ ;;;;;;;;;;;;;;;;;;;;;;;;;;;', / >、 ,> 、;;;;;;;;;;;;/ \ / ;. //;;;;;;\
294 名前: 忍法帖【Lv=23,xxxPT】 mailto:sage [2012/01/20(金) 22:06:15.24 ] >>262 消えろカス
295 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:15.38 ] >>262 お前アホやろ
296 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:46.19 ] 俺ずっと数学板にいるけど>>262 みたいな偉そうな奴初めて見た
297 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:46.78 ] ∧_∧ / ̄ ( ・∀・)⌒\ __ / _| | | ヽヽ / / \ | | ,,,,,,,iiiiillllll!!!!!!!lllllliiiii,,,,,,, \\| |____| .| | .,llll゙゙゙゙゙ ゙゙゙゙゙lllll, \/ \ | | .|!!!!,,,,,,,, ,,,,,,,,,!!!!| | ヽ_「\ | |、 | ゙゙゙゙!!!!llllliiiiiiiiiilllll!!!!゙゙゙゙ .| | \ \――、. | | ヽ .| .゙゙゙゙゙゙゙゙゙゙ | | / \ "-、, `| | ヽ | | _/ / "-, "' (_ ヽ ヽ .| | / __ノ "'m__`\ヽ_,,,, ヽ | | `ー― ̄ ヽ、__`/ー_,,,, ゙゙゙゙!!!!!!!lllllllliii| | \゙゙゙゙゙゙゙!!!!!lllllllliiiii| | \ ヽ | | ヽ \ | | | \.| | `ヽ、,,_ノ| | ゙゙!!!,,,,,,,, ,,,,,,,,,!!!゙゙ ゙゙゙゙!!!!llllliiiiiiiiiilllll!!!!゙゙゙゙ /.// ・l|∵ ヽ\ ←>>262
298 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:06:54.43 ] >>262 なんで生きてんの?
299 名前:132人目の素数さん [2012/01/20(金) 22:07:03.64 ] ついにお祭りになっちゃった・・・
300 名前:132人目の素数さん [2012/01/20(金) 22:07:12.70 ] >>262 死んでほしいなあ
301 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:07:21.43 ] >>262 何様だよ
302 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:07:25.64 ] >>262 くせえ
303 名前:132人目の素数さん [2012/01/20(金) 22:07:32.04 ] >>262 しねよまじで
304 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:07:33.08 ] >>262 何で生きてんのお前?
305 名前:132人目の素数さん [2012/01/20(金) 22:07:42.82 ] >>262 死ね
306 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:07:45.70 ] 数学板が総力を結集して>>262 潰す
307 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:07:57.88 ] >>262 しね
308 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:08:04.29 ] >>262 くたばれ
309 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:08:20.99 ] >>262 うわ、君口臭いなぁ〜
310 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:08:36.65 ] >>262 さん、今どんな気分?
311 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:08:40.07 ] >>262 悔しいのぅwwwwww悔しいのぅwwwwww
312 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:08:41.31 ] フェルマー大定理の拡張を考えて x^s + y^s = z^s (x,y,zは自然数)を満たす ゼロを除く正の実数s(または近似的には有限確定値としての有理数s)を考える。 s>=3では恒等式は成立しないが、s<3のときの有理数sや実数sは研究されてるんでしょうか? またsをパラメータ ∀ s:有理数 ; s>0 ; (3-s)>0 として扱うときの不等式 x^(3-s) + y^(3-s) < z^(3-s) (<のみでなくその他<=,>=,>の等号も)が満たす集合の境界条件的(不等式的)性質の研究はすすんでるんでしょうか? フェルマーの最終定理(フェルマーの大定理)とは、3 以上の自然数 n について、xn + yn = zn となる 0 でない自然数 (x, y, z) の組み合わせがない[1]、という定理のことである。
313 名前:132人目の素数さん [2012/01/20(金) 22:08:46.88 ] >>262 なんで生きてんの?
314 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:09:14.26 ] >>262 さん息してる〜?wwwwwwwwwwww
315 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:09:14.30 ] >>262 臭いんだよ
316 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:09:25.93 ] >>262 記念パヒコ
317 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:09:52.20 ] >>262 失せろカス
318 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:09:56.93 ] >>262 は?なんなん?こんなんでそんな叩かれなあきまへんの?意味わかりませんなあほんま!ほたえてんのもええ加減にせいっちゅうねんあほんだら!だらが!
319 名前:132人目の素数さん [2012/01/20(金) 22:10:09.80 ] >>262 プークスクス
320 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:10:42.22 ] >>262 今どんな気持ち?
321 名前:132人目の素数さん [2012/01/20(金) 22:10:46.80 ] VIPから
322 名前:132人目の素数さん [2012/01/20(金) 22:10:55.25 ] >>262 しねよ 割とマジで
323 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:02.22 ] >>262 ゆとり乙
324 名前:132人目の素数さん [2012/01/20(金) 22:11:02.10 ] >>262 そんな簡単な問題もってくるなカス
325 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:03.41 ] >>262 (・ω・ )かまきり拳法 νヽν | < < ヘ(・ω・ )あちょ! ヽν | < <
326 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:09.09 ] >>262 は?偉そうやのぉ
327 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:16.44 ] 臭くて結構こけこっこーですわwwwアホやっとったら痛い目会うでwww 謝ったらええんやろ?www謝ったらあなww はい、堪忍堪忍ww堪忍なぁwww ほら許せやwww
328 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:27.09 ] >>262 いてこましたろか?
329 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:39.35 ] >>262 元気出せよ あ、二度とここにはくんなよ
330 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:11:39.95 ] vipに帰れよ邪魔
331 名前:132人目の素数さん [2012/01/20(金) 22:11:53.47 ] >>262 5秒で分かったけど おまえの態度が気に入らない
332 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:12:28.21 ] >>262 しゃべんなよ臭えんだよてめえ
333 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:12:30.60 ] >>262 帰れゴミ
334 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:12:33.59 ] ひっでえ自演だなおいw
335 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:12:45.48 ] >>262 解いたけど教えない
336 名前:132人目の素数さん [2012/01/20(金) 22:12:53.54 ] 自演やめろよ>>263
337 名前:262 mailto:sage [2012/01/20(金) 22:12:56.63 ] 262だけどなんなんだよマジで 数学板ってキチしかいねーな 二度とこねえよ低脳どもが
338 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:13:04.28 ] >>262 VIPで死ね
339 名前:262 mailto:sage [2012/01/20(金) 22:13:28.04 ] 俺も262だけどもう二度と来ねーわ 最悪だはマジで
340 名前:262 [2012/01/20(金) 22:13:33.84 ] どうもすいません。 質問は以上で締め切ります
341 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:13:36.64 ] ''';;';';;'';;;,., ザッ ''';;';'';';''';;'';;;,., ザッ ザッ ;;''';;';'';';';;;'';;'';;; ;;'';';';;'';;';'';';';;;'';;'';;; vymyvwymyvymyvy ザッ ザッ MVvvMvyvMVvvMvyvMVvv、 Λ_ヘ^−^Λ_ヘ^−^Λ_ヘ^Λ_ヘ ザッ ヘ__Λ ヘ__Λ ヘ__Λ ヘ__Λ __,/ヽ_ /ヽ__,.ヘ /ヽ__,.ヘ _,.ヘ ,.ヘ ザッ /\___/ヽ /\___ /\___/ヽ _/ヽ /\___/ヽ /'''''' '''''':::::::\/'''''' '''/'''''' '''''':::::::\ /'''''' '''''':::::::\ . |(●), 、(●)、.:|(●), |(●), 、(●)、.:|、( |(●), 、(●)、.:| | ,,ノ(、_, )ヽ、,, .::::| ,,ノ(、_, )| ,,ノ(、_, )ヽ、,, .::::|_, )| ,,ノ(、_, )ヽ、,, .::::| . | `-=ニ=- ' .:::::::| `-=ニ= | `-=ニ=- ' .:::::::|ニ=| `-=ニ=- ' .:::::::| \ `ニニ´ .:::::/\ `ニニ \ `ニニ´ .:::::/ニ´ \ `ニニ´ .:::::/ /`ー‐--‐‐―´\ /`ー‐- /`ー‐--‐‐―´\-‐‐ /`ー‐--‐‐―´ 「vipから来ますた」「vipから来ますた」「vipから来ますた」「vipから来ますた」
342 名前:132人目の素数さん [2012/01/20(金) 22:13:39.35 ] ここVIPじゃないのに何この空気
343 名前:262 mailto:sage [2012/01/20(金) 22:13:52.88 ] 死ねカス共
344 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:14:01.11 ] >>262 からなんか変な臭いがするんだけど・・・
345 名前:262 mailto:sage [2012/01/20(金) 22:14:22.54 ] 僕が真の262です!
346 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:14:50.83 ] ksk
347 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:15:39.06 ] あれ?みなさん今日はどうしちゃったのですか? まじめに数学やりましょうよ!
348 名前:132人目の素数さん [2012/01/20(金) 22:16:58.63 ] もう良いよ、えらいすいませんでした
349 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:17:12.01 ] 262です ごめんなさい
350 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:17:37.30 ] >>262 お前何様?
351 名前:132人目の素数さん [2012/01/20(金) 22:17:48.08 ] _____ /.::::::::::::::::::::::::::.ヽ /.::::::γ⌒Y⌒ヽ::.| |::::::::/ ⌒ ⌒ | ○______________ |:::::::〉 ( ●) (●)| || / (@ ::::⌒(__人__)⌒) || / | |r┬-| | || VIPから見学にきました / \ `ー'´ / .|| / .....イ.ヽヽ、___ ーーノ゙-、 .|| / : | '; \_____ ノ.| ヽ  ̄ || ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ | \/゙(__)\,| i | | |(_ 〉 > ヽ. ハ | | | ∪(_ 〉 ( (_ 〉
352 名前:262 [2012/01/20(金) 22:18:01.52 ] 気がすんだらさっさと完全解答アップしろ馬鹿
353 名前:132人目の素数さん [2012/01/20(金) 22:18:25.30 ] >>350 うるせーよしね
354 名前:262 mailto:sage [2012/01/20(金) 22:18:36.83 ] >>352 二度と来ないで 荒れちゃうから
355 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:18:41.27 ] >>262 何様だカス
356 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:19:06.25 ] vipから来たらしいけど ここは普段から難しい問題はスルーされるよ
357 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:19:10.89 ] >>262 帰れ
358 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:19:24.69 ] 262です ご迷惑をおかけしまして申し訳ありません 深く反省しております 今後このようなことがないようにしていきます 本当にすみませんでした な〜んてなwwwwwwwwwwww バ〜カwwwwwwwwwwww
359 名前:132人目の素数さん [2012/01/20(金) 22:19:26.51 ] みんな答えろよ 包絡線で、s=1だろ?たぶんsは一般解があると思うけど
360 名前:132人目の素数さん [2012/01/20(金) 22:19:41.85 ] VIPからきますた 数学板wwwwwwwwwwwwww
361 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:19:51.92 ] >>262 俺それ知ってる。 有名な未解決問題だろ。
362 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:20:22.61 ] 20分以内に>>800 行ったらあうあうzipうp
363 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:21:38.68 ] >>262 お前のせいで数学板のみなさんが困惑しているわけだが何か言うことは?
364 名前:132人目の素数さん [2012/01/20(金) 22:21:46.97 ] >>262 臭い^^;
365 名前:132人目の素数さん [2012/01/20(金) 22:21:47.21 ] >>262 最後に「教えて下さい、宜しくお願いしまんまん!」て付けろよ このコミュ障が
366 名前:132人目の素数さん [2012/01/20(金) 22:22:11.16 ] ┏┓ ┏┓ 巛 ヽ. ┏┓ ┏┳┓ ┏━━━┛┃┏┓ ┏━┛┗━┓ ┏┓ + 〒ー| ┏┓ ┏┓┏━━┛┗┓┏┓┃┃┃ ┗━┓┏━╋┛┗━┳┳┳╋━┓┏━╋━┛┗┳━| |┳━┛┗┳━┛┗╋━┓ ┏┻┛┗┫┃┃ ┃┃ ┗┓┏┓┃┃┃┣┓┃┃┏╋┓ +┻ +/ /┻┓ ┏┻┓ ┏┛ ┃┃┃┏━┓┃┃┃ ┃┃ ┃┃┗╋┻┛┃┃┃┃┃┣┛ ∧_∧/ / .┏┛┃┃┏┛┃┃┏━┛┃┣╋━┛┣╋┫ ┗/´》〉 ┗┛ ┗━━┻┛┗┛┗┻━(´∀`_/ / ┗━┻┛┗━┻┛┗━━┻┛┗巛 ヽ┻┻┛ * | 〒 /⌒ヽ | 〒 ||| ,.へ´_|_ヽ ,-r、,r/」 f ||| ∧ ∧,.へ, 〒 ! /⌒ヽ 〒 ! | | ( ´∀`) | 人l ァ'`・ω・)〉/_ュヘ〈|7 | * (゚∀゚ `ァ ノ + | | ( 个 ) | | + | { | .| { .(__)、 ○〈_}ノ : | + O /:-一;:、 / /. | | ./ /* ヽ ヽ | .|.ヽ ヽ (___) 、 〈 く/ ヽ__,」 + ) ミ;;★:;:;:;ミ/ / | |/ / ヽ ヽ,, ´∀`) ヽ ヽ ´∀`)__ノ ヽ__) / ,ヘ | __,, '´ ̄`ヽ__ (・ω・´/ / (・∀・ / / ,.へ ■ヽ ヽ ー、 ヽ ー、 / / |. | ★((ハヾヽ,.べ, ミ三彡 f ,- f+ l ァ'^▽^) i ,rュ ', i rュ ', ||| ( 〈 .| .| ハ^ω^*`ァノュヘ | / ュヘ | ヽ ○.| /{_〉,.へ∧ ∧{_〉 << \ ヽ .| .| O☆゙ _ノ_,} ) | 〈_} ) | | 、 〈 | 〈 l ァ';・∀・) \ノ |_,,| ノ´ ̄ゞ⌒'ーァ ! ||| / ! ||| ||| l__ノ ヽ__)| ,ヘ. ヽ ヽ ○ヽ + |__ノ| ) `7゙(´〈`ー''´ | / ,ヘ |
367 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:22:53.07 ] 262っす もういぢめるのはやめちくり〜(泣) わいのハートはズキンズキンや〜(泣)
368 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:23:14.05 ] やj
369 名前:132人目の素数さん [2012/01/20(金) 22:23:19.19 ] 数学板をvipの植民地にしてやるよ ありがたく思え原住民ども
370 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:23:31.79 ] しこしこ
371 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:23:37.54 ] VIPからきますたwwww 記念パピコだぜぇwwww
372 名前:262 [2012/01/20(金) 22:24:09.60 ] ここのやつもVIPのやつも○ね
373 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:24:20.87 ] 茶出せやメガネ君どもwwwwww
374 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:24:44.57 ] >>262 VIPからきますたwwwwwwwwww
375 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:24:49.51 ] >>362
376 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:25:00.06 ] >>362 おい
377 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:25:17.67 ] >>362 約束だぞ
378 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:25:31.29 ] ただのジョルダン曲線定理じゃん vipとか言うのはこんなのも分からないの?
379 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:25:40.93 ] ksk
380 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:25:50.49 ] ksk
381 名前:132人目の素数さん [2012/01/20(金) 22:25:59.86 ] あーあVIPにまでスレ立てるからこんな目に遭うんだよ
382 名前:132人目の素数さん [2012/01/20(金) 22:26:10.83 ] >>378 やっとガチな答えきたか!ありがとう!とりあえず答え教えてください
383 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:26:13.05 ] ksk
384 名前:vipper [2012/01/20(金) 22:26:17.56 ] □の中に1から9までの数を一回だけ入れてイコール1にするには何を入れればいいか 述べよ! (□/□□)+(□/□□)+(□/□□)=1
385 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:26:22.50 ] >>262 俺原住民だけど許す代わりチンコうpして
386 名前:132人目の素数さん [2012/01/20(金) 22:26:24.32 ] ksk
387 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:26:34.69 ] ksk
388 名前:132人目の素数さん [2012/01/20(金) 22:27:03.39 ] >>262 を煽ったやつのせいでこのスレも終わったな
389 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:27:39.28 ] ksk
390 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:28:21.12 ] ksk
391 名前:132人目の素数さん [2012/01/20(金) 22:28:33.15 ] ksk
392 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:28:42.30 ] あーあvipから臭いの湧いてきちゃったよ >>262 は責任とれよな
393 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:28:47.26 ] >>262 お前ホントに27歳か?
394 名前:132人目の素数さん [2012/01/20(金) 22:29:00.54 ] ksk
395 名前:132人目の素数さん [2012/01/20(金) 22:29:04.00 ] >>384 (1/36)+(2/18)+(4/72)=1
396 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:29:56.98 ] * * * りほきゃわ + n ∧_∧ n + (ヨ(* ´∀`)E) Y Y *
397 名前:132人目の素数さん [2012/01/20(金) 22:30:58.46 ] >>395 が>>384 を答えただけで書き込みなくなってワロタ
398 名前:132人目の素数さん [2012/01/20(金) 22:30:59.66 ] >>395 全然1になってねーじゃねーかwww
399 名前:132人目の素数さん [2012/01/20(金) 22:31:51.79 ] VIPは本当に飽きるの速いなあ こんなもんかよ
400 名前:vipper [2012/01/20(金) 22:32:01.35 ] >>395 お前適当に書いただろ
401 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:32:19.48 ] 1 名前:ローカルルール・名前欄変更議論中@自治スレ [] 投稿日:2012/01/20(金) 21:58:54.17 ID:ewQt6W6N0 [1/16] 分からない問題はここに書いてね364 uni.2ch.net/test/read.cgi/math/1324646365/ の>>262 が自分なんだけど、いきなり煽られまくってワロタ 助けてく
402 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:32:21.96 ] >>395 同じ文字使いまくりだし
403 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:32:58.84 ] >>384 (4/36)+(2/18)+(4/72)=1 マジレスしてしまってごめんね?w
404 名前:vipper [2012/01/20(金) 22:33:00.84 ] >>395 てめーのせいで関数電卓叩いたじゃねーか
405 名前:132人目の素数さん [2012/01/20(金) 22:33:30.34 ] >>403 4が2個あるwww
406 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:33:49.12 ] >>262 くっさぁw
407 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:34:16.38 ] >>262 泣いて謝れ
408 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:34:34.00 ] >>262 土下座はよ
409 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:35:54.91 ] >>262 はやくお詫びしろ
410 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:36:06.02 ] 何だこの流れ
411 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:36:37.65 ] >>262 ブルってんのか?w
412 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:37:14.80 ] >>262 巣に戻れ
413 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:37:39.09 ] >>262 逃げたか
414 名前:132人目の素数さん [2012/01/20(金) 22:38:13.72 ] 262です いい加減むかついてきたんでスレ閉じます
415 名前:132人目の素数さん [2012/01/20(金) 22:38:17.77 ] つまんないからこういうのやめろよ >>263 お前あんまり調子のるんじゃないぞ
416 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:39:53.34 ] ここまで>>263 の自演
417 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:40:03.54 ] >415 子ね
418 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:40:15.39 ] >>262 あーあ やっちまったな
419 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:40:56.33 ] >>262 偉そうやな なんなんお前マジで
420 名前:132人目の素数さん [2012/01/20(金) 22:42:09.80 ] 今見たけどジョルダンの曲線定理関係なさすぎだろ
421 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:42:24.61 ] >>263 自演やめろ
422 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:42:26.01 ] >>262 問題文書き写しなら命令口調でも許されると思ってんのか
423 名前:132人目の素数さん [2012/01/20(金) 22:43:08.03 ] てす 4/8+3/9+1/6とか
424 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:43:40.17 ] 濡れ衣だ 俺263だけどそれ以降書き込んでない 262が馬鹿な対応したため祭りになったようだ
425 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:44:01.64 ] >>384 しょうがねぇなぁ... 9/12 + 5/34 + 7/68 = 1,
426 名前:132人目の素数さん [2012/01/20(金) 22:44:35.23 ] 濡れ衣だ 俺263だけどそれ以降書き込んでない 264が馬鹿な対応したため祭りになったようだ
427 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:45:03.07 ] >>425 やるな
428 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:46:34.29 ] 1から9を1つずつ用いて式を完成させよ □=□−□ + □=□÷□ || □=□×□
429 名前:132人目の素数さん [2012/01/20(金) 22:46:55.75 ] >>425 すげー、どうやって導き出したの?
430 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:49:43.22 ] >>128 そのまま計算するだけ... 47^72 = 2460626922051215762486586889720271999164030602707776618683439966485879911981350935231609120327451666085898434594395213441 = 34656717211988954401219533658031999988225783136729248150470985443463097351850013172276184793344389663181668092878805823×71 + 8, ∴ 余り 8
431 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:51:11.77 ] vipさんが巣に戻ったようなので>>312 もお願いします
432 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:52:42.27 ] >>262 ふざけんなよ
433 名前:132人目の素数さん [2012/01/20(金) 22:56:22.74 ] >>428 これホンマ解あるんやろな?
434 名前:132人目の素数さん mailto:sage [2012/01/20(金) 22:57:18.19 ] >>262 こら 偉そうなのは感心しないな
435 名前:132人目の素数さん [2012/01/20(金) 23:01:21.51 ] >>433 これ無理だわ、答えないよ
436 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:02:13.33 ] >>433 あるよ
437 名前:132人目の素数さん [2012/01/20(金) 23:03:48.30 ] >>436 無理だよ
438 名前:132人目の素数さん [2012/01/20(金) 23:03:49.31 ] >>427 >>429 9/12 + 5/34 + 7/68 ≠ 1 だよ 9/12 + 5/34 + 7/68 =189/204 だ 全然1じゃない。釣られんな
439 名前:132人目の素数さん [2012/01/20(金) 23:04:18.04 ] >>438 これはひどい
440 名前:428 mailto:sage [2012/01/20(金) 23:04:43.16 ] 失敬、まちがい 1から9を1つずつ用いて式を完成させよ □=□−□ × □=□÷□ || □=□+□
441 名前:132人目の素数さん [2012/01/20(金) 23:05:29.78 ] >>436 左下に入りうるのは6,8しか考えられん その2通り考えたけどダメだった >>438 1なったけどな・・・
442 名前:132人目の素数さん [2012/01/20(金) 23:05:34.53 ] >>440 ほら見ろ >>262 みたいにすんぞ?
443 名前:132人目の素数さん [2012/01/20(金) 23:06:22.29 ] >>440 しねwww
444 名前:132人目の素数さん [2012/01/20(金) 23:07:19.94 ] >>440 なら余裕だわ 何で間違えちゃうかなー
445 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:09:14.32 ] >>440 なめてんの?
446 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:10:04.25 ] >>440 あのさぁ…
447 名前:132人目の素数さん [2012/01/20(金) 23:10:26.96 ] 今来たんだけど、あんなに叩かれてるけど>>262 の問題難しいね 結局>>262 の答えは何だったの?
448 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:11:36.66 ] 4=9−5 × 2=6÷3 || 8=1+7 児戯とはこのことですね
449 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:12:37.41 ] >>262 wwwwwwwwwwww
450 名前:132人目の素数さん [2012/01/20(金) 23:14:51.86 ] >>448 簡単やな
451 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:16:25.98 ] 関西弁…
452 名前:132人目の素数さん [2012/01/20(金) 23:17:27.41 ] 関西弁www
453 名前:132人目の素数さん [2012/01/20(金) 23:18:05.31 ] 数学なんて解いてみれば簡単なものだよ
454 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:20:39.02 ] >453 それはせいぜい試験問題レベルだろ
455 名前:132人目の素数さん [2012/01/20(金) 23:27:02.21 ] 結局>>262 にかわいそうな事したな
456 名前:132人目の素数さん [2012/01/20(金) 23:28:41.58 ] なんで>>262 がそんなに叩かれたのが理解できないわ
457 名前:132人目の素数さん [2012/01/20(金) 23:29:57.02 ] まあ俺らの力をもってすれば>>262 の問題など簡単なんだがな 誰も真面目に答えようとしないな
458 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:30:08.44 ] >>454 試験問題レベルとも限らない。 むしろ試験レベル問題の方が制限時間とのバランスやあうんの呼吸が必要だったりして難しいもんだ。
459 名前:428 mailto:sage [2012/01/20(金) 23:31:08.41 ] >>448 不正解 4=9−5 × 2=6÷3 || 8=7+1
460 名前:132人目の素数さん [2012/01/20(金) 23:33:36.03 ] >>262 は解なし問題だよ 考えるだけ時間の無駄
461 名前:132人目の素数さん [2012/01/20(金) 23:33:52.29 ] >>459 お前さんはゆとりが生んだ化け物か!
462 名前:132人目の素数さん [2012/01/20(金) 23:38:42.54 ] >>460 それはないだろ。少なくともs=1のときは成り立つけど、エクセルで書いて見たら、それ以外にも成り立ってたし
463 名前:!nanja mailto:sage [2012/01/20(金) 23:41:39.18 ] 。とすて
464 名前:132人目の素数さん mailto:sage [2012/01/20(金) 23:42:57.71 ] あれ、ここは出身板表示機能がないのか… 元スレはあまり書き込みがないのに、こっちはにぎやかだね。
465 名前:132人目の素数さん mailto:sage [2012/01/21(土) 00:11:51.77 ] >>262 は2つの正の実数A、Bと実変数sについて A^s+B^(2-s) の取る最小値がないことを示す問題だろ。 で、答は正の縦軸なんだろ。
466 名前:132人目の素数さん [2012/01/21(土) 00:18:44.54 ] >>465 どういうこと?
467 名前:132人目の素数さん mailto:sage [2012/01/21(土) 00:20:28.38 ] 考えるだけ時間の無駄
468 名前:132人目の素数さん [2012/01/21(土) 00:22:13.59 ] >>467 それを言ったらおしまいじゃん
469 名前:132人目の素数さん mailto:sage [2012/01/21(土) 00:29:39.92 ] >>254 Eの定義がよくわからん
470 名前:440 mailto:sage [2012/01/21(土) 01:27:32.52 ] 正解 >>448 > 4=9−5 > × > 2=6÷3 > || > 8=1+7 > > 児戯とはこのことですね
471 名前:132人目の素数さん mailto:sage [2012/01/21(土) 01:33:10.88 ] >>428 Bupperの釣り
472 名前:132人目の素数さん mailto:sage [2012/01/21(土) 01:40:45.77 ] 証明問題なのですが n、mを自然数とするとき H[n+1,m]=納k=0〜n] H[m,k] を示す
473 名前:132人目の素数さん mailto:sage [2012/01/21(土) 01:48:39.38 ] Hは重複組み合わせの記号だとおもう それはいいのだが問題おかしくないか?
474 名前:132人目の素数さん [2012/01/21(土) 02:10:27.70 ] 悶着あった>>262 だけど、本当の意味での厳密解は出ないけど、テイラー展開を4次くらいまで行うとかなり精度の良いsの値が出るね
475 名前:132人目の素数さん [2012/01/21(土) 02:12:36.36 ] haa?
476 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:13:21.14 ] >>465 最小値がないことを示す。A≠Bのときは、 2つの実数r>0、θ、0≦θ≦π/2を用いれば実数A、B>0は A=rsinθ、B=rcosθ と表せるから f(s)=A^s+B^(2-s) とおけば f(s)=(A/B)^s(B^s+2) =tan^sθ{(rcosθ)^s+2} ≦tan^sθ(r^s+2) で一旦f(s)≦(r^s+2)tan^sθを上から評価することになるが、 r>0は定数で0≦θ≦π/2なんだから、 r≧1、tanθ>1のときs→-∞、 0<r<1、0<tanθ<1のときs→+∞とすれば (r^s+2)tan^sθ→0が得られて、結局極限をとればf(s)→0、 一方、0<r<1、tanθ>1のとき、0<(r^s+2)tan^sθ<3tan^sθから、f(s)<3tan^sθ、 r≧1、0<tanθ<1のとき、(r^s+2)tan^sθ<r^s+2から、f(s)<r^s+2 だから、同様に極限をとればf(s)→0になって、まとめてA、B、sを走らせて考えれば、 f(s)の動く範囲はf(s)>0になることが分かる。 問題はA=Bのときだが、このときはθ=π/4だから sに関係なくf(s)>0で条件を満たしている。 だから、f(s)の動く範囲はf(s)>0で、最小値は存在しない。 答が正の縦軸であることは、同じように場合分けして考えればわかる。 勿論A=B=1のときはf(s)=2になる。 あとは、こういうのをまとめて如何に美しく書くかだけだよ。 これは紙の上に書くべきで、ここにすぐに書くことは出来ない。 考えながらここに書いて、これ書くのに2時間近くかかったよ。
477 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:19:02.21 ] >>476 は>>465 ではなく>>466 へのレス(になるのか?)。 ま、レスの番号間違えたようだ。
478 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:26:00.04 ] AB≠1 のとき、A^s+B^(2-s) >= 2*√(A^s*B^(2-s))、等号成立は… AB=1 なら…
479 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:31:43.63 ] >>312 乗法的作用で考えるなら、z^s >0 , (0<s<3)より (x/z)^s + (y/z)^s < 1 とか面白いですよ。
480 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:51:28.94 ] >>478 いわれてみると確かに相加・相乗平均で終わってますね。 何でこんなことが思い浮かばなかったんでしょう?
481 名前:132人目の素数さん mailto:sage [2012/01/21(土) 03:45:41.76 ] 4次、6次、…斉次多項式が正定値であることはどうやって確かめればいいのですか? 2次の場合はわかるのですが
482 名前:132人目の素数さん mailto:sage [2012/01/21(土) 03:52:04.06 ] >>480 たぶん>>478 は、てんで的外れなことしてると思うよ
483 名前:132人目の素数さん mailto:sage [2012/01/21(土) 03:57:58.45 ] >>481 -x^4のどこが正定値なんだ?
484 名前:132人目の素数さん mailto:sage [2012/01/21(土) 04:01:21.81 ] >>483 正定値であるかどうか判定する方法を訊いているんだろ
485 名前:132人目の素数さん mailto:sage [2012/01/21(土) 04:02:19.57 ] >>484 ああ、そういうことか
486 名前:132人目の素数さん mailto:sage [2012/01/21(土) 04:04:36.89 ] >>481 一般的な方法は無いよ
487 名前:132人目の素数さん [2012/01/21(土) 04:10:27.14 ] >>486 無くていいの?悔しくないの?
488 名前:132人目の素数さん [2012/01/21(土) 04:13:43.36 ] >>487 悔しい……っ!悔しいよぉ……っ!! でも……っ!俺にどうしろってんだ……っ! 俺に……っ!無力な……俺に……っ! いったい何が出来るっていうんだよおおおおおぉっっ!!!!
489 名前:132人目の素数さん mailto:sage [2012/01/21(土) 04:14:32.55 ] >>487 そう、君の悔しさが数学を発展させるんだ おれは悔しくないけど 頑張ってくれ
490 名前:132人目の素数さん mailto:[sage] [2012/01/21(土) 05:06:18.67 ] ある二つの地域における月別平均気温が与えられています。 この年間平均気温を有意水準5%で比較したとき.母集団に対応ありとして比較する と,有意差が認められ,母集団に対応なしとして比較すると有意差が認められないという結論が出ました. 結果の違いが生じる原因は何ですか? 必死にエクセルで計算して対応ありとなしの計算結果と有意性の有無だけは出したんですが、 イマイチ意味が理解できていないせいで、何をしているのかも分からず、結局何も考察できていません。 「有意性が認められる」の意味は概ね理解できているとは思うんですが、 対応ありとして見るとか、ないとして見るとかというのが何を言いたいのかさっぱりです。 どなたかよろしくお願いします…。
491 名前:132人目の素数さん mailto:sage [2012/01/21(土) 05:13:36.07 ] 母集団に対応あり=仮説を棄却できない、のこととして >母集団に対応なしとして比較 何をどうしたのか謎、でたらめをやったらヘンな答えがでたってだけの話?
492 名前:132人目の素数さん mailto:sage [2012/01/21(土) 05:18:23.81 ] >仮説を棄却できない は現場ライク杉だなw 仮説を(正しいと)仮定して、に訂正
493 名前:132人目の素数さん mailto:[sage] [2012/01/21(土) 05:28:37.95 ] >>491 早速の返答感謝です。 そもそもの設問が「対応のある場合とない場合での有意性を調べ、結果を考察せよ」 といった内容の設問でして、エクセル(正確には三四郎ですが)の関数に値だけ入れて t分布表の自由度mと有意水準aの関係から結論を出しただけなんです。 おそらくは設問の形からしてなんらかの方法で求まる物だとは思うんですが、理解できていないために上手く説明することも出来ず 自分が悪いと言えば悪いので諦めは付くんですが… >母集団に対応あり=仮説を棄却できない 仮説、というのは「この二つの地域には平均気温において違いがあるだろう」という解釈であってますか? とすると、対応なしの場合はこの逆だとして…どういうことなんだろう…orz
494 名前:132人目の素数さん mailto:sage [2012/01/21(土) 06:18:48.45 ] >>493 >正確には三四郎ですが
495 名前:132人目の素数さん mailto:sage [2012/01/21(土) 10:27:26.02 ] コーシーシュワルツ (a a + b b + c c) (x x + y y + z z) >= (a x + b y + c z)^2 チェビシェフ (a+b+c) (x+y+z) <= 3 (a x + b y + c z) R^nのベクトル空間を考えるとなんとなく内積と関係してるようですがどう関係しているのかよくわかりませんでした いつになっても暗記できないんですがどう考えればこの関係式を覚えられるんでしょうか
496 名前:132人目の素数さん [2012/01/21(土) 11:18:08.86 ] 平面を直線XYで二つの部分に分け、Aを上部の点、Bをその下部の点とする。Aを出発した点が速さuでXY上の点Pに至り、 さらに速さvでBに行くとすれば、最も速くAからBに至る経路に対しては、等式cosα/cosβ=u/vが成立することを示せ。 ただし、α、βは上下の経路AP.BPがXYとなす角を表す。 よろしくお願いします。
497 名前:132人目の素数さん mailto:sage [2012/01/21(土) 11:30:47.58 ] つスネルの法則
498 名前:132人目の素数さん mailto:sage [2012/01/21(土) 13:41:51.67 ] 7x-6000 : 9x-6000 = 2 : 3 を解くプロセスを教えてください お願いします
499 名前:132人目の素数さん [2012/01/21(土) 13:53:05.78 ] 数学的実在はあるのですか? それとも数学は、人間のある思考およびそれを表現した文字列にすぎないのですか? 形式主義者は実在論者で、直感主義者は非実在論者ですよね?
500 名前:132人目の素数さん [2012/01/21(土) 13:55:22.38 ] >>499 実在すると思う >形式主義者は実在論者で、直感主義者は非実在論者ですよね? これは方法論の問題であって、数学が実在するかの信条とは無関係
501 名前:魚協の方からきました [2012/01/21(土) 13:59:26.61 ] >>499 よゐこはつられないようにしましょう
502 名前:132人目の素数さん [2012/01/21(土) 14:02:16.98 ] 数学が実在するとはどういうことですか? たとえば、集合Aと集合Bの合併A∪Bを取るというのは、どういうことですか? 既に与えられたA,Bを材料として、A∪Bをあなたが「作った」のですか? それとも、数学的実在世界がいわば「すべての数学的概念の集合」のようなもので、そこからA∪Bを「取って」きたのですか?
503 名前:132人目の素数さん [2012/01/21(土) 14:05:03.65 ] さーどうなんだろうねえ
504 名前:132人目の素数さん [2012/01/21(土) 14:10:41.15 ] >>502 数学的な概念の全部が実在するというわけじゃないだろ しかし、例えば24個の散在型有限単純群というのは実在すると考えてもいいんじゃないの? これ等は人間が考え出した物とは考えにくい。
505 名前:132人目の素数さん [2012/01/21(土) 14:16:17.97 ] >>499 人間の思考や紙に書いたものだけが数学ってのは明らかにおかしいだろ。 いくら考えたり、定理として書いたりしたって、まだ考える余地はいくらでも残っている。 その可能性の部分を数学と言わないのはおかしい。だから数学は人間の思考とは無関係に存在する。
506 名前:132人目の素数さん [2012/01/21(土) 14:25:08.66 ] そこいらの犬や猫が人間の思考に依存して存在していると言う奴がいたらそいつはキチガイだろう たしかに具体的な犬猫は存在するが、人によって見え方は微妙に違うかもしれない 数学もたしかに存在するが人によって見え方・感じ方が違うんだと俺は思う ただし三角形のイデアは存在しない。あくまで三角形を見ているんだと思う
507 名前:132人目の素数さん [2012/01/21(土) 23:37:15.30 ] 数学は存在しないよ。 人間の偶然の思考。ただの偶然。 考えれば当然。子供でも分かる。 存在すると錯覚してるのは、 偶然にも、多くの現実問題を だいたい正しく説明できるから。 それは解析学の命題。 近似が許されるから。 だから物理や経済は 自由な数学モデルを作れるの。
508 名前:132人目の素数さん mailto:sage [2012/01/21(土) 23:37:31.04 ] >>499 数学的概念は一切存在しない。 自然数でさえも、人間の頭の中から出て来て、何かと共に存在することはできない。 それら番号や順番などは何かに付している情報に過ぎず、それらが存在するとは言い難い。 ただし、何かそのものは存在する。
509 名前:132人目の素数さん mailto:sage [2012/01/21(土) 23:41:02.79 ] 実在するかとはいっていないだろ 「数学的実在はあるのか」と訊いている
510 名前:132人目の素数さん [2012/01/21(土) 23:47:46.00 ] 数学実在論は人間の思考を物理法則化する唯物論である すなわち数学は人間の主体的思考的営為ではなく単なる物理法則とする唯物論であり人間否定論である 人間を排斥する思想であり思想ではない自己矛盾である 我々は斯くの如き危険思想を排斥せねばならない
511 名前:132人目の素数さん [2012/01/21(土) 23:51:01.89 ] >>510 意味分からん 頭大丈夫か?
512 名前:132人目の素数さん [2012/01/21(土) 23:51:26.00 ] >>510 意味分からん 頭大丈夫か?
513 名前:132人目の素数さん mailto:sage [2012/01/21(土) 23:53:38.61 ] てすと
514 名前:132人目の素数さん [2012/01/21(土) 23:55:07.93 ] 可換体F上の行列環において、すべての対角行列と可換な行列はまた対角行列なのは どうしてなのでしょうか?
515 名前:132人目の素数さん mailto:sage [2012/01/21(土) 23:56:54.61 ] >>511 数学実在論はつまり数学は人間の自主的思考的営為ではなくして 数学的実在つまり物理法則的概念があり 人間の思考はそれに従っているだけだということになる
516 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:00:00.51 ] tes
517 名前:132人目の素数さん [2012/01/22(日) 00:29:33.09 ] >>515 数学的実在があることは人間の思考を束縛することを意味しない 目の前の鼻を絵に描くとか、文章で表現するとかいうとき、 鼻を表現していることには変わりないが、別に表現が制限されているわけではない 数学的実在があっても、それを表現するには思考力と技術を要する
518 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:34:24.01 ] 「数学は人間が構築したものだ」という思想こそ、人間理性絶対主義の危険思想である
519 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:35:12.41 ] 文系のばかが議論してるぞ
520 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:37:48.50 ] >>514 成分を比較しませう
521 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:38:46.53 ] 数学は神 数学は真理 数学は法 紙に書いた数学は真の数学ではなく、真理を現実に射影したものに過ぎぬ。
522 名前:132人目の素数さん mailto:sage [2012/01/22(日) 00:50:38.50 ] 形式主義的実在論者と直感主義非実在論者との数学表現のイデアについての裁定ダイアローグは一時休廷したようなので、そろそろ>>495 もお願いします
523 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:01:16.03 ] ノルムと内積だろ
524 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:14:02.69 ] >>495 そんな意味不明なもん覚えて何するつもりだ?
525 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:20:03.51 ] >>499 君の知っている数学は何なんだい?
526 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:24:09.80 ] ピーマン幾何です
527 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:25:12.28 ] ピーマン積分もできます
528 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:30:35.99 ] ピーマン面は至るところ説平面を持たないこと知ってた?
529 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:32:14.32 ] ピーマン面は未学習です。
530 名前:132人目の素数さん mailto:sage [2012/01/22(日) 01:55:58.54 ] 今日のvipさんはイデアの洞穴のサブジェクトに興味があるようですね 私も洞穴と幾何学表現の関係は中学生のときに勉強しましたけど懐かしいですねえ ところで>>312 もお願いします
531 名前:132人目の素数さん mailto:sage [2012/01/22(日) 02:05:12.26 ] >>312 >>530 意味不明
532 名前:132人目の素数さん mailto:sage [2012/01/22(日) 02:19:34.14 ] >>312 にある有理数パラメータsで、0<s<3のときに不等式がつくる幾何図形の空間(x^s+y^s <= z^s)の研究は進んでるんでしょうか?ということです
533 名前:132人目の素数さん mailto:sage [2012/01/22(日) 12:46:43.54 ] >>495 ケント紙に公式を書いて部屋とトイレの壁にはっておけ
534 名前:132人目の素数さん mailto:sage [2012/01/22(日) 15:58:55.34 ] >514 マルチ
535 名前:132人目の素数さん mailto:sage [2012/01/22(日) 16:24:46.44 ] 大学レベルの問題は大学すれに誘導したらどうかな?
536 名前:496 [2012/01/22(日) 18:19:18.50 ] お願いします
537 名前:132人目の素数さん mailto:sage [2012/01/22(日) 18:30:57.41 ] スネルの法則だろこれ
538 名前:132人目の素数さん mailto:sage [2012/01/22(日) 18:39:46.36 ] >>536 どこまで答えれば良いのか… ・Pを固定した時、最短経路はAP、BPが線分の時(適当な条件下で測地線方程式を解く) ・あとは、座標を取って、所要時間 AP/u+BP/v が極値となる条件を書けばおしまい
539 名前:132人目の素数さん mailto:sage [2012/01/22(日) 18:43:34.90 ] >>538 ご親切にどうも
540 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:01:48.05 ] 2のべき乗計算で、2012京を初めて超すときのべき乗数はいくつ? という問題なんですが、logを使って解くらしいんですけど、どうやるんですか
541 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:03:18.81 ] 当方、中卒です。 先日、友人と1〜9までの数字を3つ選んでその数字と並びを当てるゲームというのをやりました。 例えば、Aは329、Bが251と選んだとします。 AはBの数字とその並びを当てるために最初はあてずっほうで321だろ?と言ったとします。 Bの数字は251ですので、1ヒット(数字の並び位置は間違っているが選んだ数字が入っている場合) 1フォーマ(これは位置も当たっている場合)とAに伝えます。 この場合は、1ヒットは2、1フォーマは1となります。 しかし、Aはどの数字がヒットしていて、どの数字と並びが正解(この場合、1)しているのかはこの時点では分かりません。 次はBがAの選んだ数字と並びを当てるために3つの数字を選び、Aがヒットしているかフォーマしているかを伝えます。 このゲームをした時、最短で何手で正解を導けますか? また、申し訳ありませんが当方中卒のため、数式で答えられても理解するのは難しいのでえ 最短のセオリーを言葉で説明していただけると大変助かります。 よろしくお願いします。
542 名前:魚協の方からきました mailto:sage [2012/01/22(日) 19:03:56.43 ] >>540 よゐこはつられないように
543 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:06:35.15 ] >>541 すれち
544 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:08:16.51 ] >>543 あら? スレ違いでしたか。 数学板は初めてなので分かりませんでした。 他のスレを探して見ます。
545 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:46:37.50 ] >>541 はマスターマインドの亜種だ マスターマインドでggればそれっぽいのが出てくるはずだ
546 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:49:40.57 ] 誰か>>540 早く 自分でも試したけど挫折した 19*log2だと57なんだけど、どう考えてもそれより桁数が多い・・・
547 名前:132人目の素数さん mailto:sage [2012/01/22(日) 19:54:47.59 ] >>545 返信ありがとう。 ぐぐってみます。
548 名前:132人目の素数さん mailto:sage [2012/01/22(日) 20:07:07.29 ] >>540 2012京 > 2^x lg 2012*10^16 > lg 2^x (lg は底2の対数) lg 2012*10^16 > x log 2012*10^16 / log 2 > x (log は底10の対数) (16 + log 2012 )/ log2 > x (16 + log(2012)) / log(2) ≒ 64.1252641 求めるxは65、 つまり 2012京 < 2^65 確認で 2^64 = 1.84 × 10^19 2012*10^16 = 2.01 × 10^19 2^65 = 3.68 × 10^19
549 名前:132人目の素数さん mailto:sage [2012/01/22(日) 20:11:11.34 ] >>540 2^a >= 2012京 a*log10(2) >= log10(2012京) a >= log10(2012京)/log10(2)
550 名前:132人目の素数さん [2012/01/22(日) 22:40:58.62 ] x^s + y^s = z^s mod x y^s=z^s
551 名前:132人目の素数さん mailto:sage [2012/01/22(日) 23:09:25.71 ] >>550 なるほど、この等式が満たす体系を代数とみるならば加法族で考えると理解が深まるようですね 数学は私の専門ではないのでここまでが限界で、私の仕事はこの原理原則を公理として構築するのみです 恐れ入りました
552 名前:132人目の素数さん mailto:sage [2012/01/22(日) 23:11:52.78 ] >>551 おもしろい、続けて
553 名前:132人目の素数さん mailto:sage [2012/01/22(日) 23:16:59.94 ] 天才は新ルアーをこうやって作るのか 芽もメモ
554 名前:132人目の素数さん [2012/01/23(月) 00:02:41.54 ] なるほど、カルダノですか。
555 名前:132人目の素数さん mailto:sage [2012/01/23(月) 00:20:40.05 ] (u/w)^s + (v/w)^s ==1 をパラメータsを位相として0<s<3あたりの挙動を確認します。 現在はwebで公開しているような数学グラフや数学サービスはないのでwolframalphaですが、他の数学グラフソフトを考慮して陽関数の対称性の図形として描きます。 ただし何か新しい発見がある分けでなく、じっと眺めてsを可動しながら深い考察をしてみないと図形の位相幾何的な発見はありません。 www.wolframalpha.com/input/?i=plot%5B+%281-x%5E.5%29%5E%281%2F.5%29%2C+-%281-x%5E.5%29%5E%281%2F.5%29+%2C+%7Bx%2C-2%2C2%7D%2C%7By%2C-2%2C2%7D+%5D&asynchronous=false&equal=Submit www.wolframalpha.com/input/?i=plot%5B+%281-x%5E.9%29%5E%281%2F.9%29%2C+-%281-x%5E.9%29%5E%281%2F.9%29+%2C+%7Bx%2C-2%2C2%7D%2C%7By%2C-2%2C2%7D+%5D&asynchronous=false&equal=Submit www.wolframalpha.com/input/?i=plot%5B+%281-x%5E1.1%29%5E%281%2F1.1%29%2C+-%281-x%5E1.1%29%5E%281%2F1.1%29+%2C+%7Bx%2C-2%2C2%7D%2C%7By%2C-2%2C2%7D+%5D&asynchronous=false&equal=Submit www.wolframalpha.com/input/?i=plot%5B+%281-x%5E1.5%29%5E%281%2F1.5%29%2C+-%281-x%5E1.5%29%5E%281%2F1.5%29+%2C+%7Bx%2C-2%2C2%7D%2C%7By%2C-2%2C2%7D+%5D&asynchronous=false&equal=Submit www.wolframalpha.com/input/?i=plot%5B+%281-x%5E2.5%29%5E%281%2F2.5%29%2C+-%281-x%5E2.5%29%5E%281%2F2.5%29+%2C+%7Bx%2C-2%2C2%7D%2C%7By%2C-2%2C2%7D+%5D&asynchronous=false&equal=Submit plot[ (1-x^1)^(1/1), -(1-x^1)^(1/1) , {x,-2,2},{y,-2,2} ] plot[ (1-x^2)^(1/2), -(1-x^2)^(1/2) , {x,-2,2},{y,-2,2} ] plot[ (1-x^3)^(1/3), -(1-x^3)^(1/3) , {x,-2,2},{y,-2,2} ] plot[ (1-x^4)^(1/4), -(1-x^4)^(1/4) , {x,-1.1,1.1},{y,-1.1,1.1} ] plot[ (1-x^5)^(1/5), -(1-x^5)^(1/5) , {x,-2,2},{y,-2,2} ] plot[ (1-x^6)^(1/6), -(1-x^6)^(1/6) , {x,-1.1,1.1},{y,-1.1,1.1} ] plot[ (1-x^7)^(1/7), -(1-x^7)^(1/7) , {x,-2,2},{y,-2,2} ] plot[ (1-x^12)^(1/12), -(1-x^12)^(1/12) , {x,-1.1,1.1},{y,-1.1,1.1} ]
556 名前:132人目の素数さん mailto:sage [2012/01/23(月) 00:42:52.48 ] 157,917 を 0以上1未満の小数と、10の累乗とを使って表せ。 この問題教えてくださいエロイ人
557 名前:132人目の素数さん [2012/01/23(月) 00:46:24.79 ] 難しい問題ですね……
558 名前:132人目の素数さん mailto:sage [2012/01/23(月) 00:46:46.07 ] >>556 どうもこういうパズル的な問題は苦手だ
559 名前:132人目の素数さん [2012/01/23(月) 01:32:05.73 ] >>556 釣りか?
560 名前:132人目の素数さん [2012/01/23(月) 01:50:17.17 ] >>556 難しいな これが解けたら何か賞がもらえるんじゃないか? よく分からんけど
561 名前:132人目の素数さん [2012/01/23(月) 01:53:41.14 ] 線形安定性解析について質問です。 dx/dt=F(x) x:ベクトル F:非線形な関数(なめらか)の行列 複数あると仮定した平衡点まわりのそれぞれ安定性をみたとき、 全ての平衡点x'が安定なら、平衡点は唯一つといえますか?
562 名前:132人目の素数さん mailto:sage [2012/01/23(月) 03:22:05.96 ] >>312 何か書くとヤバいかも知れないが、 そもそも2、1、0、-1を除く如何なる実数sについても、 x^s+y^s=z^s を満たす格子点(x、y、z)∈N^3は存在しない。 こういう問題を考えるなら、詳しくは知らんが弱いBSD予想やピゾット数とかのお勉強するべきだな。 ま、これは既に代数幾何か微分幾何あたりで示されている結果だとは思うけどな (本当はx、y、zを0<x/z、y/z<1なる実数としてもいい)。 それより私がかつて取り組んで崩された コラッツ予想や四色定理の証明でもやった方が面白いと思う。 図はイメージ出来ても論証が出来なくて本当に難しい。 ポンキッキーでガチャピンやムックと仲良く遊んでる人を笑うことは出来ないぞ。 byコーン
563 名前:132人目の素数さん mailto:sage [2012/01/23(月) 03:26:06.32 ] >>562 おもしろい続けて
564 名前:132人目の素数さん mailto:sage [2012/01/23(月) 03:41:47.44 ] >>563 とりあえず、2≠1からs=0についても同様に成り立つことが分かる。 byコーン
565 名前:132人目の素数さん mailto:sage [2012/01/23(月) 03:54:07.92 ] >>562 ,564 例えば、この等式が満たす体系を代数加法族で考えるなら x^0+y^0=z^0 つまり 1+1=1が成り立つような○○を考えると面白いですよ。
566 名前:132人目の素数さん [2012/01/23(月) 04:00:31.50 ] へそが複数だとピークが不安定になる。
567 名前:132人目の素数さん mailto:sage [2012/01/23(月) 04:13:59.09 ] >>564 おもしろい続けて
568 名前:132人目の素数さん mailto:sage [2012/01/23(月) 04:33:55.55 ] >>567 平面R^2と複素平面Cは同型だから、 イメージ的に平面R^2上で考えていたものを今度は平面C上で考えると 2、1、-1を除く如何なる実数sについても、 x^s+y^s=z^s を満たす実数x、y、z、0<|x/z|、|y/z|<1は存在しない。 と出来る。 byコーン
569 名前:132人目の素数さん mailto:sage [2012/01/23(月) 04:44:49.75 ] フェルマーの大定理では、x,y,zは自然数(または[x,y,z]の整数の組み合わせ)ですよ。
570 名前:132人目の素数さん mailto:sage [2012/01/23(月) 04:52:19.26 ] >>569 少し待って下さい。 >>568 まで全く紙に書かないで考えて書いていたので一応確認します。 byコーン
571 名前:132人目の素数さん [2012/01/23(月) 04:52:23.04 ] x^3+y^3=1 (x+y)^3-3xy(x+y)=1 x^3-3xy-1=0 y=-(1-x^3)/3x
572 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:00:00.30 ] >>564 つってみた 数学やっているならわかるよな
573 名前:132人目の素数さん [2012/01/23(月) 05:12:52.98 ] s:x+y=1->x^s+y^s=1
574 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:19:20.26 ] >>572 実軸と虚軸の対称性から、最初直観的には >>568 が成り立たないといけないと思った。 第一象限と第三象限の点でだけ成り立ってるのはおかしいだろ。 byコーン
575 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:24:22.84 ] >>572 しかし直観が外れたようだ。 だから、第二、第四象限の点については改めてやり直しだ。 byコーン
576 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:31:41.71 ] 線形代数やってるんだが、 K[X]3 3は小さい数字で下にある の意味がわからんくて困ってる 本文 三次以下の1変数多項式全体のなすベクトル空間V=K[x]3において 1,1+x,1+x+x^2,1+x+x^2+x^3 はVの基底であることを示せ
577 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:32:17.78 ] >>554 余計なレスをする人間は間違いなくアホ
578 名前:132人目の素数さん mailto:sage [2012/01/23(月) 05:37:43.78 ] お願いします助けてください
579 名前:132人目の素数さん mailto:sage [2012/01/23(月) 06:33:42.53 ] >>576 任意の三次以下の1変数多項式が 1,1+x,1+x+x^2,1+x+x^2+x^3 により一意に表されることを示す
580 名前:132人目の素数さん mailto:sage [2012/01/23(月) 07:14:13.94 ] >>571 もちろんs=3の図形も考えて、さらにそこから j^3=1; j^2+j^1+1=0; を常に満たす虚数立方根 jを導入して x^3+y^3==(x+y) (x+y j^1) (x+y j^2) の恒等変換により (u/w)^3+(v/w)^3 <=1 x^3+y^3 <= 1 (x+y) (x+y j^1) (x+y j^2) <= j^3 を得ましたが、このアプローチによる理論付けは私の勉強不足のためにここで止まっています。 この右辺 j^3=1についてはもう少し発展出来ましたが、この関係式や右辺・左辺ともこれ以上の議論は代数・幾何の専門家がしっかりと研究してると思います。
581 名前:132人目の素数さん mailto:sage [2012/01/23(月) 07:56:55.98 ] >>562 x^s + y^s <= z^s 一応このsについてですが、x,y,zの実数への拡張や、上関係式を満たす[x,y,z]の組み合せに興味はなく、 フェルマー大定理 s>=3をリスペクトしながらsを 0<s<3の範囲で可動させたときに関係式が生成する幾何図形(空間 s)を考察することが本義です。 数学系ブログでも右辺・左辺に生じている指数部 sについて幾何空間や線形写像など深い洞察をもって議論しているものはないので、 指数関数 e^s, e^(is)と同じくいきなり指数部の考察を強いるのは難しかったかもしれません。 位相幾何学はまだ利用する機会がないので勉強してませんが、このようなR^nの不定元ノルムの指数部s、 についての理論を展開できるなら位相幾何学の理論体系のみでなにかしらの有意な計算ができることを意味するのでたくさんの応用があると思います。 sが有理数(一応有限小数)のときを考えるので、フラクタル次元の計算・解釈方法など数学ではフラクタル関係に議論が発展すると期待していたのですが、 まだまだ技巧的であり初学者が理解できる程度に研究は進んでないようですね。
582 名前:132人目の素数さん mailto:sage [2012/01/23(月) 08:29:37.19 ] >>548 ,549 ありがトン、納得しました
583 名前:132人目の素数さん [2012/01/23(月) 09:04:40.21 ] ゼータ関数の正の偶数での値を調べるために、以下のような展開をしました πzcotπz=−Σ(n=0〜∞)(-1)^n・B_2n・2^(2n)・π^(2n)・z^(2n)/(2n)! πzcotπz=1+Σ(k=0〜∞)Σ(n=1〜∞)(-2z^(2k+2)/n^(2k+2) はあってますか…?前者の定数項は-1 後者は1でおかしくなります… 間違いの訂正をお願いします
584 名前:132人目の素数さん [2012/01/23(月) 09:37:28.53 ] すみません>>583 は解決しました 前者の - がいらなかったですね…
585 名前:132人目の素数さん [2012/01/23(月) 10:02:47.76 ] 整関数の積や商は再び整関数になりますか?
586 名前:132人目の素数さん [2012/01/23(月) 10:48:31.52 ] 商は整関数にはならんよ。 場合によるけどな。
587 名前:132人目の素数さん [2012/01/23(月) 11:17:47.42 ] >>586 例えば 整関数φ(z)があって、φ(0)≠0、零点の列{a_n}が 0<|a_1|≦|a_2|≦…→∞ 、Σ1/|a_n|^2が収束しているとします。 E(1、z)=(1−z)expz として、関数fを f(z)=E(1、z/a_1)E(1、z/a_2)… という無限乗積で定義します。 この時、ψ(z)=φ(z)/f(z)と作った関数は零点を持たない整関数となるみたいなのですが、何故でしょうか? 零点を持たないのはわかりました。 整関数となる理由を教えて下さい お願いします
588 名前:132人目の素数さん mailto:sage [2012/01/23(月) 11:36:21.98 ] 複素数体上の非特異射影代数多様体について、任意のホッジ類は、代数的サイクルの類の有理数係数の線形結合である。
589 名前:魚協の方からきました mailto:sage [2012/01/23(月) 11:57:05.79 ] あぶないですからさがってください
590 名前:漁協のノラ猫 ◆MuKUnGPXAY mailto:age [2012/01/23(月) 12:08:07.55 ] 危なくないです。私を攻撃して下さい。 猫
591 名前:猫は保身行動 ◆MuKUnGPXAY mailto:age [2012/01/23(月) 12:18:07.94 ] en.wikipedia.org/wiki/Hodge_conjecture 猫
592 名前:132人目の素数さん mailto:sage [2012/01/23(月) 15:26:21.28 ] >>590 アナルセックスはしたくないです。
593 名前:132人目の素数さん [2012/01/23(月) 17:01:14.39 ] >>583 お願いします
594 名前:132人目の素数さん [2012/01/23(月) 17:24:46.69 ] 非常に困っています。助けてください。次の行列の固有値を求めよという問題です。 A= a b c d d a b c c d a b b c d a その前の設問で P= 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 の固有値を求めました。 行列Pの固有値は1 −1 i −iの四つです そしてPを使いAを表しました A=aE+bP+cP^2+dP^3 です
595 名前:132人目の素数さん [2012/01/23(月) 17:46:54.69 ] >>587 をどなたかお願いします
596 名前:エトス mailto:sage [2012/01/23(月) 20:27:40.86 ] >>594 f(x)=a+bx+cx^2+dx^3 とおきます. 固有値と多項式に関するFrobeniusの定理から, Aの"全て"の固有値はf(1),f(i),f(-1),f(-i)であるといえます. この定理を用いなくとも,この問題の場合は, f(1),f(i),f(-1),f(-i)の4つは全て異なるので, この4つがAの固有値であることを確認するだけで Aの固有値はこれで全てであると結論できます. 定理を使わずにどうやって確認するかというと, Pの固有値をλとし,対応する固有ベクトルをxとすれば,Px=λxであり, Ax=(aE+bP+cP^2+dP^3)x=ax+bλx+cλ^2x+dλ^3x =(a+bλ+cλ^2+dλ^3)x=f(λ)x となっているので,たしかにf(λ)はAの固有値となっています.
597 名前:132人目の素数さん [2012/01/23(月) 21:01:53.75 ] (x-c)^2+(y-c)^2=c^2 :X から媒介変数cを消去して微分方程式を求めたいのですが、 まず両辺をxで微分して 2(x-c)+2(y-c)y'=0 2x+2yy'-2cy'=0 もう一回xで微分 2+2(y'^2+yy'')-2cy''=0 :Y Yからcを求めて、Xにぶちこむと y''(x^2+2x+y^2+2y) = 3(1+y'^2+yy'')^2となるのですが 解答は(x-y)^2(1+y'^2)=(x+yy')^2で、展開すると異なることが分かります Xの方程式から微分方程式を求めるにはどうすればよいでしょうか?
598 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:14:39.09 ] >>587 極をもたない有理型関数は整関数
599 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:15:41.86 ] >>597 > (x-c)^2+(y-c)^2=c^2 > 2(x-c)+2(y-c)y'=0 この2式でcを消すんでは?
600 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:19:03.15 ] 任意定数が1個なんだから1階の微分方程式にしないと駄目よ
601 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:20:44.81 ] >>596 a,b,c,dが実数の場合に虚数固有値?
602 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:31:37.37 ] Rを整数環上有限生成な可換環、mをRの素イデアルとすると、剰余体R/mは有限となることを示せ。 よろしくお願いします。
603 名前:再掲 [2012/01/23(月) 21:34:46.28 ] 特異性が連続な変形で消去できるそうですがどうやっていいかわかりません。
604 名前:エトス mailto:sage [2012/01/23(月) 21:37:12.50 ] >>596 >>601 そういえば, f(±1),f(±i)が全て異なる理由がどこにもないですね やはりfrobeniusの定理に相当するものを用いる必要が. 4つの固有値は f(1)=a+b+c+d f(-1)=a-b+c-d f(i)=a+bi-c-di f(-i)=a-bi-c+di
605 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:46:31.50 ] m'=R∩Z とおけばZ/m' → R/m は有限生成の代数拡大やろ
606 名前:132人目の素数さん [2012/01/23(月) 21:46:56.18 ] >>598 何故、極を持たない事がわかるのでしょうか…?
607 名前:132人目の素数さん mailto:sage [2012/01/23(月) 21:58:40.14 ] >>600 確かにそうでした 微分方程式というものの解法がまだはっきり理解できていないのです >>599 (x-c)^2+(y-c)^2=c^2 ーX 2(x-c)+2(y-c)y'=0 ーY Yからc=(x+yy')/(1+y'), x-c=(x+xy'-yy')/(1+y') x-cをYに代入してy-c=1/y' ・(x+xy'-yy')/(1+y') これをXに代入して分母を取ってやると、(y^2+1)(x+xy'-yy')^2=y'^2(x+yy')^2 となったのですが、得られる微分方程式は一つに限らないといいますがこれは合ってますでしょうか 教科書の解答は(x-y)^2(1+y'^2)=(x+yy')^2となっています
608 名前:132人目の素数さん [2012/01/23(月) 22:24:45.17 ] ttp://www.dnc.ac.jp/modules/file/index.php?page=visit&cid=77&lid=842 これの6問にコラッツ問題がある。高校の範囲じゃないだろ。 それに勝手に有限回で必ず1になると記述してるが、証明されてないだろ。 この問題は作問ミスで無効です。 センター試験。。。バカばっかり。
609 名前:132人目の素数さん mailto:sage [2012/01/23(月) 22:27:53.64 ] バカはお前だよ 問題文も読めないのか
610 名前:132人目の素数さん mailto:sage [2012/01/23(月) 22:31:06.92 ] >>606 分母にある関数だけが極をつくりだしうるが 分母は(1-z/ai)e^zの積で,e^zの部分は極に寄与しないので 結局(1-z/ai)の部分だけが極の原因になりうる しかしながらこれらは分子の関数で消えるから 極が発生する因子が全て消えたことになる
611 名前:132人目の素数さん mailto:sage [2012/01/23(月) 22:32:56.14 ] どういう操作をするのか書いてあるから高校の範囲内だし 10^5以下なら証明されてるよ
612 名前:132人目の素数さん [2012/01/23(月) 22:45:12.04 ] 10^5以下ならとはかいていない。。。日本語分からないのか? すなおに過ちを認めないのは東電保安員とおなじだ。
613 名前:132人目の素数さん [2012/01/23(月) 22:45:51.49 ] どういう操作をするのか書いてあるから高校の範囲内だし ・・・ 来年はリーマンゼータでもだそうかな。。。
614 名前:132人目の素数さん [2012/01/23(月) 22:48:10.53 ] 操作さえ書いてあればシュバルツシルトだしてもいいのか?50分で計算できたら ハナマルだぞ。
615 名前:132人目の素数さん [2012/01/23(月) 22:48:23.90 ] >>610 ありがとうございました
616 名前:132人目の素数さん mailto:sage [2012/01/23(月) 22:53:35.39 ] >>612 >>609
617 名前:602 mailto:sage [2012/01/24(火) 00:17:49.07 ] すみません、とんでもない間違いをしました。 × mをRの素イデアルとすると ○ mをRの極大イデアルとすると 「Rを整数環上有限生成な可換環、mをRの極大イデアルとすると、剰余体R/mは有限となることを示せ。」 が正しいです。 >>605 おそらく読み替えて答えてくれたのでしょうが、 m'が0イデアルでないことはどう示すのでしょうか。
618 名前:132人目の素数さん [2012/01/24(火) 00:41:55.12 ] 数学は存在しますか? 1.存在する 2.存在するものと存在しないものがある 3.存在しない
619 名前:132人目の素数さん [2012/01/24(火) 00:51:37.49 ] >>618 自然数は存在するが虚数は存在しない だって見えないもの
620 名前:132人目の素数さん mailto:sage [2012/01/24(火) 00:53:35.33 ] 見えないから存在しない、というわけか。 自然数は見えるのか?
621 名前:猫は復讐の人生 ◆MuKUnGPXAY mailto:age [2012/01/24(火) 00:53:47.82 ] 数学「しか」存在しない。人間社会なんて単なる幻想でしかない。 数学「こそ」が確かな存在。 猫
622 名前:132人目の素数さん [2012/01/24(火) 00:54:15.64 ] 自然数が見えるのか、すごいなー
623 名前:132人目の素数さん mailto:sage [2012/01/24(火) 00:55:50.52 ] 見えるか否かは些細なこと
624 名前:132人目の素数さん [2012/01/24(火) 00:58:51.43 ] >>618 君はどれ 1.ばか 2.厨房 3.文系
625 名前:132人目の素数さん [2012/01/24(火) 01:02:56.31 ] 実数は大きさを持った量として確かに存在する。 ためしに適当な間隔で目盛をつけた物差しを何かに当ててみればいい。
626 名前:132人目の素数さん [2012/01/24(火) 01:04:17.44 ] >>625 つまり自明な順序構造を持たないものは存在しないと さすが文系
627 名前:132人目の素数さん [2012/01/24(火) 01:05:18.04 ] >>621 電車内痴漢の前科も存在しないってことだな
628 名前:132人目の素数さん [2012/01/24(火) 01:08:01.06 ] >>627 それは存在しないよ。 以前猫先生が電車じゃないって教えてくれた。
629 名前:猫は復讐の人生 ◆MuKUnGPXAY mailto:age [2012/01/24(火) 01:14:23.17 ] >>627 存在するのは(電車内痴漢の前科ではなくて)列車内痴漢の前科ですね。 より正確には気動車内痴漢の前科ですワ。何せJR牟岐線は非電化区間な ので、従って電車は走行が不可能なのです。 猫
630 名前:132人目の素数さん mailto:sage [2012/01/24(火) 01:29:28.85 ] ちょっと教えてほしいんですが・・・ Aさんは毎日、1日1枚、力試しに素手で板を割る。 しかし20%の確率で失敗し、割れなかった板は次の日に持ち越される。 さて、Aさんは100枚の板を用意した。 (1)100日目に全て割り終わっている確率を求めよ(つまり一度も失敗していない)。 (2)125日目に全て割り終わっている確率を求めよ。 (3)150日目に全て割り終わっている確率を求めよ。 (4)割り終わっている確率が90%を超えるのは何日目か。
631 名前:132人目の素数さん mailto:sage [2012/01/24(火) 01:31:42.92 ] 前日失敗した板って、弱っているんでないの?
632 名前:630 mailto:sage [2012/01/24(火) 01:34:20.68 ] >>631 いえ、強度は変わらないです 板はあくまでも例ということで… ほかにも題意がいまいち分からなかったら言ってください
633 名前:132人目の素数さん mailto:sage [2012/01/24(火) 01:40:04.18 ] >>630 このサイトがくわしい レアアイテムのドロップについて ttp://www3.spacelan.ne.jp/~riku/ro/vd_hp/rare_probability.html つまり、20%のドロップ率をもつアイテムを持つ敵を何体倒せば 素材が100個集まるか……と同じ問題になる 敵100体倒してちょうど素材(アイテム)100個が問題(1)、 敵125体でアイテム100個揃うのが(2)、 ……
634 名前:132人目の素数さん mailto:sage [2012/01/24(火) 01:43:28.88 ] 1日1枚、力試しに素手で板を割る。 1日1枚は割れるまで、板を変えて 試みて、割れなかった板を残す?
635 名前:132人目の素数さん mailto:sage [2012/01/24(火) 01:45:09.29 ] モデルは「ありあけぇ〜」ですか?
636 名前:630 mailto:sage [2012/01/24(火) 01:46:56.93 ] >>633 ありがとうございます ちょっとのぞいてみました。二項分布…だと…? 考えてみます、また行き詰ったら来ます >>634 ああ、たしかに「1日1枚割る」みたいなふうにも読めますね… すみません。板に向かって拳を振るのが1日1回ということです
637 名前:132人目の素数さん [2012/01/24(火) 01:47:09.35 ] 条件cosx+cosy=0 のもとで f(x,y)=cosxcosy の極値を求めよ。(陰関数定理を用いよ)
638 名前:132人目の素数さん [2012/01/24(火) 01:51:29.15 ] >>637 を書き込んだものです。 いきなり問題だけ書いてすいません。 どうしてもこの問題が解けなかったので できる方、お願いします。
639 名前:132人目の素数さん [2012/01/24(火) 02:15:03.98 ] 何度もすみません;; >>637 条件cosx+cosy=0 のもとで f(x,y)=cosxcosy の極値を求めよ。(陰関数定理を用いよ) の答えは 極小値 f(2mπ,(2n+1)π)=f((2m+1)π,2nπ)=-1 極大値 f(π/2+mπ,π/2+nπ)=0 (m,nは整数) です。なぜこのような答えに行きつくのかがわかりません。 詳しい解答を お願いします。
640 名前:630 mailto:sage [2012/01/24(火) 02:17:45.19 ] >>633 ちょっと考えてみて気付きました、これ高校で習った反復試行ってやつですね なんとかできそうです、感謝です! >>635 モデルはなんでもだいじょうぶです しかし5回に1回は失敗するので、中級者程度の空手家がベストマッチかと >>637 とりあえずその条件式をf(x,y)に代入すると(安易に代入してよいものか分かりませんが) 2変数関数が1変数関数になって高校生レベルの問題になりますね… 自分は陰関数定理というのを知らないのでデカいことは言えませんが…
641 名前:132人目の素数さん [2012/01/24(火) 02:17:49.02 ] >>639 急いでいるとか、これが解けないとレポート試験落ちそうですとか もっとアピールしないとw
642 名前:132人目の素数さん [2012/01/24(火) 02:19:50.39 ] >>641 提出期限まであと7時間w ;;
643 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:20:23.24 ] >>603 Annalsの締切りせまっています。期末なのでお願いします。
644 名前:132人目の素数さん [2012/01/24(火) 02:21:34.84 ] >>640 んー、まあ答えなんでね・・・ さすがにぶち込んだらなっちゃいました^−^ てへっ は、厳しいな・・・
645 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:21:41.21 ] >>608 この問題の本当にバカな点は、 わざわざコンピュータでシミュレーションなんかして 有限個の自然数Nに対して施した計算の計算回数F(N) を求めて一体何がしたいんだい?っていうところだろw 下らんシミュレーションなんかやるためにコンピュータを使っているのかい? っていうところだろw
646 名前:132人目の素数さん [2012/01/24(火) 02:22:04.12 ] >>642 来年ガンバ><
647 名前:132人目の素数さん [2012/01/24(火) 02:27:59.33 ] もうひとつ。 x^2+y^2≦4 , x≧0 の範囲で f(x,y)=x^3+y^3-3x-3y の最大値、最小値を求めよ。 これもお願いしますm(_ _)m あと7時間で提出期限だよ〜〜;;
648 名前:132人目の素数さん [2012/01/24(火) 02:30:07.86 ] >>647 工房スレはここじゃないよ
649 名前:132人目の素数さん [2012/01/24(火) 02:31:15.99 ] >>648 じゃあ どうすりゃいいの・・・
650 名前:132人目の素数さん [2012/01/24(火) 02:34:43.51 ] タイムリミット技を使ったら、もう釣れる魚はいないよ あきらメロン
651 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:35:44.72 ] >>645 わざわざコンピュータを使ってこんな馬鹿なこと書いてる645は馬鹿ってことだな
652 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:40:58.46 ] >>608 > それに勝手に有限回で必ず1になると記述してるが 任意のn∈Nで成り立つなんて書かれてないが?
653 名前:132人目の素数さん [2012/01/24(火) 02:41:55.04 ] >>639 >>647 お願いします.
654 名前:132人目の素数さん [2012/01/24(火) 02:42:57.22 ] >>652 出題の中の人は喜んでいるだろうなw
655 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:44:19.21 ] で?
656 名前:132人目の素数さん [2012/01/24(火) 02:44:47.52 ] ん
657 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:45:37.36 ] >>649 方針だけ教える。 x^3+y^3=(x+y)(x^2+y^2-xy)、 x=2cosθ、y=2sinθ、 で終わる。 最大、最小値、それらを与えるx、yの値を求めて 解答書くことはご自分で。
658 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:50:29.64 ] >>651 ああいうシミュレーションは、 例えF(N)を求めてもそれは求まるかどうかも分からない 有限数列の一般項を求めるための準備に過ぎない。 完全に証明されていて無限列の場合ならまだしも、 施した計算回数の有限数列の一般項なんて求めても意味ないだろ。
659 名前:132人目の素数さん mailto:sage [2012/01/24(火) 02:54:33.11 ] >>658 よいこのしみゅれーしょん()にゅうもん、としては悪くもないと思うがな ネタを撒いただけマシ
660 名前:132人目の素数さん mailto:sage [2012/01/24(火) 03:01:45.42 ] どういうオーダーで回数が増えて、どういうNでそれから逸脱するのかなんて言うのは あたりまえのように研究されてるが。
661 名前:132人目の素数さん [2012/01/24(火) 03:09:08.48 ] >>639 >>647 お願いします. ほんとお願いします。焦ってます;; 詳しい解答 お手数ですがお願いします・・・
662 名前:132人目の素数さん mailto:sage [2012/01/24(火) 03:21:35.47 ] p-and-a.homedns.org/2010nyushi/pdf2010/2010-4600-suu-m-al.pdf この問題のCの4の解き方がわかりません。 詳しい解答をお願いします 7枚のタイルに書かれた自然数の和が、ある自然数の2乗になるようなxの値をすべて求めよ。 という問題です
663 名前:132人目の素数さん mailto:sage [2012/01/24(火) 03:23:18.56 ] >>660 低い計算量を求めて効率よいアルゴリズムを作るための研究はあるらしいが、 これはもはや広く応用がきくむしろ工学的な応用科学になるだろうな。 計算理論に帰納関数論は含まれるが、計算理論を数理科学というべきなのだろうか。
664 名前:132人目の素数さん mailto:sage [2012/01/24(火) 03:42:06.18 ] >>617 m'=0ならばR/mは有限生成Z-代数になる ところがZはJacobson環だから体R/mは有限Z-代数になり、よってR/mはZの整拡大 R/mは体だからZも体になってしまい矛盾
665 名前:132人目の素数さん mailto:sage [2012/01/24(火) 03:51:10.34 ] >>662 これ、条件を満たす自然数xはないよ。 証明の方針は、xが存在したとして方程式x^2=6xを導くことになる。 多分高校入試の問題だと思うんだけど、解答欄には「ない」って書くことになる。 今の入試ってこんな問題出題されてるの?
666 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:06:40.06 ] >>662 失礼。中央のxを見落とした。導く方程式はx^2=7x。 いずれにしろ図を見るとそんな自然数xは、どう見てもないんだよ。 考え方は、中央のxを基準にして 正6角形の対角線を引く感じで 対称性で考えていってx^2=2x+2x+2x+x=7xを導く。 細かい説明文を書くと少し長くなる。
667 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:07:31.28 ] >>666 中央のタイルがxだからといって、ある自然数の2乗というのがx^2というわけではないぞ >>662 まずは7枚の和をxであらわす。そのために周りの6枚をxであらわす
668 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:11:31.97 ] >>667 問題文よく読んだら確かにそうだな。
669 名前:132人目の素数さん [2012/01/24(火) 04:21:22.32 ] 確かにそうだなじゃねーよ 反省しろドアホ!
670 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:31:06.08 ] いつでもどこでも効率よいアルゴリズムなんかを渇望してるとこうなる
671 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:34:43.74 ] >>665-667 ありがとうございます! その先の考え方は ある自然数をnとしx=n^2/7となって割り切れる数は7の倍数。 nは7、14、21、28となってこの中で条件を満たすのは14、21となり xは28、63、でいいのでしょうか?
672 名前:132人目の素数さん [2012/01/24(火) 04:37:34.66 ] こらあかんわ
673 名前:132人目の素数さん mailto:sage [2012/01/24(火) 04:45:32.56 ] >>669 あのね、数学には解のない問題なんていっぱいあるよ。 で、図2の中央のタイルにxが書いてあるのを見て、 問題の意味がよく分からなくなってきちゃった訳。 >>670 >いつでもどこでも効率よいアルゴリズムなんかを渇望してるとこうなる 効率のよいアルゴリズムについて書いたから 書いた本人が効率よいアルゴリズムを渇望しているとはいえない。
674 名前:132人目の素数さん mailto:sage [2012/01/24(火) 05:13:58.22 ] 意味不明
675 名前:132人目の素数さん mailto:sage [2012/01/24(火) 05:33:53.71 ] >>671 今度は満たすべき自然数をx、或る自然数をnとして、n^2=7xを満たすxを求めていくが、 7は素数だからxも素数で、よってxは或る自然数yを用いてx=7y^2と表せる。 あとは、1≦x≦130から1≦7y^2≦130 つまり1≦y^2≦130/7、7*4^2=112、75^2=175だから、1≦7y^2≦7*4^2から y^2の取り得る値は1^2=1、2^2=4、3^2=9、4^2=16の4つに限られる。 そして、各y^2=1、4、9、16に対してx=7y^2を計算して、x=7、28、63、112とはじき出す。 最後にxについて、タイルの位置関係の条件を満たすか確認して、 13k+1、kは自然数、の形で表せない自然数x=28、63、112を答えとする。
676 名前:132人目の素数さん mailto:sage [2012/01/24(火) 05:40:42.49 ] >>674 こういう話は、分からない人間には分からない。 >>670 のレスについては、無意識の行いを思い浮かべれば、趣旨が分かるかも知れない。
677 名前:132人目の素数さん mailto:sage [2012/01/24(火) 06:19:56.20 ] >>671 おやおや、間違えてしまいました。最後の行は 13i+j、iは自然数、j=0、1、7、8、の形で表せない です。あと、つまりの行は また7*4^2=112、7*5^2=175だから、1≦7y^2≦7*4^2から と変更して下さい。失礼致しました。
678 名前:132人目の素数さん mailto:sage [2012/01/24(火) 06:53:41.80 ] >>675 >>677 112 = 7*(4^2) = 13*8+8
679 名前:132人目の素数さん mailto:sage [2012/01/24(火) 08:12:55.40 ] n日目にm枚目の板が割れる確率P(n,m) P(n,m) = C[n-1,n-m]*p^m*(1-p)^(n-m) m枚目の板が割れる日数の期待値E(m) E(m)=Σ[k=m,∞]k*C[k-1,k-m]*p^m*(1-p)^(k-m)=m/p
680 名前:594 [2012/01/24(火) 09:13:19.34 ] エトス様 無事解けました ありがとうございました(^O^)
681 名前:630 mailto:sage [2012/01/24(火) 09:13:28.87 ] >>679 n, m, p を用いた一般式をわざわざ書いていただいてありがとうございます 今回は p=0.8 なので、100枚目が割れる日数の期待値は 100/0.8 = 125 日 となるわけですね。期待値の式がこんな単純な形になるとは…
682 名前:132人目の素数さん mailto:sage [2012/01/24(火) 09:49:34.56 ] >>680 ポカーン
683 名前:132人目の素数さん mailto:sage [2012/01/24(火) 17:28:03.75 ] >>673 解がない問題があるかどうかでお前が読み違いをした事実がなくなったりはしない
684 名前:132人目の素数さん mailto:sage [2012/01/24(火) 18:57:40.74 ] 固有値を求める方法がわかりません。 L=y^2((∂/∂x)^2+(∂/∂y)^2) よろしくお願いします。
685 名前:132人目の素数さん mailto:sage [2012/01/24(火) 20:27:34.31 ] >>684 L=y^(-2)((∂/∂x)^2+(∂/∂y)^2) に訂正
686 名前:132人目の素数さん mailto:sage [2012/01/25(水) 00:35:44.55 ] ベクトル A=2i-6j-3k,B=4i+3j-kとしたとき @A×B AAとBに垂直な単位ベクトル を求める方法を教えて下さい、お願いします。
687 名前:132人目の素数さん mailto:sage [2012/01/25(水) 00:45:09.20 ] (1)は、 i,j,k が第一行、 2,-6,-3が第二行 4,3,-1が第三行 の行列の行列式をクラメルのあれで解く
688 名前:132人目の素数さん mailto:sage [2012/01/25(水) 00:58:05.41 ] >>687 ありがとうございます 解は、15i+10j+30kであってますか?
689 名前:132人目の素数さん mailto:sage [2012/01/25(水) 00:58:51.58 ] (2i-6j-3k)×(4i+3j-k) =6 i×j - 2 i×k - 24 j×i + 6 j×k - 12 k×i - 9 k×j =15 j×k - 10 k×i + 30i×j =15i-10j+30k
690 名前:132人目の素数さん mailto:sage [2012/01/25(水) 01:14:25.86 ] >>689 ありがとうございます。勘違いしてました・・・ ちなみにこのベクトルの大きさを出すときは、 √(15^2+(-10)^2+30^2) としてやれば良いですか?
691 名前:602 mailto:sage [2012/01/25(水) 01:16:21.88 ] >>664 有り難うございます。結構な期間、何となく思っていたことが解決しました。 Jacobson環というのは初めて聞きました。
692 名前:132人目の素数さん mailto:sage [2012/01/25(水) 01:43:51.40 ] >>683 この問題の曖昧な部分を指摘する。この問題では出題の時点で既に 考える対象としてのタイルと求める自然数xの存在性、更にxの取り得る値 まですべて仮定されている。論理的な解答を書くにあたっては、 そもそも論理的な解答などあるのだろうか? 仮にあったとして解答を書くとき、果たしてそのようなことをしてよいのか? という問いが生じる。 仮にそのような解答があったとして、そう仮定してよいならば xの取り得る値、そして本当にxの取る値までが出題の時点で既に決まっているではないか、 そして>>675 のような解答ではダメではないか、 >>675 の解答のような事柄を仮定してよい、と最初に書かなければダメではないか、 ということになる。 xの値が既に決まっていると仮定してよいならば、何故xの値を求める必要があるのか、 論理的な解答において、xはどういう扱いをなされているのか、 ということになる。 このように考えると、そんな解答を書くなら、 タイルの中央に自然数xが存在しないことを示す方がずっと論理的ではないか となる。私=>>673 は最初そう考えた訳だ。 あと、問題文がムダに長い。 「…(…はタイル)で示したような」、「図2のように」は不要。 1つ目の文中の「中央にある…考える」や、2つ目の文は、もっと短く表せる。 例えば、「中央にあるタイルに書かれた自然数」は、「中央のタイルの自然数」でよい。 「囲んでいる」も「囲む」で十分。 もともとが曖昧だから、「…(…はタイル)で示したような」を残して、 「1つ目の文は中央にある…囲んでいる6枚の」のみ削除するだけでいいかも知れない。
693 名前:132人目の素数さん mailto:sage [2012/01/25(水) 01:52:45.35 ] もっと簡潔に「私はバカです」と言えばよろしい
694 名前:132人目の素数さん mailto:sage [2012/01/25(水) 01:59:34.45 ] これって何か面白いこと書いてるつもり?
695 名前:132人目の素数さん mailto:sage [2012/01/25(水) 01:59:41.15 ] >>692 の下から1、2行は、 (>>662 の問題文は)もともとが曖昧だから、 1つ目の文は「…(…はタイル)で示したような」を残して、 「中央にある…囲んでいる6枚の」のみ削除するだけでいいかも知れない。 と変更。
696 名前:132人目の素数さん mailto:sage [2012/01/25(水) 02:05:35.64 ] >>693 >>694 この趣旨は、もはや分からない人間には分からない、としかいいようがない。
697 名前:132人目の素数さん mailto:sage [2012/01/25(水) 02:11:05.54 ] 君の堂々巡りの思考過程に興味はない 問題文が曖昧であるなら明確に指摘したまえ 問題文の細かな体裁についての補足などせんでよろしい
698 名前:132人目の素数さん mailto:sage [2012/01/25(水) 02:20:43.01 ] >>697 大学以降の数学からの観点では、はっきりいって曖昧だ。 それを知らないなら、指摘してもムダだろう。
699 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:04:48.15 ] 大学以降の数学が分かってる奴が 「7枚のタイルに書かれた自然数の和が,ある自然数の2乗になるようなxの値をすべて求めよ。」 という言い回しを誤解して「ある自然数=x」なんてするわけない。
700 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:20:30.79 ] >>692 >>670
701 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:30:43.51 ] >>697 >>699 しいて指摘するなら、 タイル張りの理論の中に、問題文に出て来るような番号が書かれた図形についての理論はあるのか、 ってことだな。もしこれがないなら、問題文の図形は未知の領域になってきて 問題に曖昧さが残り、論理的な記述式解答は与えようがない。 そんなの書いたら膨大になる可能性が出て来る。
702 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:45:11.53 ] >>697 >>699 問題文に出て来るような番号が書かれた図形を重み付きグラフで置き換えて グラフ理論の中に、こういう重み付きグラフの理論はあるのか、 として考えてもいい。 むしろこっちの方が考えやすいだろう。
703 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:46:28.38 ] で何所が曖昧なんだ?
704 名前:132人目の素数さん mailto:sage [2012/01/25(水) 03:52:16.63 ] タイル張りの理論とかを考えずに x^2=6xだのx^2=7xだのを出した >>665 >>666 は馬鹿確定ってことだな。
705 名前:132人目の素数さん mailto:sage [2012/01/25(水) 04:13:56.47 ] 今回のvipさんはずいぶんと強がりだなぁ・・・(しかも知性をあまり感じない)
706 名前:132人目の素数さん mailto:sage [2012/01/25(水) 04:27:07.51 ] そもそも曖昧であることの論拠が692の書き込みから随分変わってるじゃないか その場しのぎで思いついたことを適当に言ってるだけだろう
707 名前:132人目の素数さん mailto:sage [2012/01/25(水) 04:29:43.88 ] 7xが自然数の2乗になるようなxを求めるだけだよね? ただし、最上段と最下段と両端は除くので、8≦x≦124かつx≠1,7,8,13 mod 13 の範囲で。 x≦130で7xが自然数の2乗になるようなxは 7=7*1^2、28=7*2^2、63=7*3^2、112=7*4^2 の4つだけど、条件より7と112は除外されるので、x=28, 63でおk?
708 名前:132人目の素数さん mailto:sage [2012/01/25(水) 05:06:23.58 ] 「〜という理論はあるのか?もしないなら未知のものなので曖昧だ」 ちょっと何言ってるかわからないね 寝言は寝てから言ってね
709 名前:132人目の素数さん mailto:sage [2012/01/25(水) 05:13:53.88 ] こりゃダメだわ。
710 名前:132人目の素数さん mailto:sage [2012/01/25(水) 05:21:06.40 ] >>703 記述式解答でない御ママゴト解答を与えるならしこりは残らない。 記述式解答を美しく書くなら、xを求めるのだから、xの取り得る値の集合A⊆Nを求めて 最初に 「A={x∈N|x≡i(mod13)、2≦i≦6、9≦i≦12、8≦x≦124}とおき、 タイルと条件を満たすx∈Nが存在してx∈Aであることを仮定してよい。」 と書くことになる。それから>>675 のように続けていくんだよ。 これを書くとき、 果たしていきなりここまで仮定してよいのか?ちょっとやり過ぎじゃありませんかね〜、 となるだろ。
711 名前:132人目の素数さん mailto:sage [2012/01/25(水) 06:06:55.59 ] 美しい解答の書き方は聞いてない 問題の曖昧な部分を聞いている
712 名前:132人目の素数さん mailto:sage [2012/01/25(水) 07:42:38.03 ] >>711 じゃあ>>662 の問題の曖昧な部分を遠慮なく指摘するな。 (0)、そもそも、最初の文の「それを囲んでいる6枚」について、 すべての「それを囲んでいる6枚」は重複して数えていない として考えることになるのか。 (1)、図2のような7枚からなるすべてのタイル (以後、このように7枚からなるタイルをaで表す)について、 各中央1枚のタイルには自然数xが書かれていると仮定して考えてよいのか。 (2)、2番目の文について、「7枚のタイルに書かれた自然数の和」の「和」とは「総和」のことなのか。 更にはすべてのaについてそう考えることになるのか。 (3)、「或る自然数の2乗になる」の「或る自然数」は一体幾つあるのか、 もし複数個ある場合、「或る自然数の2乗になる」は必ず「或る自然数の2乗に等しい」を意味するのか。 ま、すぐに細かく指摘出来る曖昧な部分はこんな感じだ。 (0)、(1)、(2)は「或る自然数」の存在性や一意性にかかわり得るが、この場合はどうでもいい。 問題は(3)で、「或る自然数」は複数個あるから、(3)の2行目が仮定されていないと 例えば、xに対して定まる「或る自然数」をnとするとn^2≠7xとしてもよいことになる。 言い換えれば、2番目の文のxと「或る自然数」との関係について、 任意の本当のx(の値)に対して「或る自然数」n(の値)が存在してn^2=7xが成り立つ、として考えるべきなのか、 「或る自然数」n(の値)が存在して任意の本当のx(の値)に対してn^2=7xが成り立つ、として考えるべきなのか、 そこが分かりませんよ、ってことになる。
713 名前:132人目の素数さん mailto:sage [2012/01/25(水) 07:50:57.33 ] もういいよ はい次
714 名前:132人目の素数さん mailto:sage [2012/01/25(水) 07:52:33.00 ] >>712 いいえ、なりません。
715 名前:132人目の素数さん mailto:sage [2012/01/25(水) 07:57:57.88 ] >>714 そうならない理由は?
716 名前:132人目の素数さん mailto:sage [2012/01/25(水) 08:35:52.52 ] >>712 >「それを囲んでいる6枚」は重複して数えていない 数を重複して数えるということはない。数えるとは重複しないでその個数が何個であるか 調べるということだろう。 >自然数xが書かれていると仮定して考えてよいのか。 図から明らか。 >「或る自然数の2乗になる」の「或る自然数」は一体幾つあるのか それを考えるのもこの問題の題意。 >「7枚のタイルに書かれた自然数の和」の「和」とは「総和」のことなのか。 そうとしか取れないが、他に考え方があるのであればそれを示すべき。 >「或る自然数の2乗になる」は必ず「或る自然数の2乗に等しい」を意味するのか。 同上。 >言い換えれば〜(略) どちらも同値。本当のとは何を意味するのか?
717 名前:132人目の素数さん mailto:sage [2012/01/25(水) 08:36:23.89 ] 病院逝け
718 名前:132人目の素数さん mailto:sage [2012/01/25(水) 08:37:27.06 ] >>670
719 名前:132人目の素数さん mailto:sage [2012/01/25(水) 09:23:08.70 ] >>716 >数を重複して数えるということはない。数えるとは重複しないでその個数が何個であるか >調べるということだろう。 数を重複して数えることはさすがにあり得ないとなるだろうが、 ものを重複して数えることは現実的に十分あり得る。 >図から明らか。 図だけから完全に仮定してはダメだ。 >そうとしか取れないが、他に考え方があるのであればそれを示すべき。 例えば、「7枚のタイルに書かれた自然数の和」の「和」を 周りの6枚のタイルの「部分和」として考えてもよい。 >同上。 例えば、「或る自然数の2乗になる」を、 必ず「或る自然数の2乗に等しい」ではなく、 唯1つのxについて「或る自然数の2乗に等しい」を意味する として考えてもいい。 >どちらも同値。 出題者から見れば同値だが、解答者から見ればxはまだ分からないのだから同値ではない。 >本当のとは何を意味するのか? 出題者から見たときの、予め分かっている解答者が求めるべきxの値。
720 名前:132人目の素数さん mailto:sage [2012/01/25(水) 09:36:43.89 ] >>719 >ものを重複して数えることは現実的に十分あり得る。 ものであっても同じ、重複して数えていいのであれば1個のものも100個にも1000個にもなる。 重複して数えるということ自体が存在しない。 人間の動員の場合等は、「のべ」を用いて重複して数える場合もあるが。 >「7枚のタイルに書かれた自然数の和」の「和」を周りの6枚のタイルの「部分和」として考えてもよい。 そういうふうに捉えるのは、普通ではない。 >「或る自然数の2乗になる」 の個数は指定されていないのだから、その個数0、1個、或いは複数であってもどれでもよい。 一般的に複数存在するものと仮定して解くべき。 >解答者から見ればxはまだ分からないのだから同値ではない。 nも分からないのだから。x,nどちらも分からないので同値。 >出題者から見たときの、予め分かっている解答者が求めるべきxの値。 全く一般的でない言葉の使い方をすべきでない。
721 名前:132人目の素数さん mailto:sage [2012/01/25(水) 10:01:19.77 ] >>720 論理的に考えるにあたって 普通とか一般的という言葉を何回も持ち出して使ってるんじゃダメだわ。 論理的に考えるとき、「普通」とか「一般的(数学で使う一般的とは異なる)」 っていう言葉ほど曖昧な言葉はない。 こういう言葉の定義は人それぞれで違う。 >重複して数えるということ自体が存在しない。 例えば、認知症の人がものを数えるときの行いを思い浮かべてみろ。 現実的にあり得ることではないか。
722 名前:132人目の素数さん mailto:sage [2012/01/25(水) 10:18:06.88 ] >>721 そちらが、一般的に論理的でないことを示しているだけ。 まともな反論ができず、言葉のカウント作業お疲れ様です。 >こういう言葉の定義は人それぞれで違う。 「普通」は一回しか使っていない。「普通」は多くの人間が在り来たりであり、 異常ではないと考える状態。 1回目の「一般的」は数学的の意味合い。2回目の「一般的」は国語的な意味合いで 上記の普通と同義。こんなこと説明しないと分からないの? 「普通」は数学用語ではないからな、「本当」もそうだが。 数学では言葉を厳密に定義して、誤解がないようにしているのではないか。 >例えば、認知症の人がものを数えるときの行いを思い浮かべてみろ。 >現実的にあり得ることではないか。 数学に認知症の人の数え方という概念を導入する気なのでしょうか? 面白いですね。何の利益があるのか分かりませんが。
723 名前:132人目の素数さん mailto:sage [2012/01/25(水) 10:50:26.67 ] >>722 >「普通」は一回しか使っていない。「普通」は多くの人間が在り来たりであり、 >異常ではないと考える状態。 だから、「普通」とか「一般的」を何回も使ったら、論理的に厳密ではなくなるではないか。 そちら様は、少なくとも4回は使っているぞ。面倒だから一々数えないが、 反論するにあたって、私は「普通」とか「一般的」なんて言葉を4回も使ってはいない筈だ。 >1回目の「一般的」は数学的の意味合い。2回目の「一般的」は国語的な意味合いで >上記の普通と同義。こんなこと説明しないと分からないの? これは誤解が生じないように念のため書いただけだ。 >数学に認知症の人の数え方という概念を導入する気なのでしょうか? >面白いですね。何の利益があるのか分かりませんが。 これも誤解が生じないなら導入する必要はないが、 誤解が生じそうなとき、導入しないと厳密でなくなる。
724 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:19:10.97 ] 大学以降の数学が分かってるんならn^2=7xじゃなくて∃n(n^2=7x)と書けばいいのに。 でどういう曖昧さが∃n(n^2=7x)をx^2=7xとすることになったのか全然出てこないね。
725 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:24:05.71 ] >>712 >>666 ではどれも誤解してないからx^2=7xとしたことには関係ないな。
726 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:35:45.65 ] >>724 >大学以降の数学が分かってるんならn^2=7xじゃなくて∃n(n^2=7x)と書けばいいのに。 これを書くなら「x∈Aについて、∃n∈N(n^2=7x)」な。 >でどういう曖昧さが∃n(n^2=7x)をx^2=7xとすることになったのか全然出てこないね。 A⊆Nなのだから、n=xとして方程式を立ててもよいではないか。 もう疲れたから休む。
727 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:40:45.35 ] ∃(n, x | 1<=x<=130かつ、xが端の位置にない)(n^2=7x)
728 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:41:40.09 ] >>726 つまりx+y=3,x^2+y^2=5を解けに対して勝手にx=yを付け足して解なしとかいうみたいな事を>>666 はやったのか。 ありえんほど馬鹿だな。
729 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:42:09.06 ] 曖昧だ曖昧だと喚き散らした割には問い詰めても何も出てこなかったな
730 名前:132人目の素数さん mailto:sage [2012/01/25(水) 11:57:41.64 ] >>728 そういう私=>>666 =>>726 だが >x+y=3,x^2+y^2=5を解け ではまだ条件が曖昧でそれ以前に、 体F∋x、yはどういうものか、という問題などが生じるがな。 疲れた…。
731 名前:132人目の素数さん mailto:sage [2012/01/25(水) 12:07:26.60 ] >>730 どういう体でも勝手に付け足したらいけないことには関係ないな。
732 名前:132人目の素数さん mailto:sage [2012/01/25(水) 12:24:03.52 ] >>731 それはそうだが、何らかの条件を付け足さないことにはどうしようもない。 寝る。
733 名前:132人目の素数さん mailto:sage [2012/01/25(水) 12:33:41.06 ] RだろうがCだろうがその他だろうが勝手にx=yなんて付け足しちゃ駄目だろ
734 名前:132人目の素数さん mailto:sage [2012/01/25(水) 13:56:17.45 ] z^2 - 3z + 2 = (z-2) (z-1)
735 名前:132人目の素数さん mailto:sage [2012/01/25(水) 16:45:59.18 ] beebee2see.appspot.com/i/azuYl5zKBQw.jpg 位相を定めるところまでは分かったんだけど
736 名前:132人目の素数さん mailto:sage [2012/01/25(水) 17:16:39.59 ] >>573 そこの s: は写像なんですか?
737 名前:132人目の素数さん [2012/01/25(水) 17:26:44.79 ] >>735 この手のものは教科書に書いてないかい? 矢野先生の本とか
738 名前:132人目の素数さん mailto:sage [2012/01/25(水) 19:34:05.70 ] >>737 みたけど載ってなかった
739 名前:132人目の素数さん mailto:sage [2012/01/25(水) 21:15:29.15 ] >>738 連続⇔開集合の引き戻しが開 が載ってない教科書なんかあるとも思えないが、本当なら今すぐ捨てろ
740 名前:132人目の素数さん mailto:sage [2012/01/25(水) 21:16:02.62 ] 嘘つけ!ぶっころすぞ!
741 名前:132人目の素数さん [2012/01/25(水) 22:38:20.32 ] 計算したら rot v = 1 になるんですが、そこからどうしたら良いか 分かりません。答えはいらないので 途中の式を教えてください。 rot v = d(4x+5y)/dx - d(2x+3y)/dy blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0818.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0819.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0820.jpg
742 名前:132人目の素数さん mailto:sage [2012/01/25(水) 22:41:14.19 ] D上で1を積分するだけだろ 途中式もなにも一瞬で答えが出る
743 名前:132人目の素数さん [2012/01/25(水) 22:49:01.97 ] >>742 ありがとうございます。円周上での積分はどうしたら良いのですか? 線積分がよく分からなくて・・・
744 名前:132人目の素数さん mailto:sage [2012/01/25(水) 22:52:11.77 ] >>743 ストークスの定理
745 名前:132人目の素数さん mailto:sage [2012/01/25(水) 22:54:37.85 ] >>741 わかってねーなー 「オマエはアホだ」って言われてんだよwww
746 名前:132人目の素数さん mailto:sage [2012/01/25(水) 22:55:50.26 ] なんのためにrot vを計算したんだ 線積分をやらないようにするためだろう
747 名前:132人目の素数さん [2012/01/25(水) 23:00:57.55 ] >>744 ありがとうございます。正直、ストークスの定理、グリーンの定理、ガウスの発散定理など 色々あって、解説を読むのですが、頭の中がぐちゃぐちゃで、いまいちよく分かりません。 線積分はカーテンの面積を求めるようなイメージで、どういう経路を通るかで そのカーテンの高さが変わるから、経路が大事な気がしますが、向きがあると 打ち消し合って0になるんですよね…。高さが1のカーテンの面積は 曲線Cの長さに同じになるんですよね。
748 名前:132人目の素数さん [2012/01/25(水) 23:01:59.75 ] >>746 ええっ!!!そ、そうなんですか!?
749 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:02:11.61 ] >>747 つっこみ、どうぞ
750 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:03:08.27 ] 線積分をしたいならグリーンの定理を使わずに直接計算すりゃいいよ それでも出来るから
751 名前:132人目の素数さん [2012/01/25(水) 23:04:13.12 ] カンなのですが、答えは rot v × 円周の長さ = 2π だったりしますか?
752 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:05:50.35 ] 勘で当たるほど修行してないだろ
753 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:06:30.21 ] >>751 さっさと教科書読む作業に戻れよ低能
754 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:08:14.25 ] カンで答えるなら、「例の方法」でも読んでおけw
755 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:09:01.33 ] >>751 自明だ
756 名前:132人目の素数さん [2012/01/25(水) 23:12:48.85 ] 修行というか、イメージが涌かなくて・・・ 正直、ベクトル場っていうのが 台風の風の向き とか くらいしか思いつかない・・・ ベクトル場の回転に合わせて回るのは、右ねじの進む方向であるとか・・・
757 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:13:29.11 ] >>756 気合だ
758 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:17:20.47 ] イメージ考えるマエんい教科書に書いてる定義を読めよ
759 名前:132人目の素数さん [2012/01/25(水) 23:18:16.17 ] チンチンがあまりに臭かったので風呂場で洗ってくる
760 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:18:41.94 ] >>756 コリオリ、右ネジだな
761 名前:132人目の素数さん [2012/01/25(水) 23:20:17.04 ] みなさん、ありがとうございます これは、等高線が直交する→内積=0 と考えて f(x,y)・h(x,y)=0 となるような ものを h1〜h5 から選べばいいんですよね blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0752.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0754.jpg
762 名前:132人目の素数さん [2012/01/25(水) 23:21:02.16 ] オチーンの定理
763 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:21:12.67 ] >>759 じっぱは巣に帰れ
764 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:26:22.21 ] >>733 今更ながらn=xとしてはいけない理由が分かったよ。 すごい見落としをしていた。 >>726 の「x∈Aについて、∃n∈N(n^2=7x)」は 本当は「x∈Aについて、∃n∈N\A(n^2=7x)」としてよくて、 >>710 の 「A={x∈N|x≡i(mod13)、2≦i≦6、9≦i≦12、8≦x≦124}とおき、 タイルと条件を満たすx∈Nが存在してx∈Aであることを仮定してよい。」 もこれだけでは不十分。これに更に 「根x∈Aに対して、或るn∈N\Aが存在してn^2=7xが成り立つと仮定してよい。」 とでも続けないといけない。 >>726 で、「x∈Aについて、∃n∈N\A(n^2=7x)」としてはダメだとばかり思ってた。 しかしnとxの関係を見抜いてうまく作ったもんだね〜。 n∈Aが1つ以上あるとばかり思ってたよ。 だけど、こんなに仮定書いたら、 対称性の議論が不要になってちょっとやり過ぎですよ〜、 ってなるだろうな。
765 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:27:47.19 ] 失せろ
766 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:30:44.32 ] >>765 >>765
767 名前:132人目の素数さん [2012/01/25(水) 23:35:22.77 ] 最後にもう1問だけ助けてください・・・ blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0765.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0769.jpg これは、先の rot v に 似ていますが div v を計算したのち この値×球の表面積 でいいんでしょうか?
768 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:36:03.91 ] >>767 つ教科書
769 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:36:46.40 ] >>767 よっこいしょ
770 名前:132人目の素数さん [2012/01/25(水) 23:38:18.21 ] >>760 ありがとうございます!コリオリ 遠心力ですね! 覚えておきます。
771 名前:132人目の素数さん [2012/01/25(水) 23:43:54.02 ] >>768 センスがなさすぎで 教科書読んでもいまいちピンときません。。。 マセマも読んでみましたが、分かった様な分からないような・・・ どこかに、こんな私でもわかる上手いHP知りませんか?
772 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:48:27.97 ] >>771 分かる、わからない、じゃなくて、まずは手順どおりやればおk。 常人は最初に「分かろう」とするな。
773 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:50:22.05 ] >>767 そんなことを言うようだとさっきの問題も理解しとらんだろうな
774 名前:132人目の素数さん mailto:sage [2012/01/25(水) 23:52:16.10 ] 歴史上チンコが最も大きい数学者は誰?
775 名前:132人目の素数さん mailto:sage [2012/01/26(木) 00:00:14.17 ] >>771 少なくとも、面積分の被積分関数のdivを、 また面積分では、次元が合わんじゃろ… つか面積素片はベクトルだし積分できん。 こういう問題だされるなら、だされる側 も習っているから、おちついて考えれな。
776 名前:132人目の素数さん mailto:sage [2012/01/26(木) 00:10:30.16 ] チンコをしごく時に親指の向く方向と右ねじが進む方向は同じではない
777 名前:132人目の素数さん [2012/01/26(木) 00:10:53.34 ] 皆さん、ありがとうございます。 中々難しいですね・・・教科書を見て余計に 訳がわかんなくなりました・・・でも、頑張ります。
778 名前:132人目の素数さん mailto:sage [2012/01/26(木) 00:31:04.93 ] >>777 答えをだすだけなら、なにも考えず機械的に すればいい…でもこのガウスの定理も意味が 深いだけでなく、使える定理ですので、なぜ こうなるのか、悩むことも大切です。ガンガレ
779 名前:132人目の素数さん mailto:sage [2012/01/26(木) 00:40:29.21 ] >>776 自然界は右ねじ方向を選ぶこはない。 反対称テンソルを疑(軸性)ベクトル、 にするときの恣意的な座標系(右手か 左手か)によるだけのこと。
780 名前:132人目の素数さん mailto:sage [2012/01/26(木) 00:51:09.13 ] >>764 失敗の心理学を思い出したよ。 人は自分の失敗をなんとか合理化したがる、というやつ。 はっきりいって、君は醜い。 今まで通りにこれからも頭がいい人、と思われていたいらしいのがミエミエ。
781 名前:132人目の素数さん [2012/01/26(木) 00:53:41.81 ] ちんちん洗ってきたよ!
782 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:02:51.88 ] ダメよ、まだ臭いわ^o^
783 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:05:32.30 ] >>780 醜い醜くないではなく、大学以降の数学から考えたらどうなるか、論理的に考えてみろ。 >今まで通りにこれからも頭がいい人、と思われていたいらしいのがミエミエ。 議論に関係のない話を持ち出して何言っているんだ。 イヤミったらしい話を最初に持ち出しているのはそちらではないか。
784 名前:苗 mailto:age [2012/01/26(木) 01:06:42.44 ] なるほど。
785 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:07:59.18 ] >>666
786 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:12:51.62 ] >>785 これは間違いだったと>>764 で既に書いた。
787 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:13:57.44 ] 大学以降の数学とかいう無意味な概念を振り回すドアホ
788 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:14:51.09 ] それが蛇足だと言っている。 文を読めないのか、思い込みが強すぎるのか、それが>>666 . オーメン
789 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:19:28.46 ] ある数の平方数をx^2と思ってしまったバカさ下限を反芻すべきだろ。 チラ見で楽勝、なんてことを考えているんだろな、いつも。
790 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:20:08.99 ] 数学に対してもっと誠実になれ!
791 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:21:27.67 ] >>668 で止めときゃよかったのに。
792 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:28:51.44 ] >>790 > 数学に対してもっと誠実になれ! 数学とは先入観を排除する純粋思考の極北である。
793 名前:132人目の素数さん [2012/01/26(木) 01:29:27.20 ] まずはチンコを洗ってくることから始めよう
794 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:31:52.70 ] チンコを洗うと勃って来るんだよ。だから銭湯ではだめ。
795 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:34:41.26 ] >>787 社会的には必ずしも無意味な概念ではない。 >>788 あの〜、「それ」が何を指すのかはっきり分からないんですが、 中高の問題を厳密に考えてみると案外面白いですよ。 >>789 そうです。 全部脳内だけで考えていて、その結果を書き続けた私がバカでした。
796 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:40:47.59 ] 社会的にも無意味な概念だ。むしろ害悪と言えよう このような馬鹿者を産み出しているわけだからな
797 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:50:20.21 ] >>796 >社会的にも無意味な概念だ。 数学教育には疎いんですが、数学の概念が小中高の数学に入るかどうか という点では意味が生じて来ますが。
798 名前:132人目の素数さん mailto:sage [2012/01/26(木) 01:53:00.18 ] >>792 の主張は正しい。
799 名前:132人目の素数さん mailto:sage [2012/01/26(木) 02:01:01.11 ] 数学の出来ないひとって、先入観が強すぎて、問題を自分勝手に読んでしまうんだね。 数学の家庭教師をやってみてそう思った。
800 名前:132人目の素数さん mailto:sage [2012/01/26(木) 02:06:55.04 ] 厳密な議論とは解答の形式を整えることに非ず
801 名前:132人目の素数さん [2012/01/26(木) 02:09:17.07 ] 二点の緯度、経度から二点間の距離を出したいのですが、 簡単な式を教えてください。
802 名前:132人目の素数さん mailto:sage [2012/01/26(木) 02:22:05.71 ] >>764 君に一つだけ忠告してやるけど、そういうときは 「題意を満たすxが存在するならば」と言えば一言で済むんだよ
803 名前:132人目の素数さん mailto:sage [2012/01/26(木) 02:45:31.11 ] 病院逝け
804 名前:すーさん [2012/01/26(木) 02:49:57.25 ] y"=√(ax+1) yの求め方を押してくーださい
805 名前:132人目の素数さん mailto:sage [2012/01/26(木) 03:18:53.32 ] 押しました
806 名前:132人目の素数さん mailto:sage [2012/01/26(木) 03:19:05.74 ] >>802 これだとかえって解答が長くなる気がする。 >>710 のようにAを用意して、 A={x∈N|x≡i(mod13)、2≦i≦6、9≦i≦12、8≦x≦124} とおき、 条件を満たすx∈Nが存在してx∈Aと仮定してよい。 根x∈Aに対して、或るn∈N\Aが存在してn^2=7xとする。 7は素数だからxも素数で、xに対して或るy∈Nが存在してx=7y^2。 x∈Aから、 8≦x=7y^2≦124<175=7*5^2、 また7*4^2=112、 よってx=7*2^2=7*4=28、またはx=7*3^2=7*9=63、 つまり求めるxはx=28、63。 とした方が、お粗末だが解答は短くなるんじゃないか?
807 名前:132人目の素数さん mailto:sage [2012/01/26(木) 03:24:00.48 ] お好きなようにやんなさいよ 本質的に異なる解き方をしてるわけじゃないんだし どう書いても大差はない
808 名前:132人目の素数さん [2012/01/26(木) 04:20:50.62 ] そうか?
809 名前:132人目の素数さん [2012/01/26(木) 04:28:31.46 ] どうすれば良いでしょう・・・ z=x^2=y^2 x^2=y=z それぞれの平面に対しての違いはありますが x^2の係数は1より 合同で良いですか? blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0739.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0743_20120126000140.jpg
810 名前:132人目の素数さん mailto:sage [2012/01/26(木) 04:34:36.59 ] 数式をただの計算や式変形ではなく英語圏の数学教程と同じくあたかも数式による論述であるかのように捉えてるんだろう。 特に気にしないで計算用紙上でただただ式置換していく計算ドリルのような経験も大事だし、羅列された各等式の関係と推移を観察しこの系が成す特異な性質と論理関係を洞察する技術も同じく大事だろう。 ただ今回のvipさんは数学に関係なく本人の性格が病的なのが問題なのであって、このような数学的美意識などと言うイデアに取り込まれてしまう人間の人間性についての探求問題(自分探し)は数学をいくら勉強しても永遠に解決できない。
811 名前:809 [2012/01/26(木) 04:35:17.88 ] 答えはAになっているんですが どうやって計算したら良いのでしょう
812 名前:132人目の素数さん [2012/01/26(木) 05:01:07.38 ] blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0752.jpg blog-imgs-17.fc2.com/d/x/d/dxdy/IMG_0754.jpg 答えはAらしいですが、どうすれば、この結果が出ますか? 色々調べてみると、勾配ベクトルを求めれば良さそうなのですが 具体的な手順が分かりません。
813 名前:132人目の素数さん mailto:sage [2012/01/26(木) 06:09:50.54 ] 勾配ベクトルの内積を計算するだけです
814 名前:132人目の素数さん [2012/01/26(木) 06:38:22.79 ] >>813 ありがとうございます^^
815 名前:132人目の素数さん mailto:sage [2012/01/26(木) 06:44:23.57 ] 勝利の方程式を解けという問題です。 全然わからないのですが、どうやって求めるのでしょうか?
816 名前:132人目の素数さん mailto:sage [2012/01/26(木) 07:53:19.96 ] 勝利の方程式は未知数がないので実は勝利の恒等式だってばっちゃが言ってた
817 名前:132人目の素数さん mailto:sage [2012/01/26(木) 08:39:02.31 ] 解ける奴が勝てる。 > 勝利の方程式 全員が勝てるはずがないので、全員向けの解き方は存在しない。
818 名前:132人目の素数さん mailto:sage [2012/01/26(木) 10:56:10.58 ] >>809 多分、集合を用いないで解答を書くと、>>806 より長くなる。 記号Nを「自然数」と書くことになったりする。 >>810 また人間性とか関係のない話をし始めたな。 話は変わるが、ここに書いているとき、或ることに気付いた。 多分、昔フェルマーは既にフェルマーの最終定理を証明していた。 証明は驚く程簡単だ。ヒントだけ書くと、背理法で 0<θ<π/2とすると、任意のs≧3について 1=cos^2θ+sin^2θ>cos^sθ+sin^sθ で終わる。フェルマーの最終定理はこの特殊な場合。 これはもっと一般化出来る。 多分こんな簡単な証明はまだ知られてないんだろう。 Wikipeにも簡単な証明は知られていないと書かれているようだしな。 一応、私=>>806 は「byコーン」って書いていた人間だ。コーンから私が誰かは分かるよな。 後は論文にするだけだが、変人扱いされているようだからまだ書くのはやめとく。 紙の計算やお勉強してもっと一般化したものを発表した方がよいしな。 表にシャシャリ出るにはまだ早過ぎる。 >数式をただの計算や式変形ではなく英語圏の数学教程と同じくあたかも数式による論述であるかのように捉えてるんだろう。 余り書かない方がいいが、大学の数学科ではこれが当たり前になってる。 だけど、この板では各個人が数学を如何に扱っているのかが分からないな。 個人個人の扱いが違ってて分からない。本当にカオスだ。 もう2ちゃんはやめた方がいいな。
819 名前:132人目の素数さん mailto:sage [2012/01/26(木) 11:03:41.19 ] もし、本当にフェルマーの最終定理の初等的証明が知られていないのなら、 >>818 に書いた論文ネタの盗用はやめろよ。 しかし私は疫病神のようだな。 表に出てもろくなことはないんだろうな。 byコーン
820 名前:132人目の素数さん mailto:sage [2012/01/26(木) 12:12:11.90 ] フェルマーの最終定理はx,y,z:自然数なので、これをzで除したx/z, y/zの値域はゼロを除く正の有理数ですよ
821 名前:132人目の素数さん mailto:sage [2012/01/26(木) 12:34:34.90 ] 何故>>675 に正解が出ているのに、ここまで(ry
822 名前:132人目の素数さん mailto:sage [2012/01/26(木) 13:00:41.91 ] キチガイだから仕方がない
823 名前:132人目の素数さん mailto:sage [2012/01/26(木) 13:01:04.89 ] >>820 丁寧にヒントを書くと、背理法で 0<θ_1、θ_2<π/2とすると、任意のs≧3について 1=cos^2θ+sin^2θ>cos^sθ_1+sin^sθ_2=1、 θ=θ_1またはθ=θ_2、 で終わる。あとは妄想力などの問題。 社会的問題になるから、論文ネタへの盗用はやめろこと。 ではでは。 byコーン
824 名前:132人目の素数さん mailto:sage [2012/01/26(木) 13:05:10.96 ] 小人閑居して不善を為す
825 名前:132人目の素数さん [2012/01/26(木) 14:00:33.57 ] >>824 貧乏人が、こもって学問やってると、 そう思うよね。 おれもそうだから。
826 名前:132人目の素数さん [2012/01/26(木) 16:45:28.81 ] fをA=[0,1]上の可測関数とする。このとき以下に答えよ |f|,|f|/1+|f| はA上の可測関数となる。 |f|に関しては、 |f|<r⇔-r<|f|<r⇔-r<fかつf<r {|f|<r}={-r<f}∩{f<r}でしめせたと思うんですけどどうでしょうか?
827 名前:132人目の素数さん mailto:sage [2012/01/26(木) 17:14:24.55 ] >>821 >>675 は間違い。
828 名前:132人目の素数さん mailto:sage [2012/01/26(木) 19:37:34.99 ] A=2i-j+k,B=i+3j-2k,C=-2ij+3k,D=3i+2j+5kとしたとき D=aA+bB+cCを満たす定数a,b,cを求めるにはどうすればいいですか?
829 名前:132人目の素数さん mailto:age [2012/01/26(木) 19:39:41.96 ] 短気を起こさず計算
830 名前:132人目の素数さん mailto:sage [2012/01/26(木) 19:39:43.28 ] 連立方程式を立てて解く
831 名前:132人目の素数さん mailto:sage [2012/01/26(木) 19:45:44.24 ] > -2ij わかんねー むずかしすぎるよ こりゃ陰性レヴェルのなんもんだ
832 名前:132人目の素数さん mailto:sage [2012/01/26(木) 20:21:04.67 ] Φ=3x^2y-y^3z^2について、gradΦの点(1,2,-1)での値を求めよという問題は 最後の答えを、(x,y,z)か|gradΦ|のどちらの形で出すべきですか?
833 名前:132人目の素数さん [2012/01/26(木) 22:22:34.13 ] 長さ2の線分ABを直径とする半円周を点A=P0、P1、……Pn-1、Pn=Bでn等分する (1)三角形APkBの三辺の長さの和APk+PkB+BAをLn(k)とおく。Ln(k)を求めよ (2)極限値α=lim(n→∞){Ln(1)+Ln(2)+……+Ln(n)}/nを求めよ 答え (1)Ln(k)=2{sin(kπ/2n)+cos(kπ/2n)+1} (2)α=2(4/π+1) 答えは分かっているのですが解法が全く分かりません
834 名前:132人目の素数さん mailto:sage [2012/01/26(木) 23:01:53.99 ] >>833 uni.2ch.net/test/read.cgi/math/1327210601/436
835 名前:132人目の素数さん [2012/01/27(金) 12:33:55.94 ] 自己同型写像全体の集合が群になることの証明がわかりません・・・
836 名前:132人目の素数さん mailto:sage [2012/01/27(金) 12:51:41.37 ] 証明っていうよりは チェックに近い感じがするのだが それでも理解できない? 分からない? それとも、群になるってのが直感できない?
837 名前:132人目の素数さん [2012/01/27(金) 12:57:20.98 ] 大まかな流れは理解できているのですが、証明として書くときに具体的にどのように書くのが良いかわからなくて困ってます。
838 名前:132人目の素数さん mailto:sage [2012/01/27(金) 13:30:45.99 ] それなら、群の定義をなぞるように書けばいい 証明 1.結合法則 (うんぬん)より、同型写像は結合法則を満たす 2.単位元 (中略)より、単位元が存在し一意である 3.逆元 (ryより、逆元が存在し一意である 以上より、同型写像は群の定義を満たすので、同型写像は群である。 ……みたいに
839 名前:132人目の素数さん [2012/01/27(金) 13:40:19.00 ] ありがとうございます。略されているところの書き方を教えて頂けませんか?
840 名前:132人目の素数さん [2012/01/27(金) 14:38:37.02 ] 質問です 今後4年以内に巨大地震が起きる可能性が70%だとします。 今年起きる可能性 X は 何%でしょうか。
841 名前:132人目の素数さん mailto:sage [2012/01/27(金) 14:44:11.80 ] >>840 確率分布を指定しろ
842 名前:132人目の素数さん mailto:sage [2012/01/27(金) 14:45:39.30 ] 以下の問題の解法を教えてください. [問] 深さMの十分に湿ったマンコに長さL(≦M)の勃起したチンコを全部挿入するとき、以下の問いに答えよ。 ただし、マンコは深さxの点において1 - | 1 - 2x/M |の締め付けをチンコに与え、チンコは根元からの距離yの点において y/L の感度を有するものとし、チンコが各点において得る時間毎快感を(締め付け)*(感度)*(挿入速度)と定義する。 (1) 挿入速度を可変とし、時刻に対する挿入速度の関数をテクニック関数と定義する。 挿入開始から終了までに勃起したチンコが得る快感の総量はテクニック関数に依存しないことを示し、その値を求めよ。 (2) 長さLの勃起したチンコに最適なマンコの深さを求めよ。
843 名前:132人目の素数さん [2012/01/27(金) 18:47:47.18 ] >>639 >>647 この問題から逃げないでください。 異論は解くことで示せ。
844 名前:132人目の素数さん mailto:sage [2012/01/27(金) 18:55:40.79 ] >>843 おまえスレタイ読めないの? ここは分からない問題を書くスレ。 質問スレではない。 たまたま気が向いた奇特な人が答えてくれるかもしれないが、 勝手に期待するな。
845 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:03:06.64 ] x'''(t)+x''(t)-x'(t)-x(t)=0 x''(0)=0、x'(0)=1、x(0)=2 これを計算せよという問題です
846 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:08:21.99 ] >>845 x(t) = e^(-t) (t+e^(2 t)+1)
847 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:13:34.77 ] >>846 過程を教えていただけないでしょうか? 私はx(t)=Aexp(λt)とおいて計算したんですが、λ=1,-1となりました。 そこからはどうするのでしょうか? x(t)=Btexp(-t)とおいてもう一回計算すればいいんですか?
848 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:20:53.77 ] >>847 Solve (d^3 x(t))/(dt^3)+(d^2 x(t))/(dt^2)-(dx(t))/(dt)-x(t) = 0, such that x(0) = 2, x'(0) = 1, and x''(0) = 0: Assume a solution will be proportional to e^(λt) for some constant λ. Substitute x(t) = e^(λt) into the differential equation: (d^3)/(dt^3)(e^(λt))+(d^2)/(dt^2)(e^(λt))-(d)/(dt)(e^(λt))-e^(λt) = 0 Substitute (d^3)/(dt^3)(e^(λt)) = λ^3 e^(λt), (d^2)/(dt^2)(e^(λt)) = λ^2 e^(λt), and (d)/(dt)(e^(λt)) = λ e^(λt): λ^3 e^(λt)+λ^2 e^(λt)-λ e^(λt)-e^(λt) = 0 Factor out e^(λt): (λ^3+λ^2-λ-1) e^(λt) = 0 Since e^(λt)!=0 for any finite λ, the zeros must come from the polynomial: λ^3+λ^2-λ-1 = 0 Factor: (λ-1) (λ+1)^2 = 0 Solve for λ: λ = -1 or λ = -1 or λ = 1 The multiplicity of the root λ = -1 is 2 which gives x_1(t) = c_1 e^(-t), x_2(t) = c_2 e^(-t) t as solutions, where c_1 and c_2 are arbitrary constants. The root λ = 1 gives x_3(t) = c_3 e^t as a solution, where c_3 is an arbitrary constant. The general solution is the sum of the above solutions: x(t) = x_1(t)+x_2(t)+x_3(t) = c_1 e^(-t)+c_2 e^(-t) t+c_3 e^t Solve for the unknown constants using the initial conditions: Compute (dx(t))/(dt): (dx(t))/(dt) = (d)/(dt)(c_1 e^(-t)+c_2 e^(-t) t+c_3 e^t) = -c_1 e^(-t)+c_2 e^(-t)-c_2 e^(-t) t+c_3 e^t Compute (d^2 x(t))/(dt^2): (d^2 x(t))/(dt^2) = (d^2)/(dt^2)(c_1 e^(-t)+c_2 e^(-t) t+c_3 e^t) = c_1 e^(-t)+c_2 (-2 e^(-t)+e^(-t) t)+c_3 e^t Substitute x(0) = 2 into x(t) = c_1 e^(-t)+c_2 e^(-t) t+c_3 e^t: c_1+c_3 = 2 Substitute x'(0) = 1 into (dx(t))/(dt) = -c_1 e^(-t)+c_2 e^(-t)-c_2 e^(-t) t+c_3 e^t: -c_1+c_2+c_3 = 1 Substitute x''(0) = 0 into (d^2 x(t))/(dt^2) = c_1 e^(-t)+c_2 (-2 e^(-t)+e^(-t) t)+c_3 e^t: c_1-2 c_2+c_3 = 0 Solve the system: c_1 = 1, c_2 = 1, c_3 = 1 Substitute c_1 = 1, c_2 = 1, and c_3 = 1 into x(t) = c_1 e^(-t)+c_2 e^(-t) t+c_3 e^t: x(t) = e^(-t) (e^(2 t)+t+1)
849 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:35:00.37 ] >>848 >The multiplicity of the root λ = -1 is 2 which gives x_1(t) = c_1 e^(-t), x_2(t) = c_2 e^(-t) t as solutions こうしていいんですか?
850 名前:132人目の素数さん mailto:sage [2012/01/27(金) 19:49:19.31 ] >>849 確かめよ
851 名前:132人目の素数さん mailto:sage [2012/01/27(金) 21:36:07.57 ] ぬおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおお
852 名前:132人目の素数さん mailto:sage [2012/01/27(金) 22:32:25.69 ] >>849 Wolframなんてそっけない、丁寧にggrks
853 名前:132人目の素数さん mailto:sage [2012/01/27(金) 22:44:21.81 ] >>835 まず、その群の演算をどう定義するのかをはっきりさせてみたらどう?
854 名前:132人目の素数さん [2012/01/28(土) 01:00:12.24 ] 素数が無限にあることを示せ よろしくお願いします。 ・急いでいます(期限は7時間) ・さっぱりわかりません ・煽りは禁止します
855 名前:132人目の素数さん mailto:sage [2012/01/28(土) 01:08:11.85 ] >>854 素数が無限にあること でぐぐれ
856 名前:132人目の素数さん [2012/01/28(土) 01:11:39.05 ] >>855 具体的な回答ができない人は答えないでください
857 名前:132人目の素数さん mailto:age [2012/01/28(土) 01:29:18.68 ] >>854 なっていないな。 素数が無限にあることを示せ いろいろやりましたが、さっぱりわかりません こちらの都合により期限は今日の朝10時とします 答えられない無能の解答は一切不要、正解以外は書き込みを禁止します これでも三流にもなれないレベル
858 名前:あほのこうちやんは始皇帝だった mailto:いやだ [2012/01/28(土) 01:31:37.77 ] 素数は可算個以上存在することを証明せよ
859 名前:132人目の素数さん mailto:sage [2012/01/28(土) 01:33:53.74 ] 体上の一変数多項式環には既約多項式が無限個存在することを示せ
860 名前:132人目の素数さん mailto:sage [2012/01/28(土) 01:43:44.79 ] >>855 ググったら、n以下の素数の積+1的な遺物... n=13で破綻する屁理屈が、生き残る不思議。
861 名前:132人目の素数さん mailto:sage [2012/01/28(土) 01:44:32.92 ] >>857 有限個ならそれらを全部掛けた数+1を考える。
862 名前:132人目の素数さん mailto:sage [2012/01/28(土) 01:52:28.13 ] Π_(pは全ての素数を走る)(1-p^(-1))^(-1)=農[n=1→∞](1/n)→∞も使えるぜ。
863 名前:132人目の素数さん [2012/01/28(土) 02:24:34.75 ] 中3です。 夜中に誰にも聞けずに困っています。 よろしかったら助けてください。 図の四角形ABCDは正方形で、点Eは辺ABの中点、 点Fは辺CD上にあって、CF:FD=3:1である。 ACとBFの交点をG,ECとBFの交点をHとするとき、 BF:HGを求めなさい。<高知学芸>
864 名前:132人目の素数さん [2012/01/28(土) 02:45:59.26 ] 三角形の相似比をみると、 △ABG:△CFG=AB:CF=BG:FG=4:3=20:15 △EBH:△CFH=EB:CF=BH:FH=2:3=14:21 (20+15=14+21=35に注意) BF:HG=35:35-14-15=35:6
865 名前:863です。 [2012/01/28(土) 02:55:08.68 ] >>864 ありがとうございました。 ただ申し訳ありません。こちらの問題にミスがありました。 最後の一文は「BH:HGを求めなさい」 でした。 もしよろしければ、もう一度教えてください。
866 名前:132人目の素数さん mailto:sage [2012/01/28(土) 02:57:53.92 ] ______ |←素数| . ̄.|| ̄ ┗(^o^ )┓三 || ┏┗ 三  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
867 名前:863です。 [2012/01/28(土) 03:43:19.24 ] 解けました。 スレを汚してすいませんでした。 失礼します
868 名前:132人目の素数さん mailto:sage [2012/01/28(土) 05:32:01.47 ] >>857 修行します
869 名前:132人目の素数さん [2012/01/28(土) 17:15:08.64 ] 線形ジョルダンまでやったけど全然わからん おせーて
870 名前:132人目の素数さん [2012/01/28(土) 17:16:21.24 ] A=(2,1,1 1,2,1 1,1,2) でC^3における線形写像TをT(v)=Av(v∈C^3) の時、Tの固有値ってどう求めればいいですか?
871 名前:132人目の素数さん [2012/01/28(土) 17:30:54.88 ] >>870 ここを見ていない人もいるので、いろんなところに問題を 書いてみるといいよ。
872 名前:132人目の素数さん [2012/01/28(土) 17:32:08.13 ] >>871 他って?
873 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:00:02.56 ] >>871 マルチ推奨すんなクズ
874 名前:132人目の素数さん [2012/01/28(土) 18:01:11.12 ] f(x,y)=x^2+xy+y^2-4x-2y 点(2,0)におけるf(x,y)のテイラー展開を2次項まで求めよ。ただし剰余項は記述しなくてよい。 お願いします!!
875 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:05:37.98 ] >>874 x=(x-2)+2
876 名前:132人目の素数さん [2012/01/28(土) 18:16:59.03 ] >>875 f(x,y)=.......という回答を期待したのですが...
877 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:20:23.76 ] >>874 f(x,y)=x²+xy+y²−4x−2y =(x−2)²+(x−2)y+y²−4
878 名前:132人目の素数さん [2012/01/28(土) 18:22:28.79 ] >>877 ありがとうございます!! ということは最初の与式と結果が同じになるということですね?
879 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:23:13.59 ] >>874 >>876 >>878 少しは自分で考えたらどうでしょうか?
880 名前:132人目の素数さん [2012/01/28(土) 18:25:38.37 ] >>879 自分で導いた答えが正しいかどうか確認するために書きこみました ありがとうございました
881 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:26:34.21 ] 全然そうは思えない
882 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:28:41.42 ] 「自分で導いた答えが正しいかどうか確認」したいのなら 先ずは自分の導いた答えを書き込むのが筋
883 名前:132人目の素数さん [2012/01/28(土) 18:28:47.44 ] △ABCの重心をGとし、直線AG、BGと辺BC、CAとの交点をそれぞれD、Eとするとき、次の問いに答えよ。 (1)の問題でBC=10、BD=5という値が出ています。 (2) AD=9のとき、AGの長さを求めよ。 これの答えが AG=3/2 AD=3/2×9 =6 となっているのですが この3/2がどこから出てきたのかが分からないから教えてほしい 長文失礼。
884 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:29:42.57 ] 勝手に問題省略せず、すべて忠実に書きこめ馬鹿
885 名前:132人目の素数さん [2012/01/28(土) 18:31:45.68 ] 礼儀がなってなくてすいませんでした
886 名前:132人目の素数さん [2012/01/28(土) 18:35:07.56 ] m を、整数環 Z 上 a_1、…、a_n∈C (複素数体)で生成される環 Z〔a_1、…、a_n〕 の極大イデアルとするとき、Z〔a_1、…、a_n〕/m は有限体であることを示せ。 よろしくお願いします。
887 名前:132人目の素数さん [2012/01/28(土) 18:35:23.53 ] (1)は BC=10のとき、BDの長さを求めよ。 です。 省略失礼!
888 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:36:07.98 ] \/
889 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:36:26.27 ] その条件だけでBDは求められない。 まだ省略してるだろ。
890 名前:132人目の素数さん [2012/01/28(土) 18:40:07.77 ] 授業中に取ったノートには、(1)の回答は BD=2/1BC =5となっていたのですが… 問題はこの通りなのですが。。
891 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:41:23.71 ] 友達に聞けよ
892 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:48:10.61 ] >>883 その問題だと、AG=3 であって、3/2 にはならない。 第一、AD=9 なのに、答えで AD=6 っておかしい。
893 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:48:55.58 ] × AG=3 ○ AG=6
894 名前:132人目の素数さん [2012/01/28(土) 18:53:47.61 ] ほんとすいません( ;∀;) >>883 の AG=3/2AD =3/2×9 =6 で改行ミスしてました。 これでもおかしいのですかね? レス返して頂いているのに申し訳ないです;;
895 名前:132人目の素数さん mailto:sage [2012/01/28(土) 18:55:41.63 ] 3/2×9=6 っておかしくね?
896 名前:132人目の素数さん [2012/01/28(土) 18:59:13.26 ] 分数の書き方がおかしかったのか、、 3分の2×9=6 です( ;∀;)
897 名前:132人目の素数さん mailto:sage [2012/01/28(土) 19:00:01.05 ] 想像するに、 AG=2/3AD=2/3×9=6 と書いてあったんじゃないか? それなら正しい。 一般に、三角形の重心は中線を2:1に分けるから、2/3が出てくる
898 名前:132人目の素数さん [2012/01/28(土) 19:06:27.30 ] >>897 その通りです;; 説明できずすいません;; そこなんですが、2:1に分けるというのは分かるのですが なぜ3分の2が出てくるのでしょうか( ;∀;)、
899 名前:132人目の素数さん mailto:sage [2012/01/28(土) 19:08:21.79 ] AG:GD=2:1だから、AG:AD=AG:(AG+GD)=2:3 よって、AG=2/3AD
900 名前:132人目の素数さん [2012/01/28(土) 19:15:53.91 ] >>899 なるほど!ありがとうございます( ;∀;)
901 名前:132人目の素数さん [2012/01/28(土) 20:26:51.51 ] 微分の仕方を教えてください! I maxU=Σ{kー1/2(xーi)2} i=1 宜しくお願いします
902 名前:132人目の素数さん mailto:sage [2012/01/28(土) 20:39:41.50 ] 小粒ながら基本を押さえたルアーだな