[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 03/01 14:05 / Filesize : 212 KB / Number-of Response : 903
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね364



476 名前:132人目の素数さん mailto:sage [2012/01/21(土) 02:13:21.14 ]
>>465
最小値がないことを示す。A≠Bのときは、
2つの実数r>0、θ、0≦θ≦π/2を用いれば実数A、B>0は
A=rsinθ、B=rcosθ
と表せるから
f(s)=A^s+B^(2-s)
とおけば
f(s)=(A/B)^s(B^s+2)
=tan^sθ{(rcosθ)^s+2}
≦tan^sθ(r^s+2)
で一旦f(s)≦(r^s+2)tan^sθを上から評価することになるが、
r>0は定数で0≦θ≦π/2なんだから、
r≧1、tanθ>1のときs→-∞、
0<r<1、0<tanθ<1のときs→+∞とすれば
(r^s+2)tan^sθ→0が得られて、結局極限をとればf(s)→0、
一方、0<r<1、tanθ>1のとき、0<(r^s+2)tan^sθ<3tan^sθから、f(s)<3tan^sθ、
r≧1、0<tanθ<1のとき、(r^s+2)tan^sθ<r^s+2から、f(s)<r^s+2
だから、同様に極限をとればf(s)→0になって、まとめてA、B、sを走らせて考えれば、
f(s)の動く範囲はf(s)>0になることが分かる。
問題はA=Bのときだが、このときはθ=π/4だから
sに関係なくf(s)>0で条件を満たしている。
だから、f(s)の動く範囲はf(s)>0で、最小値は存在しない。

答が正の縦軸であることは、同じように場合分けして考えればわかる。
勿論A=B=1のときはf(s)=2になる。
あとは、こういうのをまとめて如何に美しく書くかだけだよ。
これは紙の上に書くべきで、ここにすぐに書くことは出来ない。
考えながらここに書いて、これ書くのに2時間近くかかったよ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<212KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef