[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 03/01 14:05 / Filesize : 212 KB / Number-of Response : 903
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね364



11 名前:132人目の素数さん mailto:sage [2012/01/15(日) 18:01:04.97 ]
>>10
機械的に微分することが求められているとすれば、
変数zに関する微分Dについて使う法則は
積の微分 D(f(z)・g(z))=D(f(z))・g(z)+f(z)・D(g(z))、和の微分D(f(z)+g(z))=D(f(z))+D(g(z))、
合成の微分 D(f(g(z)))=(Df)(g(z))・D(g(z))、
あとは 単項式 z^n の微分 D(z^n)=nz^(n-1) や指数関数e^zの微分 D(e^z)=e^z などを適宜使う。
ここで記号Dは d/dz の意味。

f(x,y)=x・sin(x・y) を x で偏微分するなら、 ∂/∂x を D とかくことにする。
xに関する偏微分なのでyはただの定数と見る。
D(f(x,y))=D(x・sin(x・y))=D(x)・sin(x・y)+x・D(sin(x・y))=sin(x・y)+x・cos(x・y)・D(x・y)=sin(x・y)+x・y・cos(x・y)
次に、Dがyに関する偏微分∂/∂yを表すものとすると、今度はxをただの定数と見て
D(f(x,y))=D(x・sin(x・y))=x・D(sin(x・y)=x・cos(x・y)D(x・y)=x・cos(x・y)・x=(x^2)・cos(x・y)







[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<212KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef