1 名前:132人目の素数さん [2018/09/16(日) 23:01:23.58 ID:tU22P37B.net] さあ、今日も1日がんばろう★☆ 前スレ 分からない問題はここに書いてね446 https://rio2016.5ch.net/test/read.cgi/math/1534342085/
2 名前:132人目の素数さん mailto:sage [2018/09/16(日) 23:09:36.42 ID:JWphhC/O.net] 2げつ
3 名前:132人目の素数さん [2018/09/17(月) 00:39:47.36 ID:T7a194so.net] 削除依頼を出しました
4 名前:132人目の素数さん [2018/09/17(月) 09:47:40.16 ID:sCsU7dE3.net] 高2のベクトルの問題です 「原点O,点A(1,0,0),B(0,1,0)C(0,0,1)を頂点とする四面体OABCについて↑OA=a ↑OB=b ↑OC=cとする。 四面体OABCの体積とそれに内接する球の体積を求めよ。」 四面体の体積は簡単ですが球の体積がわからないです。 多分、四面体の内心を求めて球の半径を出すんだと思いますがやり方がわからないです。 解説お願いします。
5 名前:132人目の素数さん [2018/09/17(月) 09:59:37.42 ID:DDPvQ5//.net] 内心の座標は求める必要ないです 平面における三角形の内接円の半径の求め方と同じようにして求めることができます もっと具体的にいうと、体積についての等式を導きましょう
6 名前:132人目の素数さん [2018/09/17(月) 10:10:13.35 ID:sCsU7dE3.net] なるほど 四面体の体積=1/3*四面体の表面積*内接球の半径 を使うと半径が求められました。 頑張って内心を求めようとしてたのはアホでしたね(笑) ありがとうございました。
7 名前:132人目の素数さん mailto:sage [2018/09/17(月) 10:44:40.67 ID:iDwWzM3i.net] >>4 平面ABCの式は x+y+z = 1, 内心 O(r,r,r) △ABCの中心は H(
8 名前:1/3, 1/3, 1/3) OH = (1/3 - r)√3 = r, r = 1/(3+√3) = 0.211325 >>5 4面体の体積 V = 1/6, 儖AB = 儖BC = 儖CA = 1/2, △ABC は1辺√2 の正△だから (√3)/2, 表面積 S = (3+√3)/2 r = 3V/S = 1/(3+√3) = 0.211325 >>6 この問題では内心 O(r,r,r) なので、どちらでも同じ。 [] [ここ壊れてます]
9 名前:132人目の素数さん [2018/09/17(月) 10:49:52.24 ID:uN/iN5jq.net] x^3+y^3=x^2+42xy+y^2 を満たす正の整数の組(x,y)をすべて求めよ 学校の宿題で出されました 全く歯が立ちません(><) 宜しくお願いしますM(__)M
10 名前:132人目の素数さん mailto:sage [2018/09/17(月) 11:31:25.15 ID:HGoJWhjD.net] グラフ化してみれ
11 名前:132人目の素数さん mailto:sage [2018/09/17(月) 12:20:58.93 ID:iDwWzM3i.net] >>8 x^3 + y^3 ≧ (1/4)(x+y)^3, xx +42xy +yy ≦ 11(x+y)^2, これらを与式に入れて x+y ≦ 44, (x, y) = (1, 7) (7, 1) (22, 22)
12 名前:132人目の素数さん mailto:sage [2018/09/17(月) 15:13:23.72 ID:nHx7kmYQ.net] Haskell先生に探してもらいました。 *Main> print [(x,y) | x <- [1..1000], y <- [1..1000], x*x*x + y*y*y == x*x +42*x*y +y*y ] [(1,7),(7,1),(22,22)]
13 名前:132人目の素数さん mailto:sage [2018/09/17(月) 16:03:45.11 ID:nHx7kmYQ.net] C言語に1万以下の正整数で探してもらいました。 codepad.org/ZZXRqHX7 off lineでも10万個にしてみました。 C:\pleiades\workspace\xy\Debug>xy 100000 100000 xy 100000 100000 1 : x = 1.000000, y = 7.000000 2 : x = 7.000000, y = 1.000000 3 : x = 22.000000, y = 22.000000
14 名前:132人目の素数さん [2018/09/17(月) 18:16:27.49 ID:8acpOrP5.net] 自殺をしたら、地獄に落ちて苦しむか、生前よりもさらに辛い状態で生まれてくるか、 生前にクリアできなかった課題と全く同じ課題をクリアするために、 再び生まれてくることになるのでしょうか?
15 名前:学術 [2018/09/17(月) 18:26:22.39 ID:jlhqH3K5.net] 自殺は憑き物のコーチの質の良さが分かれ道。無神論者になるもよし、有神論なら 赤い悪魔が先達。サッカーコーチでも自殺点に無理解ではない。
16 名前:132人目の素数さん mailto:sage [2018/09/17(月) 18:32:47.87 ID:lVBV3yvT.net] >>13 「生きがいの創造」読んでみ 生まれ変わりが科学的に立証されてるって国立大学の教授がエピソード交えて喋ってるぞ
17 名前:132人目の素数さん mailto:sage [2018/09/17(月) 18:35:34.72 ID:vfa2x310.net] 390×545の長方形の紙から117×156の長方形を出来るだけ多く切り取りたいです。但し、切った紙は糊やテープなどで貼り合わせる事は出来ません。 長辺を77切って捨てれば10枚切り取れますが、なんとか11枚切り取る方法はありませんか?ないとしたら、どうやって証明すればいいですか? また、一般にm×nの長方形からa×bの長方形を切り取る最大の枚数を求める方法はありますか?
18 名前:132人目の素数さん mailto:sage [2018/09/17(月) 18:50:19.12 ID:8acpOrP5.net] >>15 その本はどんな内容の本ですか? 少しだけ気になります。
19 名前:132人目の素数さん mailto:sage [2018/09/17(月) 19:55:29.73 ID:UGjqumaZ.net] >>16 その手のやつは packing problem というやつで計算アルゴリズムは存在はするけど、実用的な速度で動くものはないと思う。 packing problem でググってみましょう。
20 名前:132人目の素数さん mailto:sage [2018/09/17(月) 20:40:58.80 ID:lVBV3yvT.net] >>17 アマゾンのレビュー見ればいい 評価自体はクソ高い 経済が専門の国立大学教授が生まれ変わりをテーマに生きがいを語る っていうか人生観が変わったって言う色んな人のエピソードを紹介するのがメインの本 著者のスタンスとしては「この世は人間は生まれ変わっている。それは科学的に証明されている。 詳しくは巻末の各種論文を見てね。こう言う話をするとインチキ霊媒師とかのインチキ話も入りがちだから 参考に上げる論文はまともなアカデミックの論文だけだから信用性は大丈夫。」ってな感じ で、そういう断りをしておいて、内容は「僕は先生の論文を読んだおかげで人生観が変わりました。あざっす」っていうお礼の手紙を紹介するのがほぼ全部
21 名前:132人目の素数さん mailto:sage [2018/09/18(火) 01:32:22.46 ID:FYX0STfj.net] 失礼します。 この積分を解きたいのですが、お力を貸して頂けないでしょうか? お願いいたします。 https://i.imgur.com/5V8vCFM.jpg
22 名前:132人目の素数さん [2018/09/18(火) 02:11:37.75 ID:tjDhjgNx.net] wolfram様によれば解析的に解けないらしい テイラー展開で近似する方法はある
23 名前:132人目の素数さん mailto:sage [2018/09/18(火) 02:12:35.00 ID:4du09Zrz.net] 不定ですか
24 名前:132人目の素数さん mailto:sage [2018/09/18(火) 03:55:40.62 ID:Gqtu9UtM.net] 方程式 exp(x)=ax+b が解析的に溶けるためのa,b ?
25 名前:132人目の素数さん mailto:sage [2018/09/18(火) 04:03:31.11 ID:VmGjAMY2.net] >>20 分子を (√B) e^(-Ayy/2) = Y とおく。 被積分函数をマクローリン展開して √{B e^(-Ayy)} / {1 + B e^(-Ayy)}^(1/4) = Y / (1+YY)^(1/4) = Y -(1/4)Y^3 +(5/2^5)Y^5 -(15/2^7)Y^7 +(195/2^11)Y^9 -(663/2^13)Y^11 +(4641/2^16)Y^13 -(16575/2^18)Y^15 +(480675/2^23)Y^17 - …, 項別に積分すると ∫[0, x] Y^k dy = B^(k/2)∫[0, x] e^(-k・Ayy/2) dy = B^(k/2)・√(π/2kA)・erf(√(kA/2)・x),
26 名前:132人目の素数さん mailto:sage [2018/09/18(火) 06:28:37.17 ID:hOW38KGZ.net] Xを位相空間、pt∈Xとする このとき1次ホモロジー群H_1(X,pt)とH_1(X,∅)が同型なことはEilenberg-Steenrodの公理系からどのようにして示せるでしょうか? 長完全系列 ...→H_n(pt,∅)→H_n(X,∅)→H_n(X,pt)→H_n-1(pt,∅)→...から、 n≧2ではH_n(pt,∅)=0だからH_n(X,∅)とH_n(X,pt)は同型 n=0では分裂するのでH_n(X,∅)はH(X,pt)⊕H(pt,∅)と同型 までは分かるのですが、n=1のときが分かりません
27 名前:132人目の素数さん mailto:sage [2018/09/18(火) 08:38:44.63 ID:3cV882Ep.net] >>8 [第1段]:x^3+y^3=x^2+42xy+y^2 …@ の両辺はxとyの対称式だから、 (x,y) の存在性の考察や、もし (x,y) が存在するとしたときに (x,y) を求める考察では、x≧y≧1 としても一般性は失わない。 仮に、@ を満たすような正の整数の組 (x,y) が存在するとする。 1):x=y=1 とすると、@ の等号は成り立たないから (1,1) は不適。 2):(x,y)=
28 名前:(2,1) とすると、同様に、@ の等号は成り立たず (2,1) は不適。 3):(x,y)=(2,2) とすると、同様に、@ の等号は成り立たず (2,2) は不適。 4):x≧3、y=1 のとき。このとき、@ から x^3=x^2+42x だから、x≠0 から x^2−x=42。従って、x(x−1)=42 となる。 故に、x=7。逆に (x,y)=(7,1) は @ を満たす。故に、(x,y)=(7,1) は適する。 [第2段]、5):x≧3、y≧2 のとき。m=x+y とおく。x^3+y^3=m(x^2−xy+y^2) で、x^2−xy+y^2>0 だから、@ から、 m=(x^2+42xy+y^2)/(x^2−xy+y^2)=1+43xy/(x^2−xy+y^2) …A で x^2−xy+y^2≧xy>x,y、従って x^2−xy+y^2 は2正整数 x,y のどちらをも割り切らない。 故に、x^2−xy+y^2 は 素数43 か 43x か 43y か 43xy のどれかを割り切る。 [] [ここ壊れてます]
29 名前:132人目の素数さん mailto:sage [2018/09/18(火) 08:43:48.37 ID:3cV882Ep.net] >>8 (>>26 の続き) [第3段]:或る (x,y) が存在して x^2−xy+y^2 は 素数43 か 43x か 43y のどれかを割り切るとする。 5-1):x^2−xy+y^2 が43を割り切るとき。x≧y≧2 としているから x^2−xy+y^2=43 …B となる。 x≧3、y≧2 としているから、y^2 の値は4、9、16、25、36の何れかの値になる。従って、yの値は2、3、4、5、6の何れかになる。 5-1-1):y=2 のとき。このとき B から x^2−2x=x(x−2)=39。 39は 39=3・13 と素因数分解出来るから、xの値は存在しない。よって、矛盾。 5-1-2):y=3 のとき。このとき B から x^2−3x=x(x−3)=34。 34は 34=2・17 と素因数分解出来るから、同様に、xの値は存在しない。よって、矛盾。 5-1-3):y=4 のとき。このとき B から x^2−4x=27。しかし、x^2−4x−27=0 の 2解 x=2±√31 はどちらも正整数ではないから、正整数xについて矛盾が生じる。 5-1-4):y=5 のとき。このとき B は x^2−5x=18 となる。しかし、x^2−5x−18=0 の2解 x=(5±√97)/2 はどちらも正整数ではないから、正整数xについて矛盾が生じる。 5-1-5):y=6 のとき。このとき B は x^2−6x=7 となる。従って、x^2−6x−7=(x−7)(x+1)=0 から、x=7。 しかし、(x,y)=(7,6) のときは @ つまり x^3+y^3=x^2+42xy+y^2 について、 (左辺)−(右辺)=7^3+6^3−(7^2+42・6・7+6^2)=7^2・(7−1)+6^2・(6−1)−42・6・7 =7^2・6+6^2・5−42・6・7 =49・6+36・5−42^2=294+180−42^2=474−42^2 ≠0 となって、(x,y)=(7,6) のときは @ が成り立たない。よって、矛盾が生じる。 5-1-1)〜5-1-5) から、x^2−xy+y^2 が43を割り切るとき、何れの場合も矛盾が生じる。
30 名前:132人目の素数さん mailto:sage [2018/09/18(火) 08:53:41.24 ID:3cV882Ep.net] >>8 (>>27 の続き) 5-2):x^2−xy+y^2 が43xを割り切るとき。このとき、或る正整数nが存在して、n(x^2−xy+y^2)=43x となる。 よって、nは素数43か正整数xのどちらかを割り切る。 5-2-1):nが素数43を割り切るとき。43の正の約数は1と43の2つに限るから、n=43 としてよい。 そこで、n=43 とすると、x^2−xy+y^2=x、従って x(x−y−1)+y^2=0。x≧y≧2 としているから x<y+1、 故に x=y から、x^2−x=x(x−1)=0。しかし、これを満たすxは存在せず矛盾する。 5-2-2):nがxを割り切るとき。xの最大の約数はxなることに着目すると n=x としてよい。そこで、n=x とすると、x^2−xy+y^2=43、 ゆえに x^2−xy+y^2 は43を割り切る。しかし、5-1)のときと同様に考えると、矛盾が生じることになる。 5-2-1)、5-2-2) から、nについて何れのときも矛盾が生じる。 故に、x^2−xy+y^2 が43xを割り切るとき、正整数nは存在しないことになって、矛盾が生じる。 5-3):x^2−xy+y^2 が43yを割り切るとき。x≧y, x≧3, y≧2 としているから、5-2) と同様に考えると、矛盾が生じる。 5-1)、5-2)、5-3) から、何れのときも矛盾が生じるから、x^2−xy+y^2 (x≧y≧2, x≧3) が 43、43x、43y のどれかを割り切るようなxとyの組 (x,y) (x≧y≧2, x≧3) は存在しない。
31 名前:132人目の素数さん mailto:sage [2018/09/18(火) 08:59:41.55 ID:3cV882Ep.net] >>8 (>>28 の続き) [第4段]、5-4):x≧3、y≧2 であって、x^2−xy+y^2 が43xyを割り切るとき。 [第2段] までの議論に従い @ を満たす組 (x,y) が存在するとする。すると、x^2−xy+y^2>x,y であって、 x^2−xy+y^2 は x,y のどちらをも割り切らない。また、x^2−xy+y^2 は43、43x、43y の何れをも割り切らない。 43xy の約数をすべて挙げると43、x、y、43x、43y、xy、43xy となるから、x^2−xy+y^2 は xy か 43xy のどちらかを割り切る。 5-4-1):x^2−xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2−xy+y^2=xy としてよい。 そこで、x^2−xy+y^2=xy とすると、(x−y)^2=0 となって、x=y を得る。従って、A から、 m=1+43xy/(x^2−xy+y^2)=1+43x^2/(x^2−x^2+x^2)=1+43=44。 m=x+y としていたから x+y=44 であり、x=y=22。逆に、(x,y)=(22,22) は @ を満たすから、(x,y)=(22,22) は適する。 5-4-2):x^2−xy+y^2 が 43xy を割り切るとき。x^2−xy+y^2 は43を割り切らないから、5-4-1)の議論に帰着される。 5-4-1)、5-4-2) から、@ を満たす正整数 x,y の組は (x,y)=(22,22)。 [第5段]:5-1)、5-2)、5-3)、5-4) から、x≧3、y≧2 (x≧y) のとき @ を満たす正整数 x,y の組は (x,y)=(22,22) ( 5:x≧3、y≧2 のとき終わり )。 1)〜5) から、x≧y≧1 とした上での @ を満たす正整数 x,y の組は (x,y)=(7,1)、(22,22)。 [第6段]:@ の左辺 x^3+y^3 と @ の右辺 x^2+42xy+y^2 がxとyの対称式なることに注意して x≧y≧1 としていたから、 はじめに y≧x≧1 として上と同様に考えれば、@ を満たす正整数 x,y の組は (x,y)=(7,1)、(1,7)、(22,22) の3つ。
32 名前:132人目の素数さん mailto:sage [2018/09/18(火) 09:07:58.84 ID:+9yVRIw4.net] wが1以外の全ての値を取るということは証明しなくてもよいのですか? それはなぜですか? https://i.imgur.com/amM3qaw.jpg
33 名前:132人目の素数さん [2018/09/18(火) 09:11:13.54 ID:zz7LfpDa.net] 自分で解いた解答がださいと思ったので書かなかったが、遥かに上を行くのが現れた
34 名前:132人目の素数さん mailto:sage [2018/09/18(火) 09:25:46.63 ID:3cV882Ep.net] >>8 は、きれいには解けんであろう。
35 名前:132人目の素数さん mailto:sage [2018/09/18(火) 09:29:41.32 ID:+9yVRIw4.net] >>10 1番目の恒等式はどうやったら証明できますか?
36 名前:132人目の素数さん mailto:sage [2018/09/18(火) 10:02:34.07 ID:VmGjAMY2.net] >>9 43/3 = a とおく。 0 = x^3 + y^3 - (xx+42xy+yy) = {x+y+(42-2a)}{xx-xy+yy -a(x+y) +a(42-2a)} - a(42-2a)^2 = X^3 + Y^3 +42(XX-XY+YY) -a(X+Y) -aa(4a-42) = (X+Y+42)(XX-XY+YY -a) - a(42-2a)^2, ここに、X = x-a, Y = y-a, 漸近線: x+y+(42-2a)=0 (X+Y+42=0) >>33 4(x^3 + y^3) - (x+y)^3 = (x+y){4(xx-xy+yy) -(x+y)^2} = (x+y){3(x-y)^2} ≧ 0
37 名前:132人目の素数さん [2018/09/18(火) 10:05:24.72 ID:AUgeu19y.net] 高千穂交易 イスラエルのスーパースマート社の新世代チェックアウトシステム「Supersmart」の取り扱いを開始
38 名前:132人目の素数さん mailto:sage [2018/09/18(火) 10:11:29.71 ID:VmGjAMY2.net] >>34 デカルトの葉線に似てるけど、チョット違うか。 原点で自身と交叉する。
39 名前:132人目の素数さん mailto:sage [2018/09/18(火) 10:52:40.84 ID:0aLrbzrN.net] >>25 H_0(pt,∅) → H_0(X,∅) が monic を Eilenberg-Steenrod だけから示すとこ? 出来るんだっけ?
40 名前:132人目の素数さん mailto:sage [2018/09/18(火) 11:02:44.80 ID:0aLrbzrN.net] >>25 >>37 出来た。 f:pt→X、g:X→pt としてgf = 1_pt。 よって H_0(g)H_0(f) = 1なのでH_0(f)はmonic。
41 名前:132人目の素数さん mailto:sage [2018/09/18(火) 11:19:23.67 ID:hOW38KGZ.net] >>38 モニックになるところまでは分かっていたのに0→ H_1(X,∅)→H_1(X,pt) → Ker=0がつくれていることに気がついていませんでした ありがとうござます!
42 名前:132人目の素数さん mailto:sage [2018/09/18(火) 11:21:13.08 ID:0aLrbzrN.net] 3行目までの記述は厳密には w=z/(z+1)、w≠1⇒ z = -w/(w-1) だけど受験数学ではこの記述が 「逆にw≠1のとき、z = -w/(w-1)とおけば先の変形を逆にたどってw=z/(z+1)になる。」…@ と読んでもらえる。 もちろんこんなの厳密な数学の文章としてはアウト。 しかしそれは数学の教科書ではなく、受験数学の教科書だから、受験数学では書かなくても許してくれることを ”模範” 解答に書くことはない。 @のような拡大解釈は日本の長い受験制度のなかで”defuct standard”(=既成事実化された標準)として定まって来たものだから覚えとくしかない。 べつにそれは利用しなくてもいい事だから覚える必要もないけど。
43 名前:132人目の素数さん [2018/09/18(火) 11:43:24.16 ID:48smdFkf.net] >>40 誤: defuct standard 正: de facto standard
44 名前:132人目の素数さん mailto:sage [2018/09/18(火) 12:15:43.97 ID:0aLrbzrN.net] >>41 ラテン語だったのか https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%95%E3%82%A1%E3%82%AF%E3%83%88%E3%82%B9%E3%82%BF%E3%83%B3%E3%83%80%E3%83%BC%E3%83%89
45 名前:132人目の素数さん mailto:sage [2018/09/18(火) 14:01:29.36 ID:Gqtu9UtM.net] a,bを実数とする。 媒介変数θ(0≦θ<2π)を用いて x=acosθ+bsinθ y=bcosθ-asinθ と表されるxy平面上の曲線Cについて、以下の問に答えよ。 (1)Cが一点または線分になるときのa,bの値または条件を求めよ。答えのみでよい。 (2)C上の点のx座標の最小値をm、最大値をMとする。直線x=t(m≦t≦M)とCの交点の個数を求めよ。
46 名前:132人目の素数さん mailto:sage [2018/09/18(火) 16:49:42.63 ID:VmGjAMY2.net] >>43 (1) xx + yy = aa + bb, Cが一点となるのは a=b=0 のとき。それ以外は円周になる。 線分にはならない。 (2) m = -√(aa+bb), M = √(aa+bb), t=m のとき 1個 (x, y) = (m, 0) m<t<M のとき 2個 (x, y) = (t, ±√(aa+bb-tt)) t=M のとき 1個 (x, y) = (M, 0)
47 名前:132人目の素数さん [2018/09/18(火) 18:40:43.54 ID:I+fCkgCe.net] >>26-29 って誤答おじさんだよね?
48 名前:132人目の素数さん mailto:sage [2018/09/18(火) 18:52:24.72 ID:DmF3CBzT.net] f(x,y)=1/(1+x^2+y^2)を(0,0)まわりでテイラー展開せよ わからないのでどうかお願いします
49 名前:132人目の素数さん mailto:sage [2018/09/18(火) 18:57:11.61 ID:x0XO2pL+.net] わからないんですね
50 名前:132人目の素数さん mailto:sage [2018/09/18(火) 19:09:36.65 ID:4du09Zrz.net] 計算知能なら自動で展開する
51 名前:132人目の素数さん mailto:sage [2018/09/18(火) 19:36:30.83 ID:onEza3By.net] >>29 xとyが互いに素だと仮定してない? 互いに素ではなくない? >43xy の約数をすべて挙げると43、x、y、43x、43y、xy、43xy となるから
52 名前:132人目の素数さん mailto:sage [2018/09/18(火) 19:53:36.57 ID:ldwT9XMl.net] >>41 defunct standard なら今は亡き標準
53 名前:132人目の素数さん [2018/09/18(火) 20:12:14.97 ID:I+fCkgCe.net] >>49 昔から馬鹿で有名な誤答おじさんに何言っても無駄
54 名前:132人目の素数さん mailto:sage [2018/09/18(火) 20:17:46.86 ID:9rAY//KM.net] >>30 質問とは関係ないけど z を -10iから10iまで変化させてグラフを書いてみた。 z=seq(-10i,10i,length=100) plot(z/(1+z),asp=1,bty='l',pch=19) i.imgur.com/rY6bLUr.png
55 名前:132人目の素数さん mailto:sage [2018/09/18(火) 20:31:58.49 ID:6aLe7Rjk.net] a>0として ∫(∞→a) -1/x^2 dx =[1/x](∞→a)= 1/aですよね? 起点の∞では-0に近づき、全域で常にマイナスのものを積分したのに、求めた面積が正になってしまうのはなぜですか?
56 名前:132人目の素数さん mailto:sage [2018/09/18(火) 20:34:00.16 ID:6aLe7Rjk.net] いや、単純に、aから∞まで積分するのの逆だからか……… いやでもなんでマイナスになるんだ……? 積分範囲を逆転させて常に負の関数を積分すると正の値が出るのはなぜですか? 図形的にはどういう意味があるんですか? アホな質問ですみませんがお願いします
57 名前:132人目の素数さん [2018/09/18(火) 21:08:54.44 ID:48smdFkf.net] 問7 同値な正方行列のトレースは等しいこと、すなわち tr(P^(-1) * A * P) = tr(A) を示せ。 この解答を見てみたところ、この問題よりも前の問題である問3と問5より明らか、と書いてありました。 同値な正方行列の固有多項式は等しいから、問5のみから明らかだと思います。 問3はどこで使うのでしょうか? 問3 n 次正方行列 A, B, C について、 A と B、 B と C が同値ならば A と C は同値であることを示せ。 問5 A の固有多項式を g_A(t) = t^n + a_(n-1) * t^(n-1) + … + a_1 * t + a_0 とするとき、 a_(n-1) = -tr(A)
58 名前:132人目の素数さん mailto:sage [2018/09/18(火) 21:51:21.74 ID:Jq2Da5XV.net] >>8 事実上 >>10 で終わってるけど。 p = x+y、q=xyとおいて >>10 より 2≦ p ≦ 44。 与式より p^3 - p^2 - q(3p+40) = 0。 ∴q = (p^3 -p^2)/(3p+40)。 ∴27q = (9p^2-129p+1720)-68800/(3p+40) ∴3p+40 は46以上172以下の3でわって1余る68800の約数。 68800 = 2^6・5^2・43 であるから 3p+40 = 2^a 5^b 43^c とおくとき (a,b,c) = (6,0,0),(5,1,0),(2,2,0),(2,0,1)。 それぞれで(d,p,q) = (64,8,7),(100,20,76),(160,40,390),(172,44,484)。 このうちx^2 -px +q = 0が整数解をもつのは(p,q) = (8,7),(44,484)のとき。
59 名前:132人目の素数さん [2018/09/18(火) 21:51:38.42 ID:ywgy1XuA.net] 問題 A,B,Cのカードが2枚、D,E,F,Gのカードが各1枚、合計10枚ある。このカードを無作為に横一列に並べたとき、左から2枚目がBのカードでかつ3枚目がEのカードである確率はいくらか。 解答 B,Eのカード以外はどのカードも関係ないので、それをまとめてXのカードとします。10枚のカードの中にBのカードが2枚、Eのカードが1枚、Xのカードが7枚あると考えましょう。 並べ方の総数は、同じものを含む順列の公式を用いて、 10!/2!1!7!=360(通り)です。 左から2枚目がBのカード、左から3枚目がEのカードであるのは、他の場所に残りのカード(B1枚、X7枚)を並べればよいので、 8!/1!7!=8(通り) したがって、求める確率は、 ∴8/360=1/45 なぜ、B,E以外のカードをまとめてXのカードとして考えるのか、理解できる人いますか?30歳の私に教えてください。
60 名前:132人目の素数さん mailto:sage [2018/09/18(火) 22:15:32.04 ID:ky7MeYqE.net] >>57 わかりにくければB1、B2、E、X1〜X7を並べると考えればいい
61 名前:132人目の素数さん [2018/09/18(火) 22:19:04.92 ID:zz7LfpDa.net] >>56 俺の解答と同じだ 上手く 3p+40 を上から押さえないと手計算放棄決定 というわけで、やっぱり実質>>10 で終わってるな
62 名前:132人目の素数さん mailto:sage [2018/09/18(火) 22:40:40.93 ID:bTifwJNg.net] 計算機でやっても何年にもなりそうとかならともかく、”x+y≦44を満たす正の整数の組” ぐらいまで絞れたら実質終了だね。
63 名前:学術 [2018/09/18(火) 23:01:41.80 ID:bdccv7Cm.net] マイナスとマイナスじゃ超マイナスなはず。
64 名前:132人目の素数さん mailto:sage [2018/09/18(火) 23:02:23.19 ID:dotA1T5U.net] >>8 A=x+y,B=x-y とおけば、44A^2=A^3+3AB^2+40B^2 B^2について解くと B^2=A^2(44-A)/(40+3A) 明らかにx,yは正整数なので2≦A、左辺は非負なので、A≦44 この範囲で右辺が整数になるのは、A=8,20,40,44で、平方数になるのはA=8,44 (x,y)=(1,7),(7,1)(22,22)
65 名前:学術 [2018/09/18(火) 23:06:21.75 ID:bdccv7Cm.net] 死神死族か。
66 名前:132人目の素数さん mailto:sage [2018/09/18(火) 23:15:21.73 ID:+9yVRIw4.net] >>62 超エレガント………
67 名前:132人目の素数さん [2018/09/18(火) 23:19:04.29 ID:zz7LfpDa.net] >>62 すげえ、言われてみれば自然な解答だな 絵を描いたら思いつきそうか?
68 名前:132人目の素数さん [2018/09/18(火) 23:20:11.61 ID:8tNJHaXw.net] >>58 ヒントありがとうございます。しかし、まだ理解できません。 もう頭がパンクしそうです。 なぜ残りの7枚を同じ種類のカードとみなせるのか、不思議です。
69 名前:学術 [2018/09/18(火) 23:22:21.96 ID:bdccv7Cm.net] あほな解き方だぞそれ。
70 名前:132人目の素数さん mailto:sage [2018/09/18(火) 23:38:20.57 ID:dotA1T5U.net] >>66 問題 A1,A2,B1,B2,C1,C2,E,F,G,Hの10枚のカードがある。 横一列に並べたとき、左から2番目がB1、3番目がEになる、または、 2番目がB2、3番目がEになる確率は? というのと同じ 答え 並べ方の総数は、10!通り。2番目がB1、3番目がEになる並べ方は、 2番目にB1、3番目にEを置き、残り8箇所に自由にカードをおいてよいので、8!通り 2番目がB2、3番目がEになるのも同様なので、求められている確率は 2*8!/10! =2/(10*9)=1/45
71 名前:学術 [2018/09/18(火) 23:40:20.37 ID:bdccv7Cm.net] 最後まで叩いて類推すればいいじゃない。
72 名前:学術 [2018/09/18(火) 23:40:57.43 ID:bdccv7Cm.net] 順列に確率を求めるのが運の尽きだよ 。
73 名前:学術 [2018/09/18(火) 23:41:23.64 ID:bdccv7Cm.net] 乱雑にカードを並べてみてさ。
74 名前:132人目の素数さん [2018/09/19(水) 00:16:19.17 ID:pjeh/wJ3.net] >>68 ありがとうございます!この解答だと理解できました。
75 名前:132人目の素数さん [2018/09/19(水) 01:07:44.14 ID:+Ofa35sM.net] 自殺をしたら地獄に落ちますか?
76 名前:132人目の素数さん mailto:sage [2018/09/19(水) 01:23:15.74 ID:wiQUfdGa.net] N組のカップル(合わせて2N人)が無作為に横一列に並ぶ どのカップルについても彼氏と彼女が隣り合わない確率を求めよ N組のカップルをnとおくと q={2^n+2^(n−1)−(n−1)^2−3}/{2^(n+2)−(n+2)^2+7} この関数をゼータ関数を参考にして修正してくれ〜(・ω・)ノ
77 名前:132人目の素数さん mailto:sage [2018/09/19(水) 01:26:10.92 ID:uTGU7Tww.net] >>46 こちらわかる方いませんか?
78 名前:132人目の素数さん mailto:sage [2018/09/19(水) 01:54:19.45 ID:nLnx1y/v.net] >>49 文字 x, y を使って単項式 43xy の形で表された正整数 43xy の約数を 見た目から「具体的に」すべて挙げると 1、43、x、y、43x、43y、xy、43xy となるが、 x≧3、y≧2 で x^2−xy+y^21(≧2) は1を割り切らないことはすぐ分かるので、議論上は >>43xy の約数をすべて挙げると43、x、y、43x、43y、xy、43xy となるから としても何ら問題は生じない。
79 名前:132人目の素数さん mailto:sage [2018/09/19(水) 02:05:04.03 ID:l8Z4jqyy.net] >>46 >>75 f(x, y) = 1/(1+xx+yy) = Σ[n=0, ∞] (-1)^n (xx+yy)^n = Σ[n=0, ∞] (-1)^n Σ[j=0, n] C[n, j] x^{2j} y^{2n-2j} = Σ[j=0, ∞] Σ[k=0, ∞] (-1)^{j+k} C[j+k, j] x^{2j} y^{2k} (0, 0) の周りだからマクローリン展開か?
80 名前:132人目の素数さん mailto:sage [2018/09/19(水) 02:10:13.84 ID:nLnx1y/v.net] >>49 >>76 の「x^2−xy+y^21(≧2)」は「x^2−xy+y^2(≧2)」。 再度書くが、単項式 43xy の形で表された正整数 43xy の約数を 「見た目から具体的に」すべて挙げると 1、43、x、y、43x、43y、xy、43xy となる。
81 名前:132人目の素数さん mailto:sage [2018/09/19(水) 02:13:40.84 ID:pbeFETFR.net] >>46 ,75 1/(1+x^2+y^2) =Σ(-1)^n(x^2+y^2)^n =Σ(-1)^nC[n,k]x^(2k)y^(2n-2k) =Σ(-1)^(k+l)C[k+l,k]x^(2k)+y^(2l)
82 名前:132人目の素数さん mailto:sage [2018/09/19(水) 02:19:03.59 ID:pbeFETFR.net] >>74 >q={2^n+2^(n−1)−(n−1)^2−3}/{2^(n+2)−(n+2)^2+7} これ何? そもそも漸化式前スレで出てるやん。 この q それ満たしてないやん。
83 名前:132人目の素数さん mailto:sage [2018/09/19(水) 02:21:39.68 ID:wiQUfdGa.net] この関数を漸化式のすべての点を通るように ゼータ関数を参考にして修正してくれ〜(・ω・)ノ
84 名前:132人目の素数さん [2018/09/19(水) 02:33:00.35 ID:ZxE0BCCu.net] F(n)=log (2n n) ※底は2とする のとき O(F(n))を求めよ。 ヒント e(n/e)^n≦n! とする お願いします!!
85 名前:132人目の素数さん [2018/09/19(水) 02:34:35.39 ID:ZxE0BCCu.net] (2n n)= 2n C nです
86 名前:132人目の素数さん mailto:sage [2018/09/19(水) 03:20:57.68 ID:xM+4SJQn.net] >>81 ゼータ関数を参考にした結果救いようがないと判明した。
87 名前:132人目の素数さん mailto:sage [2018/09/19(水) 03:39:38.95 ID:Ck89eeKN.net] >>82 log C[2n n] = log 2n! - 2logn! 〜(1/2)log(4πn)+2n log(2n/e) - log2πn-2nlog(n/e) = (1/2)log(4π)+(1/2)log(n)+2n log(n)+2n log(2)-2n - log2π- log n-2nlog(n) = -(1/2)log(n) + 2n log(2) - (1/2)logπ = log (4^n/√(πn))
88 名前:132人目の素数さん [2018/09/19(水) 03:45:35.63 ID:l8Z4jqyy.net] >>74 q[1] = 0, q[2] = 2/7, q[3] = 5/14, q[4] = 12/35, q[5] = 29/86 → 3/8, [前スレ.609] から a[1] = 0, a[2] = 1/3, a[3] = 1/3, a[4] = 12/35, a[5] = 47/135 → 1/e, a[n] = a[n-1] + {1/(2n-1)(2n-3)} a[n-2],
89 名前:132人目の素数さん [2018/09/19(水) 03:45:36.34 ID:ZxE0BCCu.net] >>85 どこからπがでてくるんですか?
90 名前:132人目の素数さん mailto:sage [2018/09/19(水) 03:50:35.27 ID:l8Z4jqyy.net] >>87 √(2πn)・(n/e)^n ≒ n! から
91 名前:132人目の素数さん [2018/09/19(水) 04:22:24.86 ID:ZxE0BCCu.net] >>88 π使わないで出せませんか
92 名前:132人目の素数さん mailto:sage [2018/09/19(水) 05:47:43.58 ID:LXDQ8jJn.net] Σ[q-n-1, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)]=0 になる理由がどうしてもわかりません。 おしえてください。 ここでCは2項係数です。
93 名前:132人目の素数さん mailto:sage [2018/09/19(水) 06:46:06.14 ID:h607bjyl.net] >>66 A1,A2,B1,B2,C1,C2,D,E,F,Gと書かれたカードを用意して、 10!通り全ての並べ方を網羅する 次に、 A1,A2,C1,C2,D,F,Gの7枚のカードの文字を、X1〜X7にそれぞれ書き換える こうすると、B1,B2,E,X1〜X7のカード10枚を使った並べ変え方10!通りになるが、文字が変わっただけなので確率は全く同じ 要するに、この2つは等価と言ってるだけ。
94 名前:132人目の素数さん mailto:sage [2018/09/19(水) 06:50:02.48 ID:h607bjyl.net] 「B2枚、X7枚を区別しないとする順列」を求めるときの計算は、結局X1〜X7に番号を振った時の全パターン10!通りを用意した後、 B1B2、X1〜X7を区別しないとして2!*7!で割ってるのと同じ。
95 名前:132人目の素数さん mailto:sage [2018/09/19(水) 07:35:03.80 ID:l8Z4jqyy.net] >>89 y = log(x) は上に凸だから log(k) > ∫[k-1/2, k+1/2] log(x) dx, より log(n!) = Σ[k=2, n] log(k) > log(2) + ∫[5/2, n+1/2] log(x) dx = (n+1/2)log(n+1/2) -n +2 + log(2) - (5/2)log(5/2) > (n+1/2)log(n) -n + (5/2) + log(2) - (5/2)log(5/2) (*) = (n+1/2)log(n) -n + log(√6), *) log(n+1/2) - log(n) = log(1 +1/2n) = - log{1 -1/(2n+1)} > 1/(2n+1), {log(k-1)+log(k)}/2 < ∫[k-1, k] log(x) dx, より log(n!) = Σ[k=2, n] log(k) < (1/2)log(2) + ∫[2, n] log(x) dx + (1/2)log(n) = (n+1/2)log(n) -n +2 - (3/2)log(2) < (n+1/2)log(n) -n + log(√7), ∴ √(6n)・(n/e)^n < n! < √(7n)・(n/e)^n,
96 名前:132人目の素数さん [2018/09/19(水) 07:37:20.54 ID:IjLvLKf4.net] >>76 >>78 相変わらず馬鹿過ぎて話にならんな 笑ったwwwww 誤答おじさんの頭の悪さはどうにもならんwwwww
97 名前:132人目の素数さん mailto:sage [2018/09/19(水) 07:41:50.52 ID:h607bjyl.net] >>76 12は8も9も割り切らないけど、8×9=72は割り切りますよね
98 名前:132人目の素数さん mailto:sage [2018/09/19(水) 07:53:19.31 ID:h607bjyl.net] > 5-4-1):x^2−xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2−xy+y^2=xy としてよい。 ここですね
99 名前:132人目の素数さん mailto:sage [2018/09/19(水) 08:05:38.72 ID:l8Z4jqyy.net] >>93 補足 ∫ log(x) dx = x log(x) - x, {2 ・ (2e/5)^2.5}^2 = 6.079003 > 6 {e^2 / 2^(3/2)}^2 = 6.824768754 < 7
100 名前:132人目の素数さん mailto:sage [2018/09/19(水) 08:30:40.68 ID:PDm2LGeS.net] >>73 まだ落ちてる自覚無いの? おめでたいもんだ
101 名前:132人目の素数さん [2018/09/19(水) 09:08:26.22 ID:Fu0oOLgN.net] クラス会の費用を集めるのに全体で800円余る予定で一人1700円ずつ集めたが、予定 よりも全体で8000円多く費用がかかったので、一人300円を追加して集めたところ、ちょうど支 払うことができた。このとき、クラス会でかかった費用は全部で何円か、求めなさい。 これ分かる人いますか
102 名前:132人目の素数さん mailto:sage [2018/09/19(水) 09:40:52.15 ID:OD14AjpY.net] >>90 q-n-1=lのとき Σ[q-n-1, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)] = Σ[l, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)] = (-1)^(l-1) C(n+l, n+l)[C(l, l)-C(l+1, l)] はあきらかに0にならんけど?
103 名前:132人目の素数さん [2018/09/19(水) 10:04:13.39 ID:LXDQ8jJn.net] >>100 fast-uploader.com/file/7092874525745/ この画像の最後の等式見てください。0になってます。
104 名前:132人目の素数さん mailto:sage [2018/09/19(水) 10:15:46.78 ID:OD14AjpY.net] >>101 式ちがうやん????
105 名前:132人目の素数さん mailto:sage [2018/09/19(水) 10:17:13.94 ID:LXDQ8jJn.net] >>102 どこが?
106 名前:132人目の素数さん mailto:sage [2018/09/19(水) 10:20:41.40 ID:OD14AjpY.net] >>101 ,102 失礼。最後の行ね。なんでだろう?
107 名前:132人目の素数さん mailto:sage [2018/09/19(水) 10:41:35.93 ID:OD14AjpY.net] >>101 そもそもそのjpegの最初n行と最後の行に q = l+n+1 代入して成立してないんじゃね? 一行目=
108 名前:(-1)^(l-1)C[l+n+1,l+n]C[l,l] + (-1)^lC[l+1,l]=(-1)^(l+1)(l+n+1-l-1)=(-1)^(l+1)n 最終行=C[l+n,n+l-1] = l+n で合ってない。 [] [ここ壊れてます]
109 名前:132人目の素数さん mailto:sage [2018/09/19(水) 11:11:40.33 ID:nLnx1y/v.net] >>94-96 >互いに素ではなくない? xとyが互いに素でないとする。 xとyに共通する素因数を p_1, …, p_n とする。 各 i=1,…,n に対して、p_i の指数を e_i とする。 xだけの素因数を q_1, …, q_m とする。各 i=1,…,m に対して、q_i の指数を a_i とする。 yだけの素因数を r_1, …, r_k とする。各 i=1,…,k に対して、r_i の指数を b_i とする。 xy を x^2−xy+y^2 で割った商をaとする。すると、a(x^2−xy+y^2)=xy、 x=(p_1)^{e_1}・…・(p_n)^{e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}、 y=(p_1)^{e_1}・…・(p_n)^{e_n}×(r_1)^{b_1}・…・(r_n)^{b_n} で、 x^2−xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_n)^{2a_n}、 −(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n} +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_n)^{2b_n}、 xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n} なので、a(x^2−xy+y^2)=xy は a( (q_1)^{2a_1}・…・(q_n)^{2a_n}−(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n}+(r_1)^{2b_1}・…・(r_n)^{2b_n} ) =(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n} となる。X=(q_1)^{a_1}・…・(q_n)^{a_n}、Y=(r_1)^{b_1}・…・(r_n)^{b_n} とおけば、a(x^2−xy+y^2)=xy は a(X^2−XY+Y^2)=XY となる。よって、X^2−XY+Y^2 は XY を割り切る。 あと a>1 とすると a≧2 で、相加・相乗平均の不等式から、a(X^2+Y^2)≧2aXY>(a+1)XY だから、a(X^2−XY+Y^2)>XY となって、矛盾が生じる。よって、a=1 で、X^2−XY+Y^2=XY となる。 ここに、x^2−xy+y^2 と X^2−XY+Y^2、及び xy と XY は単項式としては同じ形。だから、上のような議論をすることは、実質的には >5-4-1):x^2−xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2−xy+y^2=xy としてよい。 と書くことと同じで、何も式の形としては変わっていない。変わったのは、xとyが互いに素でないときも考えて細かい議論をするかどうかの違い。
110 名前:132人目の素数さん mailto:sage [2018/09/19(水) 11:22:16.75 ID:OD14AjpY.net] >>106 >xy を x^2−xy+y^2 で割った商をaとする。 xy≦x^2−xy+y^2じゃね? a=0、あまりx^2−xy+y^2になるよ?
111 名前:132人目の素数さん [2018/09/19(水) 11:53:58.09 ID:fbWt698J.net] >>106 昔から態度ばかり一人前だけど 対称式の頃から本当に成長してないな もし数学の勉強をしてるのだとしたら ここまで何年も最底辺レベルのまま成長しない奴も珍しいぜ
112 名前:132人目の素数さん [2018/09/19(水) 11:58:58.59 ID:Gn6ogjJL.net] 後藤さん引退宣言したんでないの?
113 名前:132人目の素数さん mailto:sage [2018/09/19(水) 12:13:15.00 ID:nLnx1y/v.net] >>107 いわれてみるとそうだな。>>94-96 は一体何だったんだろう。 >>94-96 >互いに素ではなくない? xy≦x^2−xy+y^2 だから、xy を x^2−xy+y^2 で割ったときの商は0で余りをaとする。すると、x^2−xy+y^2+a=xy、 a≠0 とすると、(x−y)^2>−a で、(x−y)^2=−a に反し矛盾するから、a=0、故に。x^2−xy+y^2+a=xy。 蛇足だが、>>106 のqの添え字mと、rの添え字kの書き間違いが何ヶ所かあるから、訂正して読んでほしい。 主に途中の派手な式のところにある。
114 名前:132人目の素数さん mailto:sage [2018/09/19(水) 12:21:59.79 ID:nLnx1y/v.net] ところで、コーコー数学や受験数学でデカルトの葉線ってやっていたっけ? デカルトの葉線は何に書いてあるんだ?
115 名前:132人目の素数さん mailto:sage [2018/09/19(水) 12:45:15.55 ID:bI/clKdo.net] ある数列に対して、それが漸化式として表される場合、 その数列を作る漸化式はただ一つに定まりますか?
116 名前:132人目の素数さん mailto:sage [2018/09/19(水) 13:03:00.53 ID:dSRmi3XW.net] >>99 48000円
117 名前:132人目の素数さん [2018/09/19(水) 13:06:19.96 ID:iMuVMgfo.net] >慶應義塾大学大学院理工学研究科 >KiPAS数論幾何グループ >『辺の長さが全て整数となる直角三角形と二等辺三角形の組の中には、 >周の長さも面積も共に等しい組が(相似を除いて)たった1組しかない』 >という、これまで知られていなかった定理の証明に成功した。 ↑これってどのくりあ凄いことなの? 数学界の功績で言えばどのくらいですか?論文として今年度のトップ10くらいに入る? 自然数で表面積が等しく、かつ体積が等しい立体の組み合わせ は存在するの? その場合、立体 3つ1組 ですか?
118 名前:132人目の素数さん mailto:sage [2018/09/19(水) 13:16:28.72 ID:X/om76cf.net] >>114 トップ10に入るような業績ではないけど長く記憶されそうな業績。 そのような立体があるかは分からない。多分無い可能性が高いだろう
119 名前:132人目の素数さん mailto:sage [2018/09/19(水) 14:26:28.35 ID:RUXqakpI.net] 自殺をしたら地獄に落ちたりするのかが気になる。
120 名前:132人目の素数さん mailto:sage [2018/09/19(水) 14:43:47.61 ID:08zNaTf2.net] >>111 ggrks www.k-kyogoku.com/cn137/cn190/pg2387.html 2015年横浜市大/医 x^3-3ax+y^3=0 (a>0) で定義されるデカルトの葉線の囲まれる部分の面積 答え:3a^2 / 2 数Vの教科書
121 名前:132人目の素数さん mailto:sage [2018/09/19(水) 14:47:01.97 ID:Byy4q6sb.net] >>114 慶応の論文で出てきた直角三角形と二等辺三角形を底辺に持ち、高さが自然数の三角柱って 自然数で表面積が等しく、かつ体積が等しい立体の組み合わせにならないか? 高さは自然数なら何でもいいので無限にある
122 名前:132人目の素数さん mailto:sage [2018/09/19(水) 14:47:20.90 ID:9kPkmN8N.net] >>112 無限にある
123 名前:132人目の素数さん mailto:sage [2018/09/19(水) 14:55:20.32 ID:X/om76cf.net] >>112 数列による 本質的には1つに定まるものが多いんじゃないか?(隣接2〜3項の関係のみで表し、既約なもの) 高校数学までの範囲なら全部定まるのでは
124 名前:132人目の素数さん [2018/09/19(水) 15:00:25.63 ID:Gn6ogjJL.net] 「既約なもの」ってなあに?
125 名前:132人目の素数さん mailto:sage [2018/09/19(水) 15:38:19.64 ID:08zNaTf2.net] >>120 一般にはきまらない。収束の条件も無しに1つに定まれば苦労しない。 >>119 が正解。
126 名前:132人目の素数さん mailto:sage [2018/09/19(水) 15:41:42.32 ID:xWCfGFrt.net] xy平面上の曲線Cを、媒介変数θを用いて x=2(cosθ)^2-3(cosθ+sinθ) y=6(sin[2θ]) と定義する。 Cで囲まれる領域の面積を求めよ。
127 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:03:20.74 ID:nLnx1y/v.net] >>107 >>xy を x^2−xy+y^2 で割った商をaとする。 >xy≦x^2−xy+y^2じゃね? >a=0、あまりx^2−xy+y^2になるよ? x≧y と仮定していて x≧3、y≧2 だから、x=y≧3 のときもあり得て、 このときは xy=x^2 は x^2−xy+y^2=x^2 で割り切れて a=1 となる。見落としがあった。 >94-96、>107 >>110 の >>>107 >いわれてみるとそうだな。>>94-96 は一体何だったんだろう。 > >>>94-96 >>互いに素ではなくない? >xy≦x^2−xy+y^2 だから、xy を x^2−xy+y^2 で割ったときの商は0で余りをaとする。すると、x^2−xy+y^2+a=xy、 >a≠0 とすると、(x−y)^2>−a で、(x−y)^2=−a に反し矛盾するから、a=0、故に。x^2−xy+y^2+a=xy。 のところは削除。>>106 の添え字を訂正して読めばいい。
128 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:04:52.60 ID:wiQUfdGa.net] >>84 具体的にゼータ関数のどの部分を参考にしましたか?
129 名前:132人目の素数さん [2018/09/19(水) 16:12:05.22 ID:fbWt698J.net] >>124 毎度の事だけど もう正解は出た後だから 無駄に長いだけで、間違いだらけな答案は要らないと思うの
130 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:21:42.40 ID:nLnx1y/v.net] >>94-96 (>>106 の訂正。主に、添え字のみ訂正。文章の内容は大体同じ。) >互いに素ではなくない? xとyが互いに素でないとする。 xとyに共通する素因数を p_1, …, p_n とする。 各 i=1,…,n に対して、p_i の指数を e_i とする。 xだけの素因数を q_1, …, q_m とする。各 i=1,…,m に対して、q_i の指数を a_i とする。 yだけの素因数を r_1, …, r_k とする。各 i=1,…,k に対して、r_i の指数を b_i とする。 xy を x^2−xy+y^2 で割った商をaとする。すると、a(x^2−xy+y^2)=xy、 x=(p_1)^{e_1}・…・(p_n)^{e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}、 y=(p_1)^{e_1}・…・(p_n)^{e_n}×(r_1)^{b_1}・…・(r_k)^{b_k} で、 x^2−xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_k}、 −(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、 xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} なので、a(x^2−xy+y^2)=xy は a( (q_1)^{2a_1}・…・(q_m)^{2a_m}−(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} ) =(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} となる。X=(q_1)^{a_1}・…・(q_m)^{a_m}、Y=(r_1)^{b_1}・…・(r_k)^{b_k} とおけば、a(x^2−xy+y^2)=xy は a(X^2−XY+Y^2)=XY となる。よって、X^2−XY+Y^2 は XY を割り切る。 仮に a>1 とすると a≧2 で、相加・相乗平均の不等式から、a(X^2+Y^2)≧2aXY>(a+1)XY だから、a(X^2−XY+Y^2)>XY となって、矛盾が生じる。よって、a=1 で、X^2−XY+Y^2=XY となる。 ここに、x^2−xy+y^2 と X^2−XY+Y^2、及び xy と XY は単項式としては同じ形。だから、上のような議論をすることは、実質的には >5-4-1):x^2−xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2−xy+y^2=xy としてよい。 と書くことと同じで、何も式の形としては変わっていない。
131 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:23:45.49 ID:nLnx1y/v.net] >>126 >>127 でもどうぞ。
132 名前:132人目の素数さん [2018/09/19(水) 16:38:05.23 ID:+AYEmU2z.net] Mathematica を使っています。 出力結果を人間が普通書くのと同じように出力させることはできないのでしょうか? https://imgur.com/vTWtvuD.jpg ↑例えば、これは3つの2次以下の多項式を直交化したものです。 出力結果は人間では考えられない形をしています。 人間が書くのと同じように出力してほしいという需要は非常に強いと思いますが、 なぜ、 Mathematica でそのような出力を選択するようなモードが
133 名前:ネいのでしょうか? そんなに実現するのが難しいのでしょうか? [] [ここ壊れてます]
134 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:38:09.23 ID:nLnx1y/v.net] >>94-96 >>127 の途中式の部分 >x^2−xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_k}、 > −(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} > +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、 >xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} なので、a(x^2−xy+y^2)=xy は >a( (q_1)^{2a_1}・…・(q_m)^{2a_m}−(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} ) >=(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} は >x^2−xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_m}、 > −(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} > +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、 >xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×(r_1)^{b_1}・…・(r_k)^{b_k} なので、a(x^2−xy+y^2)=xy は >a( (q_1)^{2a_1}・…・(q_m)^{2a_m}−(q_1)^{a_1}・…・(q_m)^{a_m}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} ) >=(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k} に訂正。
135 名前:132人目の素数さん mailto:sage [2018/09/19(水) 16:47:24.60 ID:08zNaTf2.net] >>129 "Mathematica TeX"や"Mathematica LaTeX"でググれば? 自分の環境も書かないでそれ以上の回答は期待できないよ、こっちもエスパーじゃないんだから
136 名前:132人目の素数さん [2018/09/19(水) 17:09:34.72 ID:+AYEmU2z.net] TeX の話ではなく、例えば、√を含んだ式が人間にとって違和感のある式になっているのを改善したいという話です。
137 名前:132人目の素数さん mailto:sage [2018/09/19(水) 17:15:00.45 ID:08zNaTf2.net] >>132 ggrks
138 名前:132人目の素数さん mailto:sage [2018/09/19(水) 17:56:18.08 ID:SDPqlDZx.net] >>123 x = 2(cosθ)^2-3(cosθ+sinθ) = cos(2θ)-3√2sin(θ+π/4)+1 y = 6sin(2θ) θ+π/4=φとおいて x = cos(2φ-π/2)-3√2sinφ+1 = sin(2φ)-3√2sinφ+1 = (2cosφ-3√2)sinφ+1 y = 6sin(2φ-π/2) = -6cos(2φ) x=x(φ),y=y(φ)とすると x(φ)=-x(-φ),y(φ)=y(-φ)より左右対称 0<φ<πでx<1、π<φ<2πで1<x 0<φ<π/2で x(φ)-x(π-φ) = 4cosφsinφ=2sin2φ > 0 y(φ) = y(π-φ) よって面積は 2∫[0,π/2]2sin2φ*12cos(2φ)dφ = 6
139 名前:134 [2018/09/19(水) 18:09:11.12 ID:SDPqlDZx.net] 計算は間違ってるけど方針はこれでいけると思う
140 名前:132人目の素数さん [2018/09/19(水) 18:10:10.37 ID:iMuVMgfo.net] >>118 あ、本当だ。 この三角形の組に厚みを足すだけでいいね。
141 名前:132人目の素数さん mailto:sage [2018/09/19(水) 18:44:38.10 ID:ACAGiZvC.net] >これまで知られていなかった定理の証明に成功した。 修士論文ならともかく、博士論文なら当たり前では 既知の結果の別証明なんて(それにより一般化・抽象化が出来て新規の結果が出てこない限り)殆ど研究業績として認められんがな
142 名前:132人目の素数さん mailto:sage [2018/09/19(水) 19:24:18.72 ID:ACAGiZvC.net] ああ、博士論文ではないのね それにしても論文なら新規の結果であって当然では
143 名前:132人目の素数さん mailto:sage [2018/09/19(水) 19:40:51.86 ID:08zNaTf2.net] >>137 >既知の結果の別証明なんて(それにより一般化・抽象化が出来て新規の結果が出てこない限り)殆ど研究業績として認められんがな おっとカントールへの悪口はそこまでだw
144 名前:132人目の素数さん [2018/09/19(水) 19:41:49.99 ID:yx5p5nJm.net] >>138 すごく頭悪そうなレスだな
145 名前:132人目の素数さん mailto:sage [2018/09/19(水) 21:02:43.94 ID:GeSf1kgj.net] >>99 y=1700*x-800+8000=(1700+300)x x=24 y=48000 じゃだめ?
146 名前:132人目の素数さん mailto:sage [2018/09/19(水) 21:44:48.43 ID:uE2uC1cX.net] 馬鹿みたいな質問なんですけど… 偏微分って結局何がしたいんですか? 何をどうしてるんですか? 何を求めたいのですか?
147 名前:132人目の素数さん mailto:sage [2018/09/19(水) 21:47:51.75 ID:JsWKDRjN.net] >>137-138 2004年にIBM Researchがパズルとして出題した問題だってよ https://www.research.ibm.com/haifa/ponderthis/download/Feb2004_dima.pdf asahi.5ch.net/test/read.cgi/newsplus/1537280200/549 asahi.5ch.net/test/read.cgi/newsplus/1537280200/608 asahi.5ch.net/test/read.cgi/newsplus/1537280200/653
148 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:18:58.18 ID:dHok8gN8.net] >>142 微分したいんですよ あとあなたの専攻はなんですか?
149 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:33:33.65 ID:uE2uC1cX.net] >>144 微分したいのは分かるんですよ。 例えば一次変数の微分は曲線の一部分を限りなく小さくして直線として考え求めるっていう目的(?)があるじゃないですか 2変数関数は偏微分して何が求まるのか分からないんですよ
150 名前:132人目の素数さん [2018/09/19(水) 22:34:02.34 ID:S18XlP4A.net] 任意の2次の正方行列Xに対してAX=XAを満たす行列Aはどんだ行列か。 途中計算も含めてお願いします
151 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:39:58.67 ID:uE2uC1cX.net] >>146 単位行列の定数倍かな Aの行列をabcd Xの行列をefghとして等式を満たす値を見つける
152 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:44:14.87 ID:dHok8gN8.net] >>145 軸方向の接線の傾きを求めてます
153 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:49:17.88 ID:uE2uC1cX.net] >>148 馬鹿ですみません。 もう少し詳しくお願いします
154 名前:132人目の素数さん mailto:sage [2018/09/19(水) 22:55:44.82 ID:dHok8gN8.net] >>149 曲面に接する接面ができますよね その面に上に直線を考えることができますけど、これはいろいろありますよね xで偏微分する時は、x軸が正射影になるような直線を考えます 偏微分は直線の傾きを表します めんどくさいですよね? 混乱するだけなので、普通に多変数のときの微分は偏微分って言うんだなーでいいんですよだから
155 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:02:56.59 ID:PaYlAUvO.net] 1からNの数字の中から連続するk個の塊をm個取る組み合わせ数をN, k, mで表せ ただし重複はなしとし、N >= k*m とする (k=1のときは通常の組み合わせ C[N, m]) 連続するk個の塊というのは、例えばN=5,k=2の場合 (1,2), (2,3), (3,4), (4,5) のことで、ここでさらにm=2だったら (1,2)と(3,4), (1,2)と(4,5), (2,3)と(4,5) の3組が答えになります よろしくおねがいします
156 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:03:58.24 ID:uE2uC1cX.net] >>150 あー。なんとなーく分かりました 曲面をxやyを固定して切断した時に出来る曲線の傾きって感じですか? 面倒ですね…w しかし数学科なものでどういう意味かちゃんと理解しときたいのです…
157 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:11:06.77 ID:s7uju5jz.net] 死後の世界ってありそうだよな・・・・。
158 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:13:17.81 ID:yy7XD51R.net] 数学科なら、たとえF欄以下だったとしてもここできくより担当の講師かTAにきいた方がいいと思うが。
159 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:13:29.59 ID:dHok8gN8.net] >>152 あと方向微分とかいうのも調べておきましょう 偏微分は個人的には図形的イメージより数式でイメージできた方が良いと思います
160 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:20:29.57 ID:4b08hYvS.net] >>151 C[N-m*(k-1),m] でいいんじゃない?
161 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:21:22.93 ID:uE2uC1cX.net] >>155 わかりました。ありがとうございます
162 名前:132人目の素数さん mailto:sage [2018/09/19(水) 23:42:03.84 ID:PaYlAUvO.net] >>156 ありがとうございます 計算してみるとそれで合っていそうなんですが どういうふうに考えてその式を導いたのでしょうか? よろしければ考え方を教えてくださいm(_ _)m
163 名前:132人目の素数さん mailto:sage [2018/09/20(木) 00:09:33.17 ID:nSUDamRJ.net] 例えば、N=12、k=3、m=2とすると、 ○○○○○○○○○○○○ → ○○○●●●○●●●○○ のような選び方がいくつあるかという問題だけど、●●●を■に置き換えると ○○○■○■○○ となる。逆に ○○○○○○○○ から、二つを選ぶ。例えば、 ○■○○○○■○ とすると、ここで■を●●●に置き換えれば、 ○●●●○○○○●●●○ になる。このように、どちら側にも変換可能。 この変換の時、いくつ減らせばいいかを考えると、●●●が■になるのだから、 つまり、k個を1個にするので、(k-1)個減り、 それが、m箇所あるので、m*(k-1)減ることになる。これをNから引けばよい。 ということで、C[N-m*(k-1),m]が出てくる
164 名前:132人目の素数さん mailto:sage [2018/09/20(木) 00:17:47.42 ID:zRtMQ4MM.net] >>159 なるほど! すごくわかりやすいです! 図まで書いてくれて本当にありがとうございます おかげさまで完全に理解できました
165 名前:132人目の素数さん mailto:sage [2018/09/20(木) 01:57:40.94 ID:7+n0UQHR.net] >>90 l ≦ q-n とする。 >>101 の画像は 要するに S(q, l, n) = Σ[j=l, q-n] (-1)^{j-l} C(q, n+j) C(j, l) = Σ[j=l, q-n] (-1)^{j-l} {C(q-1, n+j) + C(q-1, n+j-1)} C(j, l) = Σ[j=l-1, q-n-1] (-1)^{j-l} C(q-1, n+j) C(j, l) ← C(l-1,l)=C(q-1,q)=0 + Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j+1, l) ← jをずらす = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) {C(j+1,l) - C(j, l)} = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j, l-1) = S(q-1, l-1, n) を示す式で、これから S(q, l, n) = S(q-l, 0, n), となる。 S(q', 0, n) = Σ[j=0, q'-n] (-1)^j C(q', n+j) C(j, 0) = Σ[j=0, q'-n] (-1)^j C(q', n+j) = Σ[j=0, q'-n] (-1)^j {C(q'-1, n+j) + C(q'-1, n+j-1)} ← C(q'-1,q')=0 = C(q'-1, n-1), から S(q, l, n) = C(q-l-n, n-1),
166 名前:132人目の素数さん mailto:sage [2018/09/20(木) 02:16:08.86 ID:7+n0UQHR.net] >>161 訂正 q-l ≧n≧1 のとき S(q-l, 0, n) = C(q-l-1, n-1), q-l = n のとき 1, n=0 のとき S(q-l, 0, n) = (1-1)^(q-l) = δ_{q-l, n} でした。
167 名前:132人目の素数さん mailto:sage [2018/09/20(木) 03:46:06.21 ID:7+n0UQHR.net] >>134 >>135 蛇足ですが… 0<φ<π/2 で x(φ) = √{1-(y/6)^2} -3√(1+y/6) +1, x(π-φ) = -√{1-(y/6)^2} -3√(1+y/6) +1, x(φ) - x(π-φ) = 2√{1-(y/6)^2} = (1/3)√(36-yy), y = -6cos(2φ), dy = 12sin(2φ)dφ, S/2 = (1/6)∫[-6, 6] 2√(36-yy) dy = (1/6) (半径6の円の面積) = 6π, S = 12π.
168 名前:132人目の素数さん mailto:sage [2018/09/20(木) 04:56:34.13 ID:7+n0UQHR.net] >>117 x^3 -3axy +y^3 = 0, Descar? x^3 -3axy +y^3 = (x+y+a){xx-xy+yy-a(x+y)+aa} - a^3, から ∴ x+y+a = a^3 /{xx-xy+yy -a(x+y) +aa} → 0, |x|+|y|→∞ ∴ 漸近線は x+y+a = 0,
169 名前:132人目の素数さん mailto:sage [2018/09/20(木) 05:10:52.38 ID:Ajky0sy3.net] 媒介変数tを用いて表されるxy平面上の曲線 x=3cos(t+π/4)+4sin(t) y=cos(t-π/3)+sin(t+π/6) を考える。 以下、実数tは0≦t<2πの範囲を動くものとする。 xの最大値は( ア )であり、yの最小値は( イ )である。 dy/dx=0となる点は全部で( ウ )個ある。 したがって、Cが自己交差する点は全部で( エ )個ある。
170 名前:132人目の素数さん mailto:sage [2018/09/20(木) 07:40:17.52 ID:PyzagyfR.net] >>165 グラフを描いてみた。 i.imgur.com/XnvmouL.png
171 名前:132人目の素数さん mailto:sage [2018/09/20(木) 07:51:03.09 ID:peDjPlNM.net] >>143 自分でも解けないもんパズルにすなや
172 名前:132人目の素数さん mailto:sage [2018/09/20(木) 08:26:45.49 ID:/JkfMF/D.net] 1/sinxの不定積分をy=cosxで置換してやってみたのですが 結果を微分してももとに戻りません…… どこで間違ったのか教えて下さいm(_ _)m https://i.imgur.com/gnvlVEr.jpg
173 名前:132人目の素数さん mailto:sage [2018/09/20(木) 08:27:45.69 ID:/JkfMF/D.net] 最後は誤記で、-1/sinxとなって、正負が逆になってしまうということです。
174 名前:132人目の素数さん mailto:sage [2018/09/20(木) 08:37:58.27 ID:14zKVOkG.net] >>169 ならんけど 微分の計算過程を全部上げろ ていうか単純計算の確認はwolframalphaでやれ
175 名前:132人目の素数さん mailto:sage [2018/09/20(木) 09:30:20.77 ID:sA3mNheb.net] さすがにこのレベルで先生に頼っちゃダメだとは思うけど、ここに頼るよりまだマシかなぁ… 積分はあってる。 微分で(少なくとも)2カ所間違えてる。
176 名前:132人目の素数さん mailto:sage [2018/09/20(木) 09:36:46.07 ID:/JkfMF/D.net] f(x)が微分可能だとして g(x)=log|f(x)| を微分すると 一般にg'(x)=f'(x)/f(x) これは合っていますよね? 2/sinx を微分するとlog|1 - cosx|ーlog|1 + cosx| +C (←模範解答) =log|cosx - 1|ーlog|cosx +1| +C log|cosx - 1|ーlog|cosx +1| を微分すると -sinx / (cosx - 1) +sinx / (cosx +1) =sinx *( (1/cosx + 1) - (1/cosx - 1)) =sinx * ( 2/-sin^
177 名前:2x) = -2/sinx となって正負が逆転したのですが どこか計算ミスがあると思うんですが、どこがおかしいのでしょうか? すみませんがお願いしますm(_ _)m [] [ここ壊れてます]
178 名前:132人目の素数さん mailto:sage [2018/09/20(木) 09:38:54.14 ID:/JkfMF/D.net] あれ、普通に引き算間違えてますね…… もうダメだ
179 名前:132人目の素数さん mailto:sage [2018/09/20(木) 09:41:34.15 ID:sA3mNheb.net] もう一つどうしても言わせてくれ 絶対値は飾りっぽいけど、飾りじゃないからな。log(cosx-1)とかはまだ使っちゃダメだぞ
180 名前:132人目の素数さん mailto:sage [2018/09/20(木) 09:44:38.54 ID:7+n0UQHR.net] >>168 >>169 log|(cos(x)-1)| = log(1-cos(x)) = log(cos(x)-1) +iπ, ですが、このiπは積分定数に繰り込めるので、結果に影響はないでしょう。 しかし 1/(cos(x)+1) - 1/(cos(x)-1) の計算ミスで符号が反対になったのはより深刻です。 簡単な分数計算ができてないのがイタイ。
181 名前:132人目の素数さん [2018/09/20(木) 10:38:17.82 ID:TFednSDK.net] >>146 146です。 この問題の行列の基本変形がわからないので3つめの変形の解説をお願いします https://i.imgur.com/q4GIMLA.jpg
182 名前:132人目の素数さん mailto:sage [2018/09/20(木) 11:57:41.53 ID:Icym1syH.net] 0≦a<1でこちらの積分の値がπa^(n-1)になることを証明しろという問題です 高校までの変数変換で解けるらしいのですがわからないのでどうかお願いします https://i.imgur.com/JLCVzWS.jpg
183 名前:132人目の素数さん mailto:sage [2018/09/20(木) 13:23:17.83 ID:z1K1qGzT.net] >>177 分母を平方完成→因数分解→部分分数分解→和積公式 分母と分子見比べてf'/f or f(g)g' の形を見つける
184 名前:132人目の素数さん mailto:sage [2018/09/20(木) 14:34:11.98 ID:JTFgvHMK.net] 霊能者や霊媒師が、自殺をした人の霊は猛烈に苦しみ、とてつもなく後悔していると言いますが、 やはり、死後の世界はあるということなのでしょうか?
185 名前:132人目の素数さん mailto:sage [2018/09/20(木) 15:06:58.11 ID:CBHJ7d6o.net] >>179 死後は二重 4✕5=20
186 名前:132人目の素数さん [2018/09/20(木) 15:23:03.56 ID:IpTsImPW.net] >>179 いいことを教えてやろう。 実は今生きているこちらが死後だ。 幻の大地!
187 名前:132人目の素数さん mailto:sage [2018/09/20(木) 16:06:37.68 ID:7+n0UQHR.net] >>165 >>166 長軸 t = 0.830291 (x, y) = (2.81788 1.953136) a = 3.42858 傾角α = 0.60611 tanα = 0.69315 sinα = 0.56968 cosα = 0.82187 短軸 t = 2.401087 (x,y) = (-0.298341 0.430414) b = 0.523702 傾角β = -0.96468 tanβ = -1.44269 sinβ = -0.82187 cosβ = 0.56968 離心率 ε = √{1-(b/a)^2} = 0.988265 x・cosβ + y・sinβ = b・cos(t+0.740505) -x・sinβ + y・cosβ = a・sin(t+0.740505)
188 名前:132人目の素数さん mailto:sage [2018/09/20(木) 17:02:31.16 ID:Ir2DZzfZ.net] この数式にピンと来た日、募集。 xn--o9j0bk1ld5hc9kqal9d7xxd.jp/detail/?id=3936 の数式って何ですか?
189 名前:132人目の素数さん [2018/09/20(木) 21:50:27.40 ID:rK7EjC0f.net] この人のカラダはどうしてこんなにエロいんですか? 賢い人教えて下さい https://i.imgur.com/PEgdK5S.jpg https://i.imgur.com/E7h8rIE.jpg https://i.imgur.com/AIYc7ZD.jpg https://i.imgur.com/GF6QXXC.jpg https://i.imgur.com/T6nyTJL.jpg https://i.imgur.com/z1kmc68.jpg
190 名前:132人目の素数さん [2018/09/20(木) 21:51:14.77 ID:rK7EjC0f.net] https://i.imgur.com/QJ0sT38.jpg https://i.imgur.com/F4EEYaX.jpg https://i.imgur.com/tIkOTZU.jpg https://i.imgur.com/QAKdRjp.jpg https://i.imgur.com/ihEgGo8.jpg https://i.imgur.com/d7HPdIJ.jpg
191 名前:132人目の素数さん [2018/09/20(木) 21:52:24.79 ID:rK7EjC0f.net] https://i.imgur.com/bknzLrh.jpg https://i.imgur.com/f96RYdl.jpg https://i.imgur.com/2TPTRv9.jpg https://i.imgur.com/LuMIwut.jpg https://i.imgur.com/Or3Ep4L.jpg https://i.imgur.com/oteWFMr.jpg
192 名前:132人目の素数さん [2018/09/20(木) 21:53:17.36 ID:rK7EjC0f.net] https://i.imgur.com/Sd8kK4i.jpg https://i.imgur.com/Uj3aNBe.jpg https://i.imgur.com/XaMujaL.jpg https://i.imgur.com/iNcd0PR.jpg https://i.imgur.com/VTRGWmO.jpg https://i.imgur.com/wLIiNbU.jpg
193 名前:132人目の素数さん [2018/09/20(木) 21:54:11.60 ID:rK7EjC0f.net] https://i.imgur.com/dQMSCZ4.jpg https://i.imgur.com/8SslCPW.jpg https://i.imgur.com/wGJQt4c.jpg https://i.imgur.com/V0wKShH.jpg https://i.imgur.com/77ARhXe.jpg https://i.imgur.com/ypthuQt.jpg
194 名前:132人目の素数さん [2018/09/20(木) 21:55:01.43 ID:rK7EjC0f.net] https://i.imgur.com/WLikHpC.jpg https://i.imgur.com/tzo0q6H.jpg https://i.imgur.com/mgu8Kx0.jpg https://i.imgur.com/WVQTRMy.jpg https://i.imgur.com/rQekh25.jpg
195 名前:132人目の素数さん mailto:sage [2018/09/20(木) 22:10:56.69 ID:+zFxMZL1.net] https://s3-ap-northeast-1.amazonaws.com/asset.bengo4.com/topics/8084.jpg 不快な画像を貼り付けるユーザーに対し、 匿名掲示板「ガールズちゃんねる」は1月16日、 法的措置をとることを決定した アンケートサイト「SurveyMonkey」上で発表し、 サイトからリンクしていた(現在公開終了) 運営会社ジェイスクエアードは 「弊社が公表したもので間違いございません」と答えたが、 それ以外については回答を控えるとしている 具体的には、 ゴキブリの画像を大量投稿する特定ユーザーがいるとのこと 警告や投稿禁止措置をとっても、IPアドレスや端末情報を変更し、 投稿を続けているそうだ ガールズちゃんねるは、このユーザーに対し、 「威力業務妨害罪」での刑事告訴と、 民事では「業務妨害」による損害賠償請求をする予定で、 顧問弁護士が手続きを進めているという
196 名前:132人目の素数さん [2018/09/20(木) 22:15:49.85 ID:uGl5dFIN.net] >>190 申し訳ございませんでした。 失礼致します。
197 名前:132人目の素数さん [2018/09/21(金) 00:28:15.09 ID:0/n0sIEP.net] https://mevius.5ch.net/test/read.cgi/lovesaloon/1537343184/l50 これでも読んどけ! 童貞諸君!
198 名前:132人目の素数さん [2018/09/21(金) 00:44:00.60 ID:kiFkt26+.net] μ を (0, ∞) 上の σ 有限測度とする。∫[0, ∞] min(x, 1) μ(dx) < ∞ ならば lim[x → 0+0] x μ(x, ∞)=0 であることを証明せよ。 バカなのでわかりません。教えて下さい。お願いします。
199 名前:132人目の素数さん mailto:sage [2018/09/21(金) 00:49:26.68 ID:7TwUYg+4.net] >>178 それがわからないのです……
200 名前:132人目の素数さん mailto:sage [2018/09/21(金) 02:26:00.75 ID:rgDs3VYK.net] >>193 その主張は正しくないし何を写し間違えたのかもよく分からん。 もう一度問題文を読み直してくれ。
201 名前:132人目の素数さん mailto:sage [2018/09/21(金) 07:03:13.90 ID:IY8FoIFx.net] >>190 これいいな、保存しておこう。
202 名前:学術 [2018/09/21(金) 09:14:38.90 ID:AzK+Q3eB.net] ゼロというのは仮の仮象の数だと考えるべきだろ。無限とゼロはまた違うんだけど、 親和性が在るようでやはり異質だと思うよ。元をたどればやはり同じではないだろう。 交差して混ざり合っているかもしれないけど。あるところでは。ある時間に。
203 名前:193 [2018/09/21(金) 09:33:14.44 ID:kiFkt26+.net] >>195 え?正しくないんですか?何か反例があるってことですか?問題文はこれで会ってる と思います。反例があったら教えて下さいm(_ _)m
204 名前:132人目の素数さん mailto:sage [2018/09/21(金) 11:42:03.62 ID:L4/KH63z.net] 自分は地理感覚が凄く悪くて、道路の名前とか位置関係とかがさっぱり分からないので、 もの凄く困っています。 これじゃあ車を運転し
205 名前:トどこかに行くことすらできません。 自分の知っている範囲内ならなんとかなるのですが、知らない所だとどっちに行ったりすれば良いのかすら分かりません。 そこで質問があるのですが、そういう地理感覚などを鍛えたり理解したりできるようになるための学校みたいな所は無いでしょうか? 教えてください。 [] [ここ壊れてます]
206 名前:132人目の素数さん mailto:sage [2018/09/21(金) 11:50:12.27 ID:0uIdegM1.net] 固有多項式が同一である行列たちはどのような行列たちなのでしょうか?
207 名前:132人目の素数さん mailto:sage [2018/09/21(金) 12:24:42.61 ID:rgDs3VYK.net] >>198 μ(dx) = x^(-1.99) dx
208 名前:132人目の素数さん mailto:sage [2018/09/21(金) 13:44:47.84 ID:ubQRlnLb.net] >>200 固有値が同じ
209 名前:学術 [2018/09/21(金) 14:01:43.93 ID:AzK+Q3eB.net] 田植えや軍隊の列は限界文明なのかな。
210 名前:132人目の素数さん [2018/09/21(金) 14:05:01.18 ID:0uIdegM1.net] >>202 { {1, 0, 0}, {0, 1, 0}, {0, 0, -1} } と { {-1, 0, 0}, {0, -1, 0}, {0, 0, 1} } の固有値は 1 と -1 ですが、それらの固有多項式は異なります。
211 名前:132人目の素数さん mailto:sage [2018/09/21(金) 14:34:49.07 ID:b65ucfBh.net] >>182 6(3-2√2)sin(2t) + (-9 +12√2 +2√3)cos(2t) = 0, より tan(2t) = -{(7/2) +3√2 +√3 +(2/3)√6} = -11.1076846565436145 長軸 t = 0.830291020343980 π/2-t = 0.7405053064509164 (x, y) = (2.817877632166427 1.953135730826556) a = 3.428581854483754 傾角α = 0.60609558521919 tanα = 0.693122976147462 短軸 t = 2.401087347138877 π-t = 0.7405053064509164 (x, y) = (-0.298333540955400 0.430419350132652) b = 0.5237019368186468 傾角β = -0.964700741575706 tanβ = -1.442745420961562 aa + bb = 29 - 12√2 = 12.02943725152286 ab = (3√2 +3√6 -8)/2 = 1.795554957734410 α-β = π/2,
212 名前:132人目の素数さん mailto:sage [2018/09/21(金) 14:50:07.02 ID:b65ucfBh.net] >>200 ・相似な行列 ・三角行列で、対角要素が同じ(か入替えた)もの。 (固有ベクトルの情報はたぶん関係ない…)
213 名前:132人目の素数さん mailto:sage [2018/09/21(金) 16:03:33.27 ID:/rLfReAr.net] 教えて頂きたいです。お願いします。 https://i.imgur.com/sZr9Hb4.jpg https://i.imgur.com/sqGd3qF.jpg
214 名前:132人目の素数さん mailto:sage [2018/09/21(金) 16:04:58.70 ID:9KpTXP1n.net] >>200 「固有値が(重複度も込めて)同じ」というのが普通. 気取っていうならば,「ジョルダン分解の半単純部分が相似」.
215 名前:学術 [2018/09/21(金) 16:37:21.28 ID:AzK+Q3eB.net] うーん数学の少数は乱数化しないと、植物や動物だけじゃないけど、 反抗期を迎えてしまうだろう。誰もいないのに。
216 名前:学術 [2018/09/21(金) 16:38:01.94 ID:AzK+Q3eB.net] 解までいくことだよ。それで合うことも少ない事であるなあ。
217 名前:学術 [2018/09/21(金) 17:34:25.41 ID:AzK+Q3eB.net] 心理はいいけど、精神の数学術への適応や、返し、出来栄えが最悪なのが 現代数学の一つの分析哲学、言語記号論的 なテーマになりえると思う。
218 名前:学術 [2018/09/21(金) 17:55:36.24 ID:AzK+Q3eB.net] ダークカオス、の方が有利ということだよな。ラightもたまには。
219 名前:132人目の素数さん mailto:sage [2018/09/21(金) 18:05:30.84 ID:b65ucfBh.net] >>165 (ア) √(25-12√2), t = 2arctan[(8-3√2)/{3√2+2√(25-12√2)}] = 0.72481223 (イ) -2, t = 4π/3, (ウ) 2, t = π/3、4π/3. (エ) 0
220 名前: y = 2cos(t -π/3) = 2sin(t+π/6), [] [ここ壊れてます]
221 名前:132人目の素数さん [2018/09/21(金) 18:28:52.84 ID:/sYU4+YY.net] 東大法学部で断然トップの人は、どれくらい数学や物理学ができますか? 文系なので大したことないですか?
222 名前:学術 [2018/09/21(金) 18:35:36.95 ID:AzK+Q3eB.net] 数学は数学を集めていないから、スレ違う二人という意味で、国立の法学部 も優秀。僕はストラトプールとか ドレッシー デンぐらいしか知りません。 世界ランキングでも上位の下級ぐらいに若い才能があって・・・・。再上位は 隠し子でしょう。
223 名前:132人目の素数さん [2018/09/21(金) 18:45:00.78 ID:0/n0sIEP.net] 成立学園1-F担任の岩崎柾典先生がヤバイ。 成立学園に勤めるのは4年目。 担当科目は数学。 女子テニス部の顧問をしている。 何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたらしく、女子中学生とsexしたことがバレて、飛ばされたから。 今でも教師を続けているのがすごく不思議な感じだよ。 岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては? 嘘だと思うなら、電話してみてね! 03-3902-4411 https://mevius.5ch.net/test/read.cgi/lovesaloon/1537343184/l50 https://2ch.vet/re_maguro_poverty_1535964420_a_0 https://ja-jp.facebook.com/masaoki.iwasaki.9 https://twpro.jp/kainoko1 https://www32.atwiki.jp/wslc/pages/21.html https://twitter.com/mas20285 https://twitter.com/keepmathtop https://twitter.com/K46_N700_hikari https://i.imgur.com/VNvpdr1.jpg https://i.imgur.com/GuhllEE.jpg https://i.imgur.com/13xM5pA.jpg https://i.imgur.com/EKFWYTU.jpg https://i.imgur.com/YyEMHyP.jpg https://i.imgur.com/eLIWo6B.png https://i.imgur.com/KxU6xO2.jpg https://i.imgur.com/REbOimQ.jpg (deleted an unsolicited ad)
224 名前:132人目の素数さん mailto:sage [2018/09/21(金) 19:29:18.14 ID:0uIdegM1.net] 2次形式の対角化をする際、なぜ、直交変数変換にこだわるのですか?
225 名前:132人目の素数さん mailto:sage [2018/09/21(金) 20:23:46.22 ID:1wE0lhFg.net] 計算量が重すぎる逆行列の計算が避けられるから
226 名前:132人目の素数さん [2018/09/21(金) 21:44:21.94 ID:0uIdegM1.net] P を正則行列とする。 Inverse[P] * A * P が対角行列になるような P を求めるということは考えますが、 Transpose[P] * A * P が対角行列になるような P はなぜ考えないのでしょうか?
227 名前:132人目の素数さん mailto:sage [2018/09/21(金) 22:00:46.92 ID:Et5XzdMw.net] 対角化は累乗が簡単に求められるからするんです A^2=PP^(-1)APP^(-1)APP^(-1)=PΛΛP^(-1) 転置でやっても面白いこと起きませんよね
228 名前:132人目の素数さん mailto:sage [2018/09/21(金) 22:13:42.26 ID:rgDs3VYK.net] >>219 Aが実対称行列のとき Transpose[S] * A * S が±1,0からなる対角行列になるようなSが存在する(シルベスターの標準形)
229 名前:132人目の素数さん mailto:sage [2018/09/21(金) 22:32:55.10 ID:1wE0lhFg.net] >>219 自己同型じゃないから
230 名前:132人目の素数さん [2018/09/21(金) 23:33:51.12 ID:Zy8fxgFP.net] 「概念」は存在すると言えるのでしょうか? まず、「事実」は存在すると言えるのかを考えたいと思います。 例えば、目の前にリンゴが全部で10個あるとします。 そうすると、「リンゴが全部で10個あるという事実」は存在すると言えるのでしょうか? さらに言うと、「リンゴがあるという事実」は存在すると言えるのでしょうか? 目の前にあるリンゴは、物理的に姿形のあるモノとして存在しますが、 そのリンゴがあるという事実はどう考えるのが妥当なのでしょうか?
231 名前:132人目の素数さん [2018/09/21(金) 23:46:54.06 ID:xIGgPrYx.net] >>223 哲学板行け
232 名前:132人目の素数さん [2018/09/22(土) 01:08:29.78 ID:U16PLyIz.net] 自殺して無になってもう二度と有になりたくない。
233 名前:132人目の素数さん mailto:sage [2018/09/22(土) 05:35:06.20 ID:OM3JlOD/.net] >>74 とり
234 名前:あえず、n=1〜4で一致する式ができた ∵q={2^n+2^(n−1)+n−4}/{2^(n+2)+5n−14} n=50のとき、 q=844424930131991/2251799813685366 [] [ここ壊れてます]
235 名前:132人目の素数さん mailto:sage [2018/09/22(土) 12:33:04.37 ID:brB6HAEO.net] 位相空間Xがコンパクトかつハウスドルフならば正規空間であることの証明ですが これって選択公理使ってますか?
236 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:08:17.22 ID:brB6HAEO.net] >>227 自己解決しました 選択公理使いませんね
237 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:17:11.20 ID:E+fu1y5y.net] 今日も「解いた側」の圧勝かぁ・・・。 毎日毎日、ラクラク解ける問題ばかりだから常勝なんだよね・・・。 たまには、解けない解けないっと悩んで負けてみたい、それが今の切実な悩み。
238 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:17:32.96 ID:P0TUp6em.net] >>224 哲学に相手してもらえないからだろ
239 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:19:29.31 ID:brB6HAEO.net] >>229 では https://rio2016.5ch.net/test/read.cgi/math/1534342085/649 お願いします
240 名前:132人目の素数さん [2018/09/22(土) 13:36:06.55 ID:giDGx0lh.net] >>231 全ての階に1台ずつ置いとけ
241 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:40:35.45 ID:4SLlyIcr.net] >>207 [9] △OABにおいて、辺OAを 1:3 に内分する点をC, 辺OBを 3:1 に内分する点をDとし、CDを 2:1 に外分する点をEとし、↑OA = ↑a, ↑OB = ↑b とする。 ↑OE を↑a, ↑b で表わせ。 [10] 平行四辺形OABCにおいて、↑OA = ↑a, ↑OC = ↑b とする。 次のベクトルを、↑a, ↑b を用いて表わせ。 (1) ↑AB (2) ↑CA (3) BCの中点をDとしたときの ↑OD (4) AB を 2:1 に内分する点Eに対する ↑OE (5) ↑DE (6) DEの中点Fに対する ↑OF ↑OC を ↑c にしないセンスがすごい…
242 名前:132人目の素数さん mailto:sage [2018/09/22(土) 13:59:22.52 ID:4SLlyIcr.net] >>36 x -1/3 = X, y -1/3 = Y とおくと x^3 + y^3 - (xx+42xy+yy) = X^3 + Y^3 -42XY -(43/3)(X+Y) -130/27, チョトちがう
243 名前:学術 [2018/09/22(土) 13:59:34.99 ID:O8zrOAbJ.net] https://www.youtube.com/watch?v=GGBm9gTY2NU https://www.youtube.com/watch?v=avmjunRX_xo 文学などは音楽をかけるとすらすら解ける気がするが。
244 名前:132人目の素数さん mailto:sage [2018/09/22(土) 15:03:59.24 ID:4SLlyIcr.net] >>177 >>178 sinθ / (1-2a・cosθ+aa) = (1/2i){e^(iθ) - e^(-iθ)} / {[1-a e^(iθ)][1-a e^(-iθ)]} = (1/2ai) { 1/[1-a e^(iθ)] - 1/[1-a e^(-iθ)] } = (1/2ai)Σ[m=0,∞] {a e^(iθ)}^m - Σ[m=0,∞] {a e^(-iθ)}^m (← |a|<1) = (1/2i)Σ[m=0,∞] a^{m-1} {e^(imθ) - e-(-imθ)} = Σ[m=0,∞] a^{m-1} sin(mθ) とフーリエ展開する。 和積公式で ∫[0,2π] sin(mθ) sin(nθ) dθ = (1/2)∫[0,2π] {cos((m-n)θ) - cos((m+n)θ)}dθ = π(δ_{m-n,0} - δ_{m+n,0})
245 名前:132人目の素数さん mailto:sage [2018/09/22(土) 17:28:12.84 ID:6MDoWgOF.net] ((sinsinθ),(coscosθ))(0≦θ<2π)の軌跡は?
246 名前:132人目の素数さん mailto:sage [2018/09/22(土) 17:44:08.01 ID:E+fu1y5y.net] わからないんですね
247 名前:132人目の素数さん mailto:sage [2018/09/22(土) 18:28:26.02 ID:OM3JlOD/.net] N組のカップル(合わせて2N人)が無作為に横一列に並ぶ どのカップルについても彼氏と彼女が隣り合わない確率を求めよ N組のカップルをnとおくと 漸化式があっているかどうかわからないけれど n=5まで一致する式ができた 10n^3−n^4−35n^2+62n+12{2^(n−1)+2^n−
248 名前:6} q=―――――――――――――――――――――――― 2{10n^3−n^4−35n^2+80n+6{2^(n+2)−18}} [] [ここ壊れてます]
249 名前:132人目の素数さん mailto:sage [2018/09/22(土) 19:05:29.32 ID:yCmk73wm.net] >>239 n=1で0にならんじゃん。
250 名前:132人目の素数さん mailto:sage [2018/09/22(土) 19:12:23.02 ID:ouXSnsFP.net] n=∞で、0になってくれてない気もする
251 名前:132人目の素数さん mailto:sage [2018/09/22(土) 19:31:12.05 ID:OM3JlOD/.net] wolframだとちゃんとn=1で0になる
252 名前:132人目の素数さん [2018/09/22(土) 23:16:08.17 ID:7sPQU0EZ.net] 東大数学科で断然トップの人とビル・ゲイツはどっちの方が頭が良いですか?
253 名前:132人目の素数さん mailto:sage [2018/09/22(土) 23:26:37.47 ID:eYxhvzOT.net] >>239 >漸化式があっているかどうかわからないけれど この時点で0点
254 名前:132人目の素数さん mailto:sage [2018/09/22(土) 23:29:02.75 ID:brB6HAEO.net] 数学というかTeXに関する質問ですが 数式環境内で部分的に地の文にするにはどうしたらいいですか? 例えば、 abc $x = y. abc f(x)$ と書いた場合、1行目と2行目ではabcの書体・サイズが変わりますが、2行目のabcも1行目のabcと同じ出力にしたいんです。 $x = y.$ abc $f(x)$ という書き直しじゃなく $$は増やさずに何らかのコマンドで出来ませんか?
255 名前:132人目の素数さん mailto:sage [2018/09/22(土) 23:32:44.95 ID:s7wd8owS.net] >>245 \section{TeX の時間} %%% 第 XIII 節 %%% rio2016.5ch.net/test/read.cgi/math/1532439476/ amsmath.sty も使っているなら \text{abc} でいけるんじゃね
256 名前:132人目の素数さん mailto:sage [2018/09/22(土) 23:48:18.71 ID:brB6HAEO.net] >>246 どうもです。
257 名前:132人目の素数さん [2018/09/22(土) 23:50:26.48 ID:JkJqy3uR.net] リアルタイムに TeX の出力結果が確認できるソフトってありますか?
258 名前:132人目の素数さん [2018/09/23(日) 07:41:08.23 ID:xBCN748C.net] シルベスターの慣性法則の「慣性」とは何ですか?
259 名前:132人目の素数さん mailto:sage [2018/09/23(日) 11:00:29.56 ID:+iiypNk7.net] 電車の中でジャンプしても後方のしきりに激突しないこと
260 名前:132人目の素数さん mailto:sage [2018/09/23(日) 11:58:52.00 ID:t0wrmxFm.net] お願いします https://i.imgur.com/sqGd3qF.jpg https://i.imgur.com/sZr9Hb4.jpg
261 名前:132人目の素数さん mailto:sage [2018/09/23(日) 12:17:16.99 ID:PH84y1u6.net] ここはわからない問題を書くスレッドです お願い事をするスレでも誰かに答えてもらえるスレでもありません
262 名前:132人目の素数さん mailto:sage [2018/09/23(日) 12:47:41.41 ID:vx+NXTHe.net] 表現は何でもいいんだよ
263 名前:132人目の素数さん mailto:sage [2018/09/23(日) 13:31:14.25 ID:n07erhZD.net] >>237 y = cos(√[1-{arcsin(x)}^2]) ≒ Σ[k=0,∞] c_k x^{2k} (|x|≦sin(1)) c_0 = cos(1), c_1 = (1/2)sin(1), c_2 = (1/24){7sin(1) -3cos(1)} c_3 = (7/720){22sin(1)-15cos(1)} c_4 = (1/13440){2427sin(1)-2114cos(1)} たるんだ放物線? >>207 >>251 >>233 を参照。
264 名前:132人目の素数さん mailto:sage [2018/09/23(日) 13:45:25.70 ID:n07erhZD.net] >>210 先従解始(先づ解より始めよ) …… 「戦国策」 (大意) 逆向きに解くんでしょうね。 >>237 y = cos(√[1-{arcsin(x)}^2]) ≒ 0.540302 + 0.420735x^2 + 0.177891x^4 + 0.101187x^6 + 0.0669681x^8 + …
265 名前:132人目の素数さん mailto:sage [2018/09/23(日) 16:01:10.87 ID:dVHamUso.net] なぞなぞです。 お願いします。 https://i.imgur.com/RjRDumz.jpg
266 名前:132人目の素数さん mailto:sage [2018/09/23(日) 16:25:50.11 ID:dVHamUso.net] >>256 自決しました
267 名前:132人目の素数さん mailto:sage [2018/09/23(日) 16:29:59.78 ID:uN5miIY2.net] 四色定理「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」 この命題中の「平面上のいかなる地図」が地球儀のような「球面上のいかなる地図」となった場合、何色あれば塗り分けるのに十分なんでしょう?
268 名前:132人目の素数さん [2018/09/23(日) 16:54:40.83 ID:ZHLzUkgh.net] 5色…とか? 最初の平面の地図だ
269 名前:と、地図の外側のスペースは無として定義されている。 この無の部分に1つの色を与えて灰色とする。 地図を丸めて球体を作る。 この時、東西南北の端がくっつく部分で、重複が起こらないように灰色の欠片をあてて継ぎ接ぎする。 4色+灰色で5色 [] [ここ壊れてます]
270 名前:132人目の素数さん mailto:sage [2018/09/23(日) 17:04:18.46 ID:PH84y1u6.net] 塗り方を変えれば4色で済むかもしれませんよね?
271 名前:132人目の素数さん [2018/09/23(日) 17:04:38.93 ID:krrkUlnT.net] >>258 球面も彩色数は4 いかなる球面上の地図も、彩色数を変えずに平面地図に置き換えることが可能
272 名前:132人目の素数さん mailto:sage [2018/09/23(日) 17:27:45.96 ID:uN5miIY2.net] みなさん、ありがとう。 >>261 球面地図と平面地図は置き換え出来るんですね。
273 名前:132人目の素数さん mailto:sage [2018/09/23(日) 18:28:52.28 ID:6r+HqQTq.net] 置き換えできるとかではなく偶然球面も4色で良かったってだけかもしれないんじゃない?
274 名前:132人目の素数さん mailto:sage [2018/09/23(日) 18:44:33.37 ID:VgtK+kEe.net] いや、球面上の地図なら平面上の地図の問題に還元できるやろ? 球面上の地図が与えられたら、いずれかの領域の内点をとって、その点を極としてRiemann球\{極}と平面の一対一対応を考えればいい。
275 名前:132人目の素数さん mailto:sage [2018/09/23(日) 19:24:32.54 ID:Z1V74VmH.net] 数2の質問です aを実数の定数とする。xy平面上に2円 c1: x^2+y^2=5 c2: (x-a)^2+(y-2a)^2=2がある。 (1) c1,c2が外接、内接するようなaの範囲をそれぞれ求めよ (2) a=1のときc1,c2の2交点の座標 解説おねがいします
276 名前:132人目の素数さん mailto:sage [2018/09/23(日) 19:53:11.93 ID:dnCpmMyL.net] >>265 ちゅうしんとちゅうしんのきょりをかんがえる 多分教科書に似たような問題ある(傍用にもある) 交点の座標は計算する 計算の仕方も大事
277 名前:132人目の素数さん [2018/09/23(日) 19:56:52.35 ID:7FSyqEIr.net] >>265 c1の中心が(0,0)で半径が√5 c2の中心が(a,2a)で半径が√2 中心間の距離は(√5) |a| (1) 外接する時 中心間の距離が、半径の和に等しいので (√5) |a| = (√5) + √2 a = ±{1 + √(2/5)} 内接する時 中心間の距離が、半径の差に等しいので (√5) |a| = (√5) - √2 a = ±{1 - √(2/5)} (2) x^2 +y^2 = 5 (x-1)^2 +(y-2)^2 = 2 上から下を引いて 2x +4y -5 = 3 x + 2y = 4 x = -2y +4 最初の式に代入して (-2y +4)^2 +y^2 = 5 5y^2 -16y +11 = 0 (5y -11)(y-1) = 0 y = 11/5, 1 y = 11/5 のとき x = -2/5 y = 1 のとき x = 2
278 名前:132人目の素数さん [2018/09/23(日) 21:21:19.85 ID:ZHLzUkgh.net] >>264 平面を球面に置き換えて同じ結論がえられるってまじかよ、 それじゃ >>259 がバカみたいじゃん。
279 名前:132人目の素数さん [2018/09/23(日) 21:30:56.29 ID:7FSyqEIr.net] >>268 というか、この手の発想は3色では不可能な事の証明でもよく使われる 知らない人は悩むってだけで 正四面体の面の塗分けは3色では不可能だから 面の1つに穴を開けて (面はゴムのようなものでできていると思って)平面上に広げれば 3色で塗分け不可能な地図ができる って具合に
280 名前:132人目の素数さん mailto:sage [2018/09/23(日) 23:18:08.51 ID:KSTpRWA6.net] 四色定理の空間バージョンの定理ってありますか? つまり、例えば、立体パズルにおいて隣接してる(0以上の面積を共有してる)ピースは別の色にして塗るということにした場合 何色あれば十分ですか?
281 名前:132人目の素数さん mailto:sage [2018/09/23(日) 23:57:17.72 ID:23TP2PYS.net] 訂正 0より大の
282 名前:132人目の素数さん mailto:sage [2018/09/24(月) 00:14:43.51 ID:ccjS23v2.net] >>270 空間をいくつかの領域にわけるという
283 名前:意味なら明らかに何色あっても無理。 100色用意しても101完全グラフ用意して各点にたいし、その点とその点から出てる確辺のまん中までを1領域とする分割を考えれば100色では無理。 E^2に埋め込めない一般の場合という意味ならその地図を埋め込める種数ごとに必要最低限度の色数は決定されてる。 https://ja.wikipedia.org/wiki/%E5%9B%9B%E8%89%B2%E5%AE%9A%E7%90%86 [] [ここ壊れてます]
284 名前:132人目の素数さん mailto:sage [2018/09/24(月) 01:52:24.23 ID:Ple4QkIq.net] >>239 n=6まで一致する式ができた 2n^5−63n^4+500n^3−1605n^2+2594n+297×2^(n+1)−2616 q=――――――――――――――――――――――――――――――――― 66{10n^3−n^4−35n^2+80n+6{2^(n+2)−18}}
285 名前:132人目の素数さん [2018/09/24(月) 02:45:52.27 ID:f7uXOSwA.net] 最適化問題です。 どういった方法で解を出すかという方針 だけでも教えていただきたいです。 変数Piとして、それ以外は定数とする。 min 煤mi=1からN]Pi 条件 0≦Pi≦Pmax(i=1,,,N) Σ[i=1からN]A×Pi+煤mi=1からN、ただしi≒j]Σ[j=1からN]√(PiPj)×B ≧C
286 名前:132人目の素数さん [2018/09/24(月) 02:47:36.97 ID:f7uXOSwA.net] >>274 ?になっている部分はシグマです
287 名前:132人目の素数さん mailto:sage [2018/09/24(月) 04:36:49.10 ID:WgV4wCes.net] 数学IIの図形と方程式の問題です。 (1)以下の不等式で表されるxy平面上の領域Dを図示せよ。 (x+y-1)(-2x+y-3)(-x-2y+4)≧0 (2)一辺の長さ1の正三角形Tをxy平面上に置く。TとDの重なる部分の面積を最大にするようにTを置くときのGの座標を求めよ。 ただしGはTの重心である。
288 名前:132人目の素数さん mailto:sage [2018/09/24(月) 11:20:03.20 ID:C29H7b6e.net] >>236 Σ[m=0,∞] a^m e^(imθ) = Σ[m=0,∞] {a e^(imθ)}^m = 1/{1-a e^(iθ)} = {1-a e^(-iθ)}/(1-2a・cosθ+aa) = {(1-acosθ) +ia sinθ}/(1-2a・cosθ+aa), の虚部から Σ[m=1,∞] a^m sin(mθ) = a・sinθ/(1-2a・cosθ+aa), 一方、実部から Σ[m=0,∞] a^m cos(mθ) = (1-a cosθ)/(1-2a・cosθ+aa), 1/(1-2a・cosθ+aa) = {1/(1-aa)}{1 + 2Σ[m=1,∞] (a^m)cos(mθ)}, 2a cosθ/(1-2a・cosθ+aa) = (1+aa)/(1-2a・cosθ+aa) -1,
289 名前:132人目の素数さん mailto:sage [2018/09/24(月) 16:56:33.37 ID:Y2Cz0M7v.net] (X_i) は i∈I を添え字集合とする集合列とします Pr_i は Π_i X_i の第i射影とします 知られている通り、 Pr_i(Π_j X_j)=X_i ですが、この証明(⊇について)には選択公理を使いますよね?
290 名前:132人目の素数さん [2018/09/24(月) 17:18:28.20 ID:3sb6z9vD.net] 定理 … 公理を用いて証明された命題 公理 … 証明が不要で前提とする事柄 ↑ とあります。 高校までの数学で作られてからもっとも新しい公理 (理論) って何ですか? 複素平面? 微積分?
291 名前:132人目の素数さん mailto:sage [2018/09/24(月) 17:28:30.79 ID:nFKM7Z34.net] >>279 高校数学はそういう難しいことは考えないで適当に作られてますから考えるだけ無駄です
292 名前:132人目の素数さん mailto:sage [2018/09/24(月) 17:33:33.55 ID:cbJ4AGw0.net] 確率は割と新しい気がする
293 名前:132人目の素数さん mailto:sage [2018/09/24(月) 21:09:11.61 ID:uyI4OG9o.net] 曲線Cをy=sin(πx)の0≤x≤1の部分とする。 また以下の曲線Dと直線Eはいずれも、Cとx軸とで囲まれる部分の面積を2等分するという。 正数a,bの大小を比較せよ。 D y=asin(πx/2) E: y=bx
294 名前:132人目の素数さん mailto:sage [2018/09/25(火) 00:16:21.34 ID:Mf+IIU9l.net] >>282 曲線Cとx軸で囲まれる部分の面積は ∫[0,1] sin(πx) dx = [ -(1/π)cos(πx) ](x=0,1) = 2/π = 0.636619772367581343 a = 0.5
295 名前:857864376268 b = 0.8062893052025 ∴ a < b [] [ここ壊れてます]
296 名前:132人目の素数さん mailto:sage [2018/09/25(火) 00:25:49.82 ID:PNTWAghu.net] >>283 aとbは数値計算に依らず求められるはずですがどうでしょうか
297 名前:132人目の素数さん mailto:sage [2018/09/25(火) 01:52:02.77 ID:LFmeOtFE.net] >>284 Cとx軸で囲まれた領域の中でDとEは交差する。x=1のときDはEより下にくるからa<b
298 名前:132人目の素数さん mailto:sage [2018/09/25(火) 04:44:40.72 ID:Mf+IIU9l.net] >>283 C: y = sin(πx), D: y = a sin(πx/2), a = 0.5857864376268 E: y = b x, b = 0.8062893052025 CとDの交点 (x,y) = (0.810763906019775 , 0.5600968657158) CとEの交点 (x,y) = (0.782633029520911 , 0.6310286460088) DとEの交点 (x,y) = (0.559244088133690 , 0.4509125272599)
299 名前:132人目の素数さん mailto:sage [2018/09/25(火) 12:50:34.34 ID:OMFyU4Ie.net] >>282 グラフにしてみた。 imagizer.imageshack.com/img921/5921/LMfhua.png
300 名前:132人目の素数さん [2018/09/25(火) 15:41:23.42 ID:gzqxMuxe.net] 2^2-1^2、3^2-2^2、4^2-3^2・・・ と続く数列の答えはそれぞれ2n-1になるらしいけど、 方程式では解けてもなぜそうなるか疑問です。 丁寧に答えて下さる方いませんか
301 名前:132人目の素数さん mailto:sage [2018/09/25(火) 15:53:57.58 ID:RwC3xJIG.net] 計算したらそうなったんですよね だからそういうもんだ、でいいんですよ そのための文字式なんです 何にでもそういう理由を求めようとするのは、疲れるだけであまり本質ではないことが多いですからやめといた方が良いでしょうね でも今回の場合は正方形考えるといいかとしれないですね 玉を正方形に並べます 一列増やしてちょっと大きな正方形作るにはどうすれば良いでしょうか
302 名前:132人目の素数さん mailto:sage [2018/09/25(火) 16:10:47.12 ID:Mf+IIU9l.net] >>284 aの方は CとDの交点を(c, d) とおく。 sin(πc) = a sin(πc/2), a = 2 cos(πc/2), より ∫[0,c] {sin(πx) - a sin(πx/2)} dx = (1/2π)(4-aa) -(a/π)(2-a) = (1/2π)(2-a)^2, これが 1/π に等しいから、 a = 2-√2 = 0.585786437626905 c = (1/π)arccos(2(1-√2)) = (2/π)arccos(1-(1/√2)) = 0.810763906019740 d = sin(πc) = (√2 -1)√(2√2 -1) = 0.560096865715887 bの方は分かりませぬ…
303 名前:132人目の素数さん mailto:sage [2018/09/25(火) 16:10:52.13 ID:q3cJ7uMj.net] ●●●○ ●●●○ ●●●○ ○○○ +○ タテ3✕ヨコ3に並べた丸に●に、 ○をタテ3コ、ヨコ3コ、角っこうめるためもう1コ付けると4✕4になりますね 3^2(もと●) + 3*2+1(追加○) =4^2 こういうことです。
304 名前:132人目の素数さん [2018/09/25(火) 17:34:12.78 ID:gzqxMuxe.net] >>289 >>291 確かにそういう計算をしてることになりますね!数式って凄いなあ
305 名前:132人目の素数さん mailto:sage [2018/09/25(火) 18:15:15.20 ID:QJVCmX3z.net] 次の無限級数が収束するxの範囲をそれぞれ求めよという問題です 一様収束ではなく収束なので解き方が分からないですどうかお助けを…… Σ[n=1,∞]1/(1+nx^n) Σ[n=1,∞]1/(n^2-x) Σ[n=1,∞]|x|/(1+|x|)^n
306 名前:132人目の素数さん mailto:sage [2018/09/25(火) 18:49:12.43 ID:Oj/s8CIQ.net] >>273 n=7まで一致する式ができた 1783n^5−83n^6−15785n^4+71005n^3−166892n^2+198292n+1485×2^(n+3)−112080 q=――――――――――――――――――――――――――――――――――――――――――――――― 66{63n^5−3n^6−545n^4+2405n^3−5572n^2+6892n+480(2^n−9)}
307 名前:132人目の素数さん mailto:sage [2018/09/25(火) 20:56:27.99 ID:LFmeOtFE.net] >>293 Σ[n=1,∞]1/(1+nx^n) |x|<1のときは項が0に収束しない。|x|>1のときは絶対収束する。 x=1のときは対数発散する。x=-1のときはn=1の項が1/0になって未
308 名前:定義。(n=1の項が無ければ条件収束) Σ[n=1,∞]1/(n^2-x) x=-1,-4,-9,-16,... なら1/0の項が出てくるので未定義。それ以外なら絶対収束する。 Σ[n=1,∞]|x|/(1+|x|)^n 具体的に計算できる。x=0のとき0、それ以外のとき1に収束する。 [] [ここ壊れてます]
309 名前:132人目の素数さん mailto:sage [2018/09/25(火) 21:41:16.32 ID:n/GFgogk.net] 集合Sに対して、P(S)でSの巾集合を表す。 Fin(S) := {A∈P(S)|Aは有限集合} とする。 Xを集合とする。 S⊆P(X)とする。 O(S)でSによって生成される開集合系とする。 O(S)を具体的に表したい。 O(S) = { ∪_{T ∈ F} ∩T | F ⊆ Fin(S) } でいいんですかね?
310 名前:132人目の素数さん mailto:sage [2018/09/25(火) 22:09:33.65 ID:n/GFgogk.net] >>296 自己解決しました この表し方でいいみたいですね
311 名前:132人目の素数さん [2018/09/25(火) 23:14:24.80 ID:w+XVQKQt.net] 二次関数の最大と最小を求める時に最後 8a-4とかの文字式が答えになるんですがどこをどう代入すればこの式になるか分かりません グラフは描けるんですが…
312 名前:132人目の素数さん mailto:sage [2018/09/25(火) 23:15:45.63 ID:8de8aW77.net] 平方完成した余りなんでないのか?
313 名前:132人目の素数さん mailto:sage [2018/09/25(火) 23:17:07.95 ID:Y5pYVzUb.net] >>298 君は問題を端折らずに書いたほうがいい もっと言えば画像で上げたほうがいい
314 名前:132人目の素数さん mailto:sage [2018/09/25(火) 23:21:30.44 ID:AMhR5pSd.net] >>295 ありがとうございます 過程も書いて頂けると助かります……
315 名前:132人目の素数さん [2018/09/25(火) 23:50:07.51 ID:w+XVQKQt.net] >>298 https://i.imgur.com/1VCN59A.jpg 解説お願いします
316 名前:132人目の素数さん mailto:sage [2018/09/25(火) 23:57:46.88 ID:Y5pYVzUb.net] >>302 どの問題について聞いてるの? そのページのどの問題を解いても 8a-4なんて式は出てこないようだが
317 名前:132人目の素数さん mailto:sage [2018/09/26(水) 00:00:10.49 ID:Cc/6inZ7.net] >>301 Σ[n=1,∞]1/(1+nx^n) |x|<1のときは項が0に収束しない。←自明 |x|>1のときは絶対収束する。←n≧2のとき |1+nx^n| > (n|x|^n)-1 > |x|^n と評価する。 x=1のときは対数発散する。← 1/(1+n) > ∫[n+1〜n+2] (1/x) dx と評価する。 x=-1のときはn=1の項が1/0になって未定義。(n=1の項が無ければ条件収束)←絶対値が単調減少する交代級数は収束する。 Σ[n=1,∞]1/(n^2-x) 訂正 × x=-1,-4,-9,-16,... なら1/0の項が出てくる ○ x=1,4,9,16,... なら1/0の項が出てくる xがこれらの値以外であるとき m^2-x>0 を満たすmを適当に選ぶと n≧m+1 のとき n^2-x = (n-m)^2 + 2nm + m^2 - x > (n-m)^2 Σ[n=1,∞]|1/(n^2-x)| < Σ[n=1,m]|1/(n^2-x)| + Σ[n=m+1,∞]1/(n-m)^2 < ∞ Σ[n=1,∞]|x|/(1+|x|)^n ただの等比級数の和
318 名前:132人目の素数さん mailto:sage [2018/09/26(水) 00:16:43.51 ID:m4inCFQe.net] >>304 本当に助かりました 丁寧にありがとうございます
319 名前:132人目の素数さん mailto:sage [2018/09/26(水) 01:05:06.95 ID:bHGY9i2p.net] >>303 適当な例題をアップしてしまったのが悪かったですね… 8a-4のことは忘れていただいて構いません a<0のとき 最小値a^2+1 0≦a≦2のとき… とあるんですが問題の始めに与えられた式y=x^2-2ax+a^2+1 (0≦a≦2) からa^2+1などの文字式をどうやって導き出すのかが分からないんです
320 名前:132人目の素数さん mailto:sage [2018/09/26(水) 01:41:12.56 ID:2yFoJMu6.net] >>306 ちゃんと例題の真似をして解いたのか? 区間の両端か軸での値として計算すれば出てくるはず
321 名前:132人目の素数さん mailto:sage [2018/09/26(水) 01:51:45.67 ID:bHGY9i2p.net] >>307 解決しました、ありがとうございます! 難しく考えすぎていました…
322 名前:132人目の素数さん mailto:sage [2018/09/26(水) 02:17:34.20 ID:u24AtJNa.net] 最強の概念は何ですか?
323 名前:132人目の素数さん mailto:sage [2018/09/26(水) 02:21:47.30 ID:5JKIcjJN.net] ヒマラヤさんは二項定理がわからない、最強の定理ですね
324 名前:132人目の素数さん [2018/09/26(水) 02:23:48.47 ID:u24AtJNa.net] 真面目に教えてください。お願いします。
325 名前:132人目の素数さん mailto:sage [2018/09/26(水) 02:27:12.23 ID:5JKIcjJN.net] ヒマラヤさんは三角関数がわからない これも大事ですね
326 名前:132人目の素数さん [2018/09/26(水) 02:54:12.98 ID:GaEXENYv.net] 真面目に教えてください。お願いします。
327 名前:132人目の素数さん mailto:sage [2018/09/26(水) 05:33:34.75 ID:WJI1Ssah.net] ∠B=
328 名前:レCである△ABCがある。 その辺CAを一辺とする正三角形△CADで、頂点Dが直線CAに関してBと反対側にあるようなものを作る。 このとき、以下の問いに答えよ。 (1)∠Bの内角を2等分する直線Lの上に△CADの内心Iが乗るという。△ABCの形状はどのようであるか述べよ。 (2)(1)において、内心Iを以下に置き換えた場合、△ABCの形状はどのようであるかを述べよ。 (i) 外心O (ii) 重心G (iii) 垂心H [] [ここ壊れてます]
329 名前:132人目の素数さん mailto:sage [2018/09/26(水) 05:56:33.12 ID:WJI1Ssah.net] 大量の白板と黒板があり、どちらの板も一辺の長さが1の正方形の形状をしている。 いま床の上に白板1枚が置かれている。 この状態から次のような操作(T)を行う。 (T)表が出る確率が0.8のコインがある。 このコインを振って表が出れば、一番右側の板に白板1枚を貼り付ける。 ただし板が1枚の場合はその板を「一番右側の板」とみなす。以下も同様である。 裏が出れば、一番右側の板に黒板k枚を貼り付ける。ここでkは自然数である。 いずれの操作を行った場合も、板を貼り付けて出来上がった新しい板は、縦の長さが1、横の長さが1より大きい自然数の長方形となる。 このとき、以下の問いに答えよ。 (1)(T)を繰り返し、板の並びに「黒白黒」が現れた時点で操作を終了する。最終的に出来上がった長方形の横の長さの期待値E(k)をkで表せ。 (2)8≦E(k)≦10となるkの範囲を求めよ。
330 名前:132人目の素数さん mailto:sage [2018/09/26(水) 06:22:33.36 ID:WJI1Ssah.net] >>314 (2)は(1)と何も変わらねーじゃん
331 名前:132人目の素数さん [2018/09/26(水) 07:54:54.86 ID:roNfZuDf.net] 5人中3人が1列に並ぶときの並び方の総数を求めなさい。 お願いします。。。
332 名前:132人目の素数さん mailto:sage [2018/09/26(水) 10:59:00.34 ID:TpX5a0Yg.net] >>317 それくらいはまず書き出せよ どうすればもれなく書き出せるかを考えてみれば数式もたぶんわかる
333 名前:132人目の素数さん mailto:sage [2018/09/26(水) 11:39:08.65 ID:vAGGSnkZ.net] fast-uploader.com/file/7093485013825/ 上の画像で式が成り立たないと思うんですけどどうやって証明するんですか? u_2(0)が0じゃないと駄目なきがするのですが
334 名前:132人目の素数さん mailto:sage [2018/09/26(水) 13:11:13.74 ID:zomwMvsu.net] >>319 証明は、Casoratian の定義式だけあればよく、 C(r) = | u1(r) u2(r) | | u1(r+1) u2(r+1) | = u1(r) u2(r+1) - u2(r) u1(r+1) = u1(r) u1(r+1) {u2(r+1)/u1(r+1) - u2(r)/u1(r)} = u1(r) u1(r+1) Δ{u2(r)/u1(r)}, よって u2(n)/u1(n) = u2(0)/u1(0) + Σ[r=0,n-1] Δ{u2(r)/u1(r)} = u2(0)/u1(0) + Σ[r=0,n-1] C(r)/{u1(r)u1(r+1)}, ここで u2(0)=0 を使うと… Casoratian はつまり Wronskian の 差分version かな。
335 名前:132人目の素数さん [2018/09/26(水) 13:16:03.71 ID:vAGGSnkZ.net] >>320 u2(0)=0とはどこにも書いてないんですけど?
336 名前:132人目の素数さん mailto:sage [2018/09/26(水) 13:31:11.58 ID:CV990pYj.net] >>319 これはどの教科書のexerciseですか?
337 名前:132人目の素数さん [2018/09/26(水) 13:34:08.83 ID:vAGGSnkZ.net] >>322 画像の黄色く光っているところの文字列をグーグルで検索してみてください
338 名前:132人目の素数さん mailto:sage [2018/09/26(水) 13:59:29.99 ID:S44lMWvY.net] >>323 あった。thx https://books.google.co.jp/books?id=gAPqBwAAQBAJ&pg=PA67&lpg=PA67&dq=contemplate+the+second+order+difference+equation&source=bl&ots=sWOAD9FkYq&sig=6ciWUQi6ZWeVSU5zY2eaK5JyPV4 &hl=ja&sa=X&ved=2ahUKEwjD_oTP8NfdA
339 名前:hU1HjQIHSEoAmEQ6AEwDHoECEkQAQ#v=onepage&q=contemplate%20the%20second%20order%20difference%20equation&f=false [] [ここ壊れてます]
340 名前:132人目の素数さん mailto:sage [2018/09/26(水) 14:25:32.07 ID:zomwMvsu.net] 〔問題〕 次の2階差分方程式を考えよう。 u(n+2) + p1(n) u(n+1) + p2 u(n) = 0, その解を u1(n),u2(n)、それらのCasoratian を C(n) とするとき C(n+1) = p2 C(n) = …… = (p2)^{n+1} C(0), を示せ。 このスレも 過疎らし庵...
341 名前:132人目の素数さん mailto:sage [2018/09/26(水) 14:44:29.94 ID:zomwMvsu.net] >>324 の本の p.60 にあった。 Lemma 2.13 (Abel's lemma) C(n) = {Π[i=0,n-1] p2(i)} C(0), … (2.2.9)
342 名前:132人目の素数さん mailto:sage [2018/09/26(水) 14:47:30.72 ID:o1ctSWEs.net] >>315 (T)をシミュレーションしてみました。 黒白黒=裏表裏と続くときの表と裏の回数の表の回数、裏の回数の10万回シミュレーションでの平均値は [1] 28.98207 [1] 7.24779 長方形の横の長さの期待値E(k)は 28.98207 + 7.24779*k に近似するという結果が得られました。 解析でとく頭はないのでご容赦。
343 名前:132人目の素数さん mailto:sage [2018/09/26(水) 15:02:53.21 ID:zomwMvsu.net] >>293 蛇足ですが… (2) 無限級数Σ[n=1,∞] 1/(nn-x) は x≠平方数 のとき収束し、 x>0,x≠平方数のとき {1 − (π√x) cot(π√x)}/2x, x=0 のとき ζ(2) = ππ/6 = 1.644934… x<0 のとき {(π√(-x))coth(π√(-x)) − 1}/2(-x),
344 名前:132人目の素数さん mailto:sage [2018/09/26(水) 15:08:05.91 ID:o1ctSWEs.net] >>318 総数より、列挙する方が難しかった。注目する3人が1,2,3とするとその並び方は > perm[i,] [,1] [,2] [,3] [,4] [,5] [1,] 1 2 3 4 5 [2,] 1 2 3 5 4 [3,] 1 3 2 4 5 [4,] 1 3 2 5 4 [5,] 2 1 3 4 5 [6,] 2 1 3 5 4 [7,] 2 3 1 4 5 [8,] 2 3 1 5 4 [9,] 3 1 2 4 5 [10,] 3 1 2 5 4 [11,] 3 2 1 4 5 [12,] 3 2 1 5 4 [13,] 4 1 2 3 5 [14,] 4 1 3 2 5 [15,] 4 2 1 3 5 [16,] 4 2 3 1 5 [17,] 4 3 1 2 5 [18,] 4 3 2 1 5 [19,] 4 5 1 2 3 [20,] 4 5 1 3 2 [21,] 4 5 2 1 3 [22,] 4 5 2 3 1 [23,] 4 5 3 1 2 [24,] 4 5 3 2 1 [25,] 5 1 2 3 4 [26,] 5 1 3 2 4 [27,] 5 2 1 3 4 [28,] 5 2 3 1 4 [29,] 5 3 1 2 4 [30,] 5 3 2 1 4 [31,] 5 4 1 2 3 [32,] 5 4 1 3 2 [33,] 5 4 2 1 3 [34,] 5 4 2 3 1 [35,] 5 4 3 1 2 [36,] 5 4 3 2 1 >
345 名前:132人目の素数さん mailto:sage [2018/09/26(水) 15:38:43.77 ID:o1ctSWEs.net] >>327 100万回での平均が re = replicate(1e6,f()) mean(re[1,]) ; mean(re[2,]) [1] 29.01175 [1] 7.252559
346 名前:132人目の素数さん mailto:sage [2018/09/26(水) 15:54:28.25 ID:zomwMvsu.net] >>328 補足 x > 0, x≠平方数のとき y≒0 では πcot(πy) ≒ 1/y, また、cot(πy) は周期1をもつから、 πcot(πy) = 1/y + Σ[n=1,∞] {1/(y-n) + 1/(y+n)} = 1/y + 2yΣ[n=1,∞] 1/(yy-nn), x<0 のとき y≒0 では πcoth(πy) ≒ 1/y, また、coth(πy) は周期 i をもつから、 πcoth(πy) = 1/y + Σ[n=1,∞] {1/(y-ni) + 1/(y+ni)} = 1/y + 2yΣ[n=1,∞] 1/(yy+nn),
347 名前:132人目の素数さん [2018/09/26(水) 16:41:05.92 ID:roNfZuDf.net] >>318 理解できました! 5C3 だと思っていましたが、5P3でしたね。。 どうもすみませんでした。
348 名前:132人目の素数さん [2018/09/26(水) 16:53:15.04 ID:D649zj2u.net] 【天文台閉鎖、FBI】 アポロ捏造のキューブリックも真っ青、太陽に映ったのはマ@トレーヤのUFO rosie.5ch.net/test/read.cgi/liveplus/1537840672/l50 おまいらが注目しないから宇宙人は出てこれない、その結果、地球の放射能危機がどんどん進んでしまう!
349 名前:132人目の素数さん mailto:sage [2018/09/26(水) 16:57:12.23 ID:WJI1Ssah.net] (1)k! + m! = n!
350 名前:を満たす自然数の組(k,m,n)をすべて求めよ。 (2)いずれも2以上の自然数かつすべて異なる自然数の組(m,n,p,q,r,s)で、以下の等式を満たすものは存在するか。 mCn = pCq + rCs [] [ここ壊れてます]
351 名前:132人目の素数さん mailto:sage [2018/09/26(水) 17:19:51.16 ID:EZjvvW8g.net] >>294 n=8まで一致する式ができた 7{589n^7−76252n^6+1473418n^5−12519640n^4+55110541n^3−127896988n^2+150467292n+66825×2^(n+7)−83666160} q=―――――――――――――――――――――――――――――――――――――――――――――――――――――――― 495{34286n^5−25n^7−1316n^6−317240n^4+1446935n^3−3416084n^2+4304724n+5040{2^(n+6)−551}}
352 名前:132人目の素数さん mailto:sage [2018/09/26(水) 17:22:35.53 ID:NPHNhagU.net] >>329 なにこれ?
353 名前:132人目の素数さん mailto:sage [2018/09/26(水) 17:40:42.99 ID:WJI1Ssah.net] 領域3x^3+(4y-1)x^2-(37y^2+22y-1)x+(14y^3+23y^2-6y)≧0 と直線x=tとの共有点のうち、y座標が最大となるものの座標を求めよ。
354 名前:132人目の素数さん mailto:sage [2018/09/26(水) 18:47:20.55 ID:o1ctSWEs.net] >>336 1,2,3が並ぶ5人の並び方の列挙。
355 名前:132人目の素数さん mailto:sage [2018/09/26(水) 19:57:02.29 ID:o1ctSWEs.net] >>334 31以下では 1!+ 1! = 2! は確認
356 名前:132人目の素数さん mailto:sage [2018/09/26(水) 20:02:40.56 ID:o1ctSWEs.net] >>339 総当たりでPCで計算 63以下でも 1!+ 1! = 2! のみ
357 名前:132人目の素数さん mailto:sage [2018/09/26(水) 21:04:01.46 ID:kMXjNQ4p.net] >>334 (1) k! < k! + m! = n! より k < n。 よって、k!/n! ≦ (n-1)!/n! = 1/n。同様に、m!/n! ≦ 1/n。 1 = n!/n! = k!/n! + m!/n! ≦ 2/n より、n≦2。 したがって、(k,m,n)=(1,1,2)のみ。
358 名前:132人目の素数さん mailto:sage [2018/09/26(水) 21:25:13.59 ID:o1ctSWEs.net] Haskell先生に100以下を計算してもらいました。 Prelude> let fact n = if n == 0 then 1 else n * fact (n - 1) Prelude> print [(k,m,n) | k <- [1..100], m <- [1..100], n <- [1..100], fact(k) + fact(m) == fact(n) ] [(1,1,2)]
359 名前:132人目の素数さん mailto:sage [2018/09/26(水) 23:20:55.60 ID:LiB/jXp0.net] よろしくお願いします。 モルモットにAを投薬したところ、 250匹中200匹の治療に成功した。 B薬の場合は、180匹中162匹であった。 B薬の方がA薬より有効性が高いかどうか、有意水準5%で検定しなさい。
360 名前:132人目の素数さん mailto:sage [2018/09/26(水) 23:25:04.88 ID:EZjvvW8g.net] Aを投薬で250匹中200匹の治療に成功 Bを投薬で250匹中225匹の治療に成功
361 名前:132人目の素数さん mailto:sage [2018/09/26(水) 23:26:53.65 ID:L1fyX/qR.net] そういうことじゃない
362 名前:132人目の素数さん mailto:sage [2018/09/26(水) 23:52:50.37 ID:o1ctSWEs.net] >>334 6C2=15 5C4=5 10C9=10 6C2 = 5C4 + 10C9 10以下の組み合わせをHaskellで出すと [(6,2,5,4,10,9),(6,2,10,9,5,4),(9,2,6,4,7,5),(9,2,7,5,6,4),(10,2,5,3,7,4), (10,2,7,4,5,3),(6,3,5,2,10,9),(6,3,10,9,5,2),(9,4,10,3,6,5),(9,4,6,5,10,3), (9,4,6,5,10,7),(9,4,10,7,6,5),(8,5,9,2,6,3),(8,5,6,3,9,2),(8,5,6,3,9,7), (8,5,9,7,6,3),(9,5,4,2,10,3),(9,5,4,2,10,7),(9,5,10,3,4,2),(9,5,10,7,4,2), (8,7,3,2,5,4),(8,7,5,4,3,2),(9,8,3,2,6,5),(9,8,6,5,3,2),(10,8,5,2,7,3), (10,8,5,2,7,4),(10,8,5,3,7,4),(10,8,7,3,5,2),(10,8,7,4,5,2),(10,8,7,4,5,3), (10,9,3,2,7,6),(10,9,4,3,6,5),(10,9,6,5,4,3),(10,9,7,6,3,2)]
363 名前:132人目の素数さん mailto:sage [2018/09/26(水) 23:57:16.20 ID:o1ctSWEs.net] >>346 コードはここ tpcg.io/knyVeL
364 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:03:24.10 ID:QdrW3DdV.net] >>343 > prop.test(c(200,162),c(250,180)) 2-sample test for equality of proportions with continuity correction data: c(200, 162) out of c(250, 180) X-squared = 7.1275, df = 1, p-value = 0.00759
365 名前:1 alternative hypothesis: two.sided 95 percent confidence interval: -0.17095378 -0.02904622 sample estimates: prop 1 prop 2 0.8 0.9 [] [ここ壊れてます]
366 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:04:45.01 ID:QdrW3DdV.net] >>344 > prop.test(c(200,225),c(250,250)) 2-sample test for equality of proportions with continuity correction data: c(200, 225) out of c(250, 250) X-squared = 9.0353, df = 1, p-value = 0.002648 alternative hypothesis: two.sided 95 percent confidence interval: -0.1659795 -0.0340205 sample estimates: prop 1 prop 2 0.8 0.9
367 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:06:43.63 ID:83McNs2U.net] >>304 答えて貰って恐縮なのですが Σ[n=1,∞]1/(n^2-x)の解説において n^2-x = (n-m)^2 + 2nm + m^2 - x > (n-m)^2 とありますが等号の変形間違っていませんか?そうすると後の式も導けないような 勘違いでしたらすみません
368 名前:132人目の素数さん [2018/09/27(木) 00:16:15.99 ID:jPVYoETD.net] 流れをぶった切る割に、皆さまにとっては簡単な問題で申し訳ないですが、f(x)=(2x-1)/(x-x^2)の逆関数を求めることができません。 どなたかご教授いただけないでしょうか。 よろしくお願いします。
369 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:18:14.31 ID:QdrW3DdV.net] >>343 リスク差とリスク比の95%CIが各々0未満、1以下になる。 JAGSでのMCMCのグラフはこんな感じ i.imgur.com/JYpGMQw.png
370 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:21:15.55 ID:Ny+jsTgk.net] solve([(2*y-1)/(y-y^2) = x], [y]); [y=−(sqrt(x^2+4)−x+2)/(2*x),y=(sqrt(x^2+4)+x−2)/(2*x)]
371 名前:132人目の素数さん [2018/09/27(木) 00:34:30.52 ID:+C9yx15o.net] 三角関数がまったく理解できないのですが、どうすれば理解できるようになりますか? 勉強する際のコツなどがあれば教えてください。
372 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:36:14.50 ID:QdrW3DdV.net] >>351 y=(2x-1)/(x-x^2) と置いて y(x-x^2)=2x-1 をxで整理してxの2次方程式を解くだけ。 面倒ならば、 https://www.wolframalpha.com/input/?i=solve+y%3D(2x-1)%2F(x-x%5E2)+for+x
373 名前:132人目の素数さん mailto:sage [2018/09/27(木) 00:38:32.89 ID:VVKs2cMI.net] >>354 まずは二項定理がわかるようになりましょう
374 名前:132人目の素数さん [2018/09/27(木) 00:42:54.96 ID:jPVYoETD.net] >>353 ,354 ご教授いただきありがとうございました。 ゆっくり検算等を行って理解を深めていきたいと思います。
375 名前:132人目の素数さん [2018/09/27(木) 00:54:20.65 ID:+C9yx15o.net] >>356 二項定理はどうやったら理解できるようになるのでしょうか? コツを教えてください。
376 名前:132人目の素数さん mailto:sage [2018/09/27(木) 02:53:23.11 ID:bYCrvdC8.net] >>334 (1) k≦m<n としてもよい。このとき 1 = (n! - m!)/k! = (m!/k!){(n!/m!) - 1} ∴ (m!/k!) = 1, (n!/m!) -1 = 1, ∴ (k, m, n) = (1, 1, 2) (2) n=m-1, q=p-1, s=r-1 のとき C[m, n] = C[m, m-1] = m, C[p, q] = C[p, p-1] = p, C[r, s] = C[r, r-1] = r, そこで m = p+r とする。 但し m≧8, m-3≧p≧[(m+1)/2]+1, [m/2]-1≧r≧3, m>n>p>q>r>s. 最小解は (m, n, p, q, r, s) = (8, 7, 5, 4, 3, 2)
377 名前:132人目の素数さん mailto:sage [2018/09/27(木) 03:06:05.22 ID:bYCrvdC8.net] >>331 によれば πcot(πy) = 1/y + 2yΣ[n=1,∞] 1/(yy-nn), πcoth(πy) = 1/y + 2yΣ[n=1,∞] 1/(yy+nn), y で積分すれば log|sin(πy)| = log|y| + Σ[n=1,∞] log|1 - (y/n)^2| + logπ, log|sinh(πy)| = log|y| + Σ[n=1,∞] log|1 + (y/n)^2| + logπ, よって sin(πy) = πy・Π[n=1,∞] {1 - (y/n)^2}, sinh(πy) = πy・Π[n=1,∞] {1 + (y/n)^2}, yを1/2ずらせば 同様に cos(πy) = Π[n=1,∞] {1 - yy/(n-1/2)^2}, cosh(πy) = Π[n=1,∞] {1 + yy/(n-1/2)^2}, … オイラーの無限乗積表示
378 名前:132人目の素数さん mailto:sage [2018/09/27(木) 03:22:29.86 ID:7YOH+E82.net] P≠NP予想の証明に取り掛かろうと思うのですが、これを証明するにはまずは何を勉強した方が良いのでしょうか? 数学だけでなく計算機科学とか物理学も勉強した方が良いですか?
379 名前:132人目の素数さん mailto:sage [2018/09/27(木) 03:26:58.52 ID:bYCrvdC8.net] >>334 (2) n = m-1 のとき C[m, n] = C[m, m-1] = m, p, q, r, s はいずれも2以上の自然数かつすべて異なる。 m = C[p, q] + C[r, s] とおく。
380 名前:132人目の素数さん mailto:sage [2018/09/27(木) 09:51:38.15 ID:E4HLju8Y.net] >>361 チャート式を終わってからにしなさい、レス乞食のおっさん
381 名前:132人目の素数さん mailto:sage [2018/09/27(木) 13:13:58.23 ID:QdrW3DdV.net] >>362 (1)の延長で(2)は存在しないという答になるのかと思っていたんだけど (1)と(2)は無関係だったのかなぁ?
382 名前:132人目の素数さん mailto:sage [2018/09/27(木) 15:12:22.52 ID:bYCrvdC8.net] >>334 >>359 (2) n=m-2, q=p-2, s=r-2 のとき C[m, n] = C[m, m-2] = m(m-1)/2, C[p, q] = C[p, p-2] = p(p-1)/2, そこで m = p+1, p = C[r, s], n=p-1, q=p-2, 但し r>s とする。 m>p>n>q>r>s. C[p, p-2] + C[r, s] = p(p-1)/2 + p = p(p+1)/2 = C[p+1, p-1]
383 名前:132人目の素数さん mailto:sage [2018/09/27(木) 15:26:27.33 ID:P8qJtskS.net] 平面上に△ABCを与える(固定する)。その内角∠Bを2等分する直線をLとする。 また、直線CAに関してBと反対側の領域を動く点Pがあり、△PACの内心をIとする。 以下の問いに答えよ。 (1)相異なる定点S,Tと、動点Xがある。Xが色々動くとき、△STXの内心Uが動ける領域を求めよ。 (2)△ABCの内心をJとする。点Pが色々動くとき、与えられた△ABCの形状にかかわらず、次の条件を満たす点Pの位置が少なくとも1つ存在すると言えるか。 「Lは4点B,J,I,Pの全てを通る」
384 名前:132人目の素数さん [2018/09/27(木) 17:25:58.28 ID:4aajvfpR.net] www.phys.s.u-tokyo.ac.jp/wp-content/uploads/2016/04/sugakuH28.pdf これの第2問の2が(@)から手が付けられないので誰か助けてください
385 名前:132人目の素数さん mailto:sage [2018/09/27(木) 17:39:33.84 ID:bYCrvdC8.net] >>337 3t^3 + (4y-1)t^2 - (37y^2 +22y-1)t + (14y^3 +23y^2 -6y) = 14y^3 + (23-37t)y^2 - (6 +22t -4tt)y + (t -t^2 +3t^3) = 14 (Y^3 -3PY +2Q), ここに P(t) = (781-778t+1201tt)/(42^2), Q(t) = (20861 -38181t +34737t^2 -33391t^3)/(42^3), Y = y + (23-37t)/42, さて、どうするか?
386 名前:132人目の素数さん mailto:sage [2018/09/27(木) 18:44:49.70 ID:bYCrvdC8.net] >>367 そのまま解く。 第2問 2. (i) -{d^2 u/(dx)^2} + 2λ^2 {u(x)^3 - u(x)} = 0, … (3) の両辺に du/dx をかけて、 -{d^2 u/(dx)^2}(du/dx) + 2λ^2 {u(x)^3 -u(x)}(du/dx) = 0, その積分を求めると -(1/2)(du/dx)^2 + 2λ^2 {(1/4)u(x)^4 -(1/2)u(x)^2} = c, -(1/2)(du/dx)^2 + (1/2)λ^2 {u(x)^4 -2u(x)^2 +A} = 0, du/dx = ±λ√{u(x)^4 -2u(x)^2 +A}, … (4) が成立する。ここで、Aは積分の定数である。 (ii) x→±∞ のとき u(x) →±1, du/dx →0 より A=1 また du/dx > 0 となる所がある。 (iii) du/dx >0, λ>0, |u(x)|≦1 により du/dx = λ{1 - u(x)^2} {1/(1-u) + 1/(1+u)}(du/dx) = 2λ log((1+u)/(1-u)) = 2λx+2c, u(0)=0 ゆえ c=0 u(x) = tanh(λx),
387 名前:学術 [2018/09/27(木) 18:58:53.42 ID:8ZNOee3m.net] よくできているが、単数では数字にイメージがわかないから、割り算や 分数、二次以上の関数や漠然とした少数を乱用する方が自然界のイメージには近いでしょう。
388 名前:132人目の素数さん mailto:sage [2018/09/27(木) 19:05:23.10 ID:6Mk1qjy4.net] R上ユークリッド位相間の写像fが連続かつ狭義単調増加のとき開写像であることを示して下さい
389 名前:学術 [2018/09/27(木) 19:10:09.38 ID:8ZNOee3m.net] 漢文では、数理が表現できないから、創造と違うものが、示されるべきで。
390 名前:学術 [2018/09/27(木) 19:10:26.28 ID:8ZNOee3m.net] 想像と。
391 名前:学術 [2018/09/27(木) 19:12:38.36 ID:8ZNOee3m.net] 上ののも見返して、考え直してね。
392 名前:学術 [2018/09/27(木) 19:18:48.36 ID:8ZNOee3m.net] 裏を返せばそれで表象されるもの自体が、数式から独立して離れて、 独り歩きするようになる方が、心理に近いということ。
393 名前:学術 [2018/09/27(木) 19:19:28.88 ID:8ZNOee3m.net] イメージにあるものが吹き出しにかかれるなら、数学者のマンガ なんてバカ売れするだろうな。
394 名前:132人目の素数さん mailto:sage [2018/09/27(木) 19:38:26.28 ID:W0ybPQXa.net] >>371 任意の x に対し快区間 U = (f(x-1),f(x+1)) は仮定よりf(x)の開近傍。 y ∈ Uに対し中間値の定理よりyはim fに含まれる。 すなわち U ⊂ im f である。 よって im f = ∪ [x ∈ im f] (f(x-1), f(x+1)) は開集合。
395 名前:学術 [2018/09/27(木) 19:42:23.98 ID:8ZNOee3m.net] 短文だね。ヴィトゲンシュタイン〜ピタゴラスからの何たる零落だろう。
396 名前:132人目の素数さん mailto:sage [2018/09/27(木) 22:40:49.91 ID:DkKAEzWC.net] この関数>>335 をn=9まで一致する式にしてくれ〜(・ω・)ノ
397 名前:132人目の素数さん mailto:sage [2018/09/27(木) 23:14:51.35 ID:83McNs2U.net] 自分も位相についての質問です 位相間の連続写像fi:S'→Siが存在するとき Siの直積位相Sに対してg:S'→S、fi=pri*g(priはSiへの射影)となるような連続写像gが一意的に存在することを証明せよという問題です 連続になることはわかりますがそもそも存在の証明方法がわからず詰まっていますので助けて下さい
398 名前:132人目の素数さん mailto:sage [2018/09/28(金) 00:19:08.98 ID:wpvX3I7e.net] その写像gを作ればいいだけ。 必要な情報はすべて問題の中に書かれている。 即ち、s∈S'に対してg(s)=(t_{i})∈ΣS_{i} と表される筈であるが、 そのときこの各t_{i} はどうなっていなければならないかを考える。
399 名前:132人目の素数さん mailto:sage [2018/09/28(金) 00:23:41.64 ID:YVfFlQdO.net] 写像の構成ができてないのに、連続性の証明はできましたって何事?
400 名前:132人目の素数さん mailto:sage [2018/09/28(金) 00:30:53.10 ID:geQfbUSq.net] >>381 ありがとうございます よく考えてみたいと思います >>382 一応gの存在を認めるとfi=pri*gやfiとpriの連続性からgも連続であることが言えませんか?
401 名前:132人目の素数さん mailto:sage [2018/09/28(金) 00:32:52.85 ID:dHW3aY6N.net] >>383 失礼しました。なるほど。
402 名前:132人目の素数さん [2018/09/28(金) 01:00:58.02 ID:ssYGT9g8.net] 器用なやっちゃな。でも初等開集合の原像がどうなるかは考えといた方がいいと思うぞ。
403 名前:132人目の素数さん mailto:sage [2018/09/28(金) 01:38:16.42 ID:nYhI5qFO.net] 「無」と「数学の未解決問題全てを1分50秒で証明した人」はどっちの方が凄いですか?
404 名前:132人目の素数さん [2018/09/28(金) 02:00:15.16 ID:ssYGT9g8.net] つーかよく考えたらf∘gが連続でfが連続でもgが連続とは言えなかった。 例えばg(x)=-1 (x<0), g(x)=1 (x>=0), f(x)=|x| と置けば(f∘g)(x)=1だべ。
405 名前:132人目の素数さん mailto:sage [2018/09/28(金) 09:40:21.64 ID:phrHQfEJ.net] >>86 漸化式から、n>>1 では a[n] 〜 α{1 -1/(4n) -3/(32n^2) -1/(384n^3) +361/(6144n^4) +12799/(122880n^5) +(377221/2449120n^6) + …} 〜 α(1 - 1/n)^(1/4), ここに α = lim(n→∞) a[n], [前スレ.609] では a[1] = 0, a[2] = 1/3, a[3] = 1/3, a[4] = 12/35, a[5] = 47/135, a[6] = 731/2079, a[7] = 1772/5005, a[8] = 20609/57915, a[9] = 1119109/3132675, a[10] = 511144/1426425, …, a[∞] = 1/e
406 名前:132人目の素数さん mailto:sage [2018/09/28(金) 09:47:22.08 ID:phrHQfEJ.net] >>388 訂正 a[n] 〜 α{1 - …… + (377221/2949120n^6) + … }
407 名前:132人目の素数さん mailto:sage [2018/09/28(金) 16:15:24.33 ID:phrHQfEJ.net] >>386 おまえさ、人としじみのどっちが偉いか知ってるか? 伊坂幸太郎「グラスホッパー」角川書店(2007/June) 352p.637円 www.kadokawa.co.jp/product/200611000275/
408 名前:132人目の素数さん [2018/09/28(金) 18:30:53.14 ID:0t11U44j.net] >>390 んなの闇の帝王 フグ田タラオの前では どんぐりの性比べ程度の違いしかない
409 名前:132人目の素数さん [2018/09/28(金) 19:48:15.52 ID:agTum+EB.net] pが素数、m,nが自然数のとき p^m+1=m^nを満たす(p,m,n)の組み合わせを全て求めよ 授業で難問の宿題として出されたんですけど検討つかないです
410 名前:学術 [2018/09/28(金) 19:55:55.65 ID:o765lpmk.net] 計算量の多い方がそろばんの伝統や中国の人口数近いんだろうな。 回り道もいいかもしれない。早く解くのはバランスが悪い時が多い。
411 名前:132人目の素数さん [2018/09/28(金) 20:38:28.52 ID:PQc32ans.net] V を線形空間 U1, U2, U3 を V の部分空間 とする。 U1 ∪ U2 ∪ U3 が V の部分空間になるための必要十分条件は、 U1, U2, U3 のどれか1つが他の2つを含むことである ことを証明せよ。 但し、 V は {0, 1} 上のベクトル空間ではないとする。
412 名前:132人目の素数さん mailto:sage [2018/09/28(金) 21:05:21.52 ID:ZS4vyl6B.net] >>388 a[n] = a[n-1] + {1/(2n-1)(2n-3)} a[n-2],が成立する証明式はありますか? それとも、こうなるであろうという演繹ですか?
413 名前:132人目の素数さん mailto:sage [2018/09/28(金) 23:28:22.51 ID:phrHQfEJ.net] >>395 c[n] = (2n-1)!!・a[n] について漸化式 c[n] = (2n-1)c[n-1] + c[n-2] が成り立つ理由が [前スレ.623] に示されています。 これから a[n] の漸化式を求めると、その式になります。 (2n-1)!! = 1・3・5…(2n-1)
414 名前:132人目の素数さん mailto:sage [2018/09/28(金) 23:52:10.72 ID:phrHQfEJ.net] >>395 c[n] は、男女の別およびカップルの区別を無視したときの、パターン数です。
415 名前:132人目の素数さん mailto:sage [2018/09/28(金) 23:52:42.11 ID:b1hXYTTV.net] >>395 横レス。 それは証明できるよ。 条件をみたすカップルの並び方の数をA[n]とする。 A[n]に属する列のうち 一番先頭の相方が別のカップルに挟まれていない場合の数が 2n(2n-2)A[n-1] 通り。 一番先頭の相方が別のカップルに挟まれていて3番めの場合(ABab…の形)の数が 2nA[n-1] 通り。 一番先頭の相方が別のカップルに挟まれていて3番めでない場合(A…Bab…の形)の数が 2n(2n-2)A[n-1] 通り。 ∴ A[n] = 2n(2n-1)A[n-1] + 2n(2n-2)A[n-2]。 両辺を2n!で割って a[n] = a[n-1] + 1/((2n-1)(2n-3))a[n-2]。
416 名前:132人目の素数さん mailto:sage [2018/09/29(土) 00:25:03.47 ID:vaCW7X53.net] >>392 >>392 Zsigmondyの定理を使えばできた。 integers.hatenablog.com/entry/2016/12/30/183841 ーー p^m=m^n-1 m=2のとき。 pは奇素数である。 よってこのときp^m ≡ 1 (mod 4)により2^n-1≡1(mod 4)。 ∴ n=1であるが p^2 = 1 となり解無し。 (m,n) ≠ (2,6) かつ n≠2 かつ m≠2 のとき。 Zsigmondyの定理よりm^n-1はm-1と互いに素である素因子をもつ。 しかしm^n-1、m-1の素因子はpしかありえない。 ∴ m-1=1。∴ m=2。∴ 解無し。 (m,n) = (2,6)のとき。 p^2 = 63 より解無し。 n=2 かつ m≠2 のとき。 このときp^m = (m+1)(m-1)。 このときm+1,m-1はいずれも1でなく最大公約数は1または2。 しかし互いに素だと右辺が素因子を2つ以上持つことになり矛盾。 ∴ (m+1,m-1) = 2。 ∴ p = 2。 よってm+1、m-1はともに2べきで差が2だからm = 3。 ∴ (p,m,n) = (2,3,2)。
417 名前:132人目の素数さん [2018/09/29(土) 00:32:10.83 ID:RVJSlbLo.net] 需要関数に線形モデルを仮定した時の需要の価格弾力性係数(E)を求めなさい。更に需要の価格弾力性係数と価格の関係を説明しなさい。 ただし、線形モデルは以下のものとする。ただし、y を需要、x を価格、α、βはパラメータとする。 yi=α+βxi
418 名前:132人目の素数さん mailto:sage [2018/09/29(土) 01:11:18.21 ID:7jO6lw+J.net] なんで経済の人って、経済の問題を数学板で質問するんですかね 他の分野の人はそんなことしませんよ
419 名前:132人目の素数さん mailto:sage [2018/09/29(土) 01:14:21.14 ID:us3X40uR.net] 質問するなら前提となる知識を全部書いてもらわないとね
420 名前:132人目の素数さん [2018/09/29(土) 04:53:36.16 ID:u/jq2Qwz.net] サーバーエンジニアと医師はどっちの方が頭が良いですか?
421 名前:132人目の素数さん [2018/09/29(土) 06:27:50.01 ID:DjGEpWd+.net] 名古屋大学のアゴラにあった問題なのですが, 証明したい事柄: 「nを2以上の自然数とする. 1,2,…,2nの2n個の自然数から, n+1個の自然数をとると, そのうちの2つについて, 一方が他方の倍数になっているものが存在する.」 次のような解答で合っていますか. 教えてください. よろしくお願いします. 「数学的帰納法」と「引き出し論法」を使いました. [basis] n=2のとき, {1,2,4},{3}の2組に分けると, 3個とれば,{1,2,4}の中から2個はとることになるので 成り立つ. n=3のとき, {1,2,4},{3}の2組に対して, 6は,{3}に入れて{3,6}とし, 5は{5}とする. {1,2,4},{3,6},{5}の3組に分けることができる. 4個とれば,{1,2,4},{3,6}の少なくともどちらからは2個とるので 成り立つ. n=4のとき, {1,2,4,8},{3,6},{5},{7}の4組に分けることができる. 5個とれば,成り立つ. [induction step] n=k(k≧2)で成り立つと仮定する: 1,2,…,2kの2k個の自然数が, n=2,3,4のように, {1,2,4,…},{3,6,…},{5,10,…},…という具合に, k個の組に分けることができると仮定する. (ここから,k+1個を選べば成り立つことがわかる.) このとき,2k+1については,{2k+1}として,1組作り, 2(k+1)については,k+1の属している組に入れれば, n=k+1のときも,k+1個の組に分けることができる. (したがって,ここからk+2個をとれば成り立つことがわかる) 以上から,証明したい事柄は,証明された.□□ よろしくお願いします.
422 名前:132人目の素数さん [2018/09/29(土) 07:06:28.20 ID:RzsrefTj.net] この問題が分からないので教えてください。お願いします。 相対無=自分以外の何かが無いこと。 絶対無=全てが無いこと。 ・無というのは無いことなので、当たり前だが存在しない。 ・つまりあるのは有だけというか有が全てになる。 ・それを無と呼ぶ。 ・そして、有の全てを「全」と呼ぶ。 ・全は無限つまり永続性があるものなので、完全消滅は不可能。 ・完全消滅できるのは有限なモノだけ。 例えばリンゴが目の前にあったとして、それを完全消滅させたらどう解釈することになるのか? 相対無になるのだろうか?そもそもそういったものを無と呼んで良いのだろうか? 仮にこれを無と呼んで良いのなら、これをリンゴという有限のものに限定しないで、 全に置き換えてみよう。しかし、全は無限つまり永続性のあるものなので完全消滅はできない。 しかし、一番最初の方に絶対無という概念を書いた。 絶対無とは全てが無いこと。 じゃあ、この絶対無という考え方が間違っているということなのだろうか? 相対無はどうだろう? 相対無というのは自分以外の何かが無いことなので、 一見この概念なら正しそうな気もするが、 例えばさっきの例のリンゴに関して言うと、 目の前にあるリンゴを完全消滅させたら、これをどう解釈するのかが無に対する考え方が異なるため難しくなる。 目の前にあるリンゴを完全消滅させて、それを相対無と呼ぶのなら、 >・無というのは無いことなので、当たり前だが存在しない。 この考え方がおかしくなるのだが、そうすると、目の前にあるリンゴを完全消滅させた場合、 それをどう解釈するのかが分からなくなってくる。 >・無というのは無いことなので、当たり前だが存在しない。 これを継承して、且つ無と言うのは相対的な無だけつまり相対無だけがあり得るとし、 絶対無というのはあり得ないとするか、 そもそも、 >・無というのは無いことなので、当たり前だが存在しない。 これ自体が絶対無で、現在あるものが無になることを相対無と呼ぶのかなど、 いろいろ考えられるが、今現在はまだはっきりしていない。
423 名前:132人目の素数さん mailto:sage [2018/09/29(土) 07:27:02.16 ID:8eQPc9R7.net] >>404 だめ。 >n=k(k≧2)で成り立つと仮定する: と書いたらこれは 1,2,…,2kの2k個の自然数から, k+1個の自然数をとると, そのうちの2つについて, 一方が他方の倍数になっているものが存在する. と仮定する。 の意味にしかならない。 >{1,2,4,…},{3,6,…},{5,10,…},…という具合に, >k個の組に分けることができると仮定する. の意味にはならない。 そもそも >n=2,3,4のように, こんな記述は通用しない。 どのようにわけたのか?なぜそのように分けたらうまくいくのかを明示しないと駄目。
424 名前:132人目の素数さん [2018/09/29(土) 08:40:59.71 ID:TipkCLLM.net] 2k+1と2k+2という数を加えるとき、{2k+1}という新しいグループを作る一方、2k+2は、{k+1}の グループに入れることができ、グループは一つしか増えないことをきちんと説明しているから、 数学的帰納法を使った証明として、成立していると思うがね。 要は、1〜2nの自然数を、2^k*(2m-1) の形で表したとき、m は、n 通りで十分ということ。 これに触れれば、数学的帰納法等使わず、説明できる。
425 名前:132人目の素数さん [2018/09/29(土) 10:48:38.41 ID:qskZCtdd.net] >>404 面白い証明ですね。正しいと思います。 自然数は必ず{奇数x2^(k-1) (kは自然数)}の形に書けるので、 これで2n以下の自然数を分類すればn個の組み分けになるという ことですね(帰納法で証明するのは簡単)。
426 名前:132人目の素数さん [2018/09/29(土) 11:03:17.91 ID:qskZCtdd.net] >>407 被りましたね。すみません。
427 名前:132人目の素数さん mailto:sage [2018/09/29(土) 11:52:59.74 ID:G2jS7PMy.net] 与えられた整数nが、ある自然数kとmを用いて n=2^k+3^m+m+k の形で表せるとき、nはどのような整数でなければならないか。
428 名前:132人目の素数さん [2018/09/29(土) 12:33:49.63 ID:7rwNoxs+.net] >>406 まるで誤答おじさんみたいなレスだが > >n=k(k≧2)で成り立つと仮定する: >と書いたらこれは 最後のコロンは、すなわちの意味で使われてるから問題ない >どのようにわけたのか?なぜそのように分けたらうまくいくのかを明示しないと駄目。 上に例示されているし問題無いし 数学的帰納法の初期値において なぜうまく行くかなんて理由付けは全く必要ない 頭が悪すぎなんでは
429 名前:132人目の素数さん mailto:sage [2018/09/29(土) 13:46:18.64 ID:kW00hQb+.net] >>405 まるでダメ
430 名前:132人目の素数さん mailto:sage [2018/09/29(土) 13:51:01.60 ID:5t2MTazF.net] >>403 おまえさ、人としじみのどっちが偉いか知ってるか? 伊坂幸太郎「グラスホッパー」角川書店(2007/June) 352p.637円 www.kadokawa.co.jp/product/200611000275/
431 名前:132人目の素数さん mailto:sage [2018/09/29(土) 15:35:22.63 ID:Twhf0ZOK.net] >>404 >証明したい事柄: >「nを2以上の自然数とする. >1,2,…,2nの2n個の自然数から, >n+1個の自然数をとると, >そのうちの2つについて, >一方が他方の倍数になっているものが存在する.」 の「そのうちの2つについて」とは、「取った n+1 個の自然数の中の2つについて」のことだろう。 2=2・1 は1の倍数で、1と2を含む n+1 個の自然数を選べば 条件を満たすように構成的に存在性を証明出来るから、証明したい命題は 「nを2以上の自然数とする.」は「nを1以上の自然数とする.」と一般化出来る。
432 名前:132人目の素数さん mailto:sage [2018/09/29(土) 15:58:22.13 ID:5t2MTazF.net] >>407 >>408 2n以下の奇数が { 2m-1 | m=1,2,…,n } のn個であることは自明ですね。 {1,2,…,3n} の中の数を、3で割れるだけ割れば、3n以下の「3で割り切れない数」になる。 3n以下の「3で割り切れない数」は2n個あるから、2n類に分類される。 2n+1個の自然数をとると、少なくとも2つは同じ類に含まれる。(←鳩ノ巣原理) このとき、一方が他方の3ベキ倍になっている。
433 名前:132人目の素数さん [2018/09/29(土) 19:24:59.39 ID:DjGEpWd+.net] 404です. 407さん,408さん,411さん,ありがとうございます. 414さん,415さん,示唆を頂きありがとうございます. 雲が晴れました. <
434 名前:132人目の素数さん mailto:sage [2018/09/29(土) 20:40:39.88 ID:T4zEucpS.net] 滑らかな多様体Mから実数直線Rへの滑らかな関数fがあるとき、{x∈M ; f(x)<a} (a∈R)はMの部分多様体になりますか? なるならどのように考えればいいか教えてください。
435 名前:132人目の素数さん [2018/09/29(土) 20:44:55.73 ID:uT1RU4nf.net] 開部分集合だからなりそうな希ガス
436 名前:132人目の素数さん [2018/09/29(土) 22:19:13.91 ID:BrcVBHe2.net] >>412 何がダメなのでしょうか?
437 名前:132人目の素数さん mailto:sage [2018/09/29(土) 22:21:32.75 ID:7jO6lw+J.net] 二項定理がわからないって時点で論外です
438 名前:132人目の素数さん mailto:sage [2018/09/29(土) 23:18:35.04 ID:sReFGpyG.net] ■■■■■■■■■■■ ■□□□□□□□□□■ ■□■■■■■■■□■ ■□■□□□□□■□■ ■□■□■■■□■□■ ■□■□■□□□■□■ ■□■□■■■■■□■ ■□■□□□□□□□■ ■□■■■■■■■■■ ■■■■■■ □□□□□■ □■■■□■ □■□□□■ □■■■■■
439 名前:132人目の素数さん mailto:sage [2018/09/30(日) 03:38:13.59 ID:1xQJjky/.net] >>418 ありがとうございます aが正則値のとき{x∈M ; f(x)≦a}が境界付きの滑らかな多様体になることはどのように言えるでしょうか? f^-1(a)がMの部分多様体になることは分かるのですが...
440 名前:132人目の素数さん mailto:sage [2018/09/30(日) 06:01:59.13 ID:60e7kxgM.net] ・ディリクレの「引き出し論法」 >>404 と ・鳩ノ巣原理 >>415 は同じものです。
441 名前:132人目の素数さん [2018/09/30(日) 11:41:13.70 ID:kQna5dy5.net] nを正の整数とするとき、n(n+1)(2n+1)は6の倍数であることを証明せよ。 ↑これ教えてください
442 名前:132人目の素数さん [2018/09/30(日) 11:42:02.21 ID:kQna5dy5.net] nを正の整数とするとき、n(n+1)(2n+1)は6の倍数であることを証明せよ。 ↑これ教えてください
443 名前:132人目の素数さん mailto:sage [2018/09/30(日) 11:46:42.89 ID:Ndh3pVty.net] 6=2*3
444 名前:132人目の素数さん mailto:sage [2018/09/30(日) 11:57:01.95 ID:iyjoSNr+.net] 2乗の和
445 名前:132人目の素数さん [2018/09/30(日) 12:25:45.46 ID:sTxrQmd0.net] 2n+1=(n-1)+(n+2)
446 名前:132人目の素数さん mailto:sage [2018/09/30(日) 13:18:50.27 ID:60e7kxgM.net] >>428 より n(n+1)(2n+1) = (n-1)n(n+1) + n(n+1)(n+2) = (6の倍数) + (6の倍数),
447 名前:132人目の素数さん mailto:sage [2018/09/30(日) 13:29:52.79 ID:60e7kxgM.net] >>427 は n(n+1)(2n+1) = Σ[k=1, n] {k(k+1)(2k+1) - (k-1)k(2k-1)} = Σ[k=1, n] k{(k+1)(2k+1) - (k-1)(2k-1)} = 6Σ[k=1, n] k^2 = 6 (1^2 + 2^2 + …… + n^2),
448 名前:132人目の素数さん mailto:sage [2018/09/30(日) 13:34:24.48 ID:60e7kxgM.net] 〔類題〕 ζ(2) = (1/6)π^2 が6の倍数でないことを示せ。
449 名前:132人目の素数さん [2018/09/30(日) 15:13:38.20 ID:DJsf8lH+.net] ある本の複素数の部分で |α|〜|β|≦|α±β|≦|α|+|β| と書いてあるのだが、この用法で「〜」とはどういう意味?
450 名前:132人目の素数さん mailto:sage [2018/09/30(日) 15:17:54.54 ID:0UDDQA3j.net] >>432 ||α|-|β||
451 名前:132人目の素数さん mailto:sage [2018/09/30(日) 15:32:09.93 ID:DJsf8lH+.net] >>433 これって常識? いきなり断りも無く書いてあったんだけど
452 名前:132人目の素数さん mailto:sage [2018/09/30(日) 15:41:32.71 ID:DJsf8lH+.net] >断りも無く と思ったら別のページに書いてあった
453 名前:132人目の素数さん mailto:sage [2018/09/30(日) 16:55:34.61 ID:QXkD3Yad.net] n=9まで一致する式ができた 7{589n^7−76252n^6+1473418n^5−12519640n^4+55110541n^3−127896988n^2 +150467292n+66825×2^(n+7)−83666160}−{(n^2−9n)^4+60(n^2−9n)^3 +1308(n^2−9n)^2+12176(n^2−9n)+40320} q=――――――――――――――――――――――――――――――――――――― 495{34286n^5−25n^7−1316n^6−317240n^4+1446935n^3−3416084n^2 +4304724n+5040{2^(n+6)−551}}+{(589545/128)(n^8−36n^7+546n^6 −4536n^5+22449n^4−67284n^3+118124n^2−109584n+40320)} この関数を検算してくれ〜(・ω・)ノ
454 名前:132人目の素数さん mailto:sage [2018/09/30(日) 18:36:00.67 ID:092iedVI.net] >>43
455 名前:6 絶対間違ってるし邪魔だからもうやめて そのアプローチで正解でないっていつ気づくの? [] [ここ壊れてます]
456 名前:132人目の素数さん mailto:sage [2018/09/30(日) 20:42:11.32 ID:60e7kxgM.net] >>82 のヒント 〔補題〕 (n^n)/n! ≦ e^(n-1), (略証) (1 +1/j)^j = Σ[L=1, j] C[j, L](1/j)^L = Σ[L=1, j] (1-1/j)(1-2/j)…(1-(L-1)/j)/L! はjについて単調増加。 ∴ {(j+1)/j}^j = (1 + 1/j)^j < e, j=1,…,n-1 を入れて掛けると (n^n)/n! ≦ e^(n-1), (別法) マクローリン展開から e^x > x^{n-1} /(n-1)! + (x^n)/n! + x^{n+1} /(n+1)! + x^{n+2} /(n+2)! = (x^n)/n! {n/x + 1 + x/(n+1) + xx/(n+1)(n+2)}, e^n > (n^n)/n! {2 + n/(n+1) + nn/(n+1)(n+2)} > (n^n)/n! e, (n≧2) ∴ e^(n-1) > (n^n)/n!, n=1 は直接確かめる。 (終) 不等式スレ9-724
457 名前:132人目の素数さん mailto:sage [2018/09/30(日) 21:10:15.67 ID:60e7kxgM.net] >>437 正しいアプローチは漸化式 >>86 に基づく >>388 >>389 ですね^^
458 名前:132人目の素数さん mailto:sage [2018/09/30(日) 21:38:10.99 ID:60e7kxgM.net] >>435 錯覚いけない、よく見るよろし。 --- 升田幸三 (1948, 高野山)
459 名前:132人目の素数さん mailto:sage [2018/09/30(日) 22:21:12.98 ID:QXkD3Yad.net] >>439 100組のカップルの時の出力はできるのかね?(´・ω・`)
460 名前:132人目の素数さん mailto:sage [2018/09/30(日) 23:21:24.03 ID:TIqo4Krx.net] >>441 当然できるし 5443827829522773148812913954810360866828706145317982945705254293391295458292023589605615870185673878007736004782284270451993721349385643643132361467286011701708486202105261498599716 /14835085087653253718972529896308389386983938057985425384853569746252839606857062625405021609091862498949562417985042968819817371813012648154614367517235455765561610758304595947265625 閉じた形のものだったら、前スレ https://rio2016.5ch.net/test/read.cgi/math/1534342085/609 の > a[n] = {1/(2n-1)!!}i[I_{3/2}(-1)・K_{n+1/2}(1) - K_{3/2}(1)・I_{n+1/2}(-1) ] > ここに I_m(z), K_m(z) は変形ベッセル函数。 があるだろ
461 名前:132人目の素数さん mailto:sage [2018/09/30(日) 23:39:12.20 ID:QXkD3Yad.net] CPU可哀そう
462 名前:132人目の素数さん mailto:sage [2018/09/30(日) 23:54:54.50 ID:eo+flm29.net] 数Uの問題です。(1)の外心と(2)を教えていただきたいですm(__)m aは正の実数とする。点A(1,a)、B(-1,a)、O(0,0)がある。 (1)△OABの重心の座標と外心の座標をそれぞれ求めよ。 重心の座標は (0、2a/3)とでました 外心の座標は、それぞれ三点を x^+y^+lx+my+n=0に代入して解こうと思ったのですが 最後 a^+ma=-1 a^+ma=-1 とまったく同じ式がでてきてしまいうまく出せませんでした。 (2)重心と外心が一致するときのaの値を求めよ
463 名前:132人目の素数さん mailto:sage [2018/10/01(月) 00:06:38.74 ID:ncGHhicg.net] >>444 図描けよ 外心も x 軸上にあるから x 座標を文字でおいて各頂点までの距離^2 を立式すれば方程式ができる
464 名前:132人目の素数さん mailto:sage [2018/10/01(月) 00:08:13.15 ID:ncGHhicg.net] >>445 y 軸だった x を y に改めてくれ
465 名前:132人目の素数さん mailto:sage [2018/10/01(月) 00:09:25.09 ID:HKRS9tcF.net] >>444 円の方程式を持ち出しての計算にするなら 外心は、y軸上にあるから、外心の座標を(0,r)とおいて式を立てれば楽なんじゃない? x^2+(y-r)^2 = r^2 (代入した後に整理ミスしているだけだと思うけど…Lどこ行ったんだよw) 図形的に考えても面倒じゃないと思う。 ダブってるけど、書いたからそのまま投稿するw
466 名前:132人目の素数さん mailto:sage [2018/10/01(月) 00:38:24.87 ID:eM2YcEDk.net] >>438 〔補題'〕 (n^n)/n! ≦ e^(n-1) ≦ (n^n)/(n-1)! (略証) (1 -1/kk)^k > 1 -1/k, … AM-GM (1 +1/k)^k = (1 -1/kk)^k /(1 -1/k)^k > 1/(1 -1/k)^(k-1) = {1 +1/(k-1)}^(k-1), ∴ (1 +1/k)^k = {(k+1)/k}^k は単調増加 ∴ {(k+1)/k}^k < e, k=1,2,…,n-1 を入れて掛けると (n^n)/n! ≦ e^(n-1), {kk/(kk-1)}^k > (1 +1/kk)^k > (1 +1/k), … AM-GM ∴ {k/(k-1)}^k = {kk/(kk-1)}^k・(1 +1/k)^k > (1+1/k)^(k+1) ∴ (1 +1/k)^(k+1) = {(k+1)/k}^(k+1) は単調減少 ∴ {(k+1)/k}^(k+1) > e, k=1,2,…,n-1 を入れて掛けると (n^n)/(n-1)! ≧ e^(n-1),
467 名前:132人目の素数さん mailto:sage [2018/10/01(月) 03:34:44.35 ID:/kB4AWKy.net] 教えてほしいことがあります。 ド底辺高校卒の高卒でしかもブランクが何年もある人間がアメリカやイギリスの名門大学に入る方法ってありますか? やっぱり無いですか? 本当は日本国内の一流大学に入りたいと思っていたのですが、 日本はやっぱりどうやら18歳で入学する人が圧倒的に多いということで、 歳をとってから大学に入ることについて否定的な見方をする人がかなり多いので、 厳しいかなと思いました。 そこで、ド底辺高校卒でしかもブランクがかなりある人間が、 米英の名門大に入れる方法は無いかと思ったのですが、やっぱり無いですよね?
468 名前:132人目の素数さん mailto:sage [2018/10/01(月) 05:18:07.79 ID:GHmOwHVW.net] https://i.imgur.com/llU8dm8.jpg
469 名前:132人目の素数さん mailto:sage [2018/10/01(月) 06:35:00.78 ID:S/aMmqFw.net] 上から2番目、3と書かれている問題お願いします。 https://i.imgur.com/AbqCezg.jpg
470 名前:132人目の素数さん mailto:sage [2018/10/01(月) 07:36:07.51 ID:WGyB9cPW.net] >>449 二項定理分かんないんだろ?無理だよ
471 名前:132人目の素数さん mailto:sage [2018/10/01(月) 07:39:37.11 ID:/cC5EMQN.net] >>451 すいません自己解決しました
472 名前:132人目の素数さん [2018/10/01(月) 08:19:40.14 ID:u9b4EZVw.net] >>452 真面目に教えてください。お願いします。
473 名前:132人目の素数さん mailto:sage [2018/10/01(月) 11:42:58.72 ID:imH3xhAC.net] 全ては二項定理がわかるようになってからです
474 名前:132人目の素数さん mailto:sage [2018/10/01(月) 13:15:45.45 ID:ZJNI1hU9.net] 何で二項定理に拘ってんの?
475 名前:132人目の素数さん mailto:sage [2018/10/01(月) 14:32:22.23 ID:Bx2kbAkv.net] ヒマラヤさんは二項定理がわからないからですね
476 名前:132人目の素数さん mailto:sage [2018/10/01(月) 14:40:28.59 ID:JNMd+HEC.net] 見栄をはってチャート式の二項定理の問題を聞いたら回答が来たけど、それがわからなかった(大爆笑)
477 名前:132人目の素数さん [2018/10/01(月) 16:03:19.61 ID:uQ+IEVvw.net] 線形計画法の本では、なぜタブローなどという分かりにくいものを使うんですか? コンピューターで計算する時代にはタブローなど意味ないですよね。 連立一次方程式をそのまま書いた方が分かりやすいですよね。
478 名前:132人目の素数さん mailto:sage [2018/10/01(月) 18:02:33.00 ID:WGyB9cPW.net] 暗算や筆算の計算ミスが多すぎて、数学物理化学全部やばいのですが、どうしたらいいですか? 成績がそれほど悪いわけではないのですが(前回の全国模試で数学は上位1%くらいでした)、 例えば16/3を計算しようとして、パッと8.33333・・・・と暗算してしまったり 割り算で13000-10624を計算して、繰り下がりを1376としてしまったりというようなミスが頻発します 本番でこれをやったらと思うとノイローゼで死にそうで、特に化学の多ケタの割り算は高確率でつまずくのですが どうすれば改善しますか?
479 名前:132人目の素数さん mailto:sage [2018/10/01(月) 19:30:09.73 ID:lSP8i6OA.net] f(x)=(x+1)(x-1)(ax+b)が-1≦x≦1の範囲で極大値と極小値をとるとき、実数aとbの条件を求めよ。
480 名前:132人目の素数さん mailto:sage [2018/10/01(月) 21:38:54.10 ID:io8ssdIc.net] >>460 筆算が分からないんだろ?無理だよ
481 名前:132人目の素数さん [2018/10/01(月) 21:49:36.14 ID:9/hS0X0z.net] ∫(1-4x^2)’(1-4x^2)^(-1/2)dx = 2*(1-2x^2)^(1/2) + C これの式変形がわかりません。どなたか教えていただきませんか?
482 名前:132人目の素数さん mailto:sage [2018/10/01(月) 22:42:26.10 ID:NFGqB/Wz.net] n{2^n+2^(n−1)}/{n{2^(n+2)+2^(n−1)}}という式に n=0を入力すると1/3が出力されるのはなぜですか?
483 名前:132人目の素数さん mailto:sage [2018/10/01(月) 23:07:41.93 ID:T9pYYQfC.net] n(n+1)(n+2)=120 助けてエロい人
484 名前:132人目の素数さん mailto:sage [2018/10/01(月) 23:34:51.46 ID:NFGqB/Wz.net] n(n+1)(n+2)=120 n=4
485 名前:132人目の素数さん mailto:sage [2018/10/02(火) 00:56:44.94 ID:VNedEoPb.net] >>451 3. 点zを原点を中心としてπ/2だけ回転した点を表わす複素数をαとする。 → iz = α, (反時計回りとする) 原点が点2+3iに移るような平行移動で、点αが点zに移る。 → α + (2+3i) = z, 辺々たすと iz + (2+3i) = z, ∴ z = (2+3i)/(1-i) = (2+3i)(1+i)/2 = (-1+5i)/2, >>459 計算機のない時代の遺物。統計学で層別計算してたのも同じ。 >>460 もちつけ、兄者。 >>461 f(x) は極値を2つ以上もつから3次以上。a≠0 ロルの定理から、2つの根の間に極大 / 極小がある。 g(x) = ax+b = 0 の根が -1≦x≦1 にあればよい。 0 ≧ g(-1)g(1) = bb-aa, あるいは | -b/a | ≦ 1, 以上より、|a|≧|b|, a≠0. >>463 置換積分でググれ >>464 前処理ソフトが約分して呉れたんぢゃね? >>465 0 = n(n+1)(n+2) -120 = (n-4)(nn+7n+30), nn+7n+30 = (n+7/2)^2 + 71/4 > 0, ∴ n-4 = 0,
486 名前:132人目の素数さん mailto:sage [2018/10/02(火) 01:29:53.84 ID:xOs+qnbe.net] n=0,αn/βn,α={2^n+2^(n−1)},β={2^(n+2)+2^(n−1)} 分母と分子の両方にゼロ掛けているのに なんで1/3が出力されるねん?(´・ω・`)
487 名前:132人目の素数さん mailto:sage [2018/10/02(火) 03:16:51.81 ID:ee+PvINm.net] AB = 2 を直径とする半円の弧の部分に2点C,Dがあり以下を満たしている。 (i) △ACDは二等辺三角形である (ii) △ABCと△ACDの内接円の半径は等しい このとき,△ABCの内接円の半径を求めよ。 お願いします。
488 名前:132人目の素数さん mailto:sage [2018/10/02(火) 07:59:35.48 ID:ortyAoQt.net] xy平面の単位円上に正五角形ABCDEがある。ただし点Aの座標は(1,0)であり、各頂点はこの順に反時計回りに並んでいる。 線分AC上の点Pで、∠DPEが最大になるものを考える。 (1)Pの座標を求めよ。 (2)線分の長さの積PB・PD・PEを求めよ。
489 名前:132人目の素数さん mailto:sage [2018/10/02(火) 08:16:34.30 ID:vOLg0Hxo.net] 初歩的な質問ですが、 定積分の証明で S(t)=F(t)+C というのがでてきますが、 Cにはすべての数が入りうるのに Cが−F(a)ときまっているのは なぜですか? F(a)が変数だからだとしても 納得いきません。 そもそもCって なにものですか?
490 名前:132人目の素数さん mailto:sage [2018/10/02(火) 08:17:04.11 ID:VNedEoPb.net] >>469 (ア) A-D-C-B の順に並ぶとき AD < AC, DC < AC より AD=DC, ∠ACD = ∠DAC = θ < 45゚, AC = 2sin(2θ), △ACDの内接円の半径 r1 = sin(2θ)tan(θ/2) = 2sinθcosθtan(θ/2) = 2(1-cosθ)cosθ ∠ABC = ∠ABD + ∠DBC = ∠ACD + ∠DAC = 2θ, ∠ACB = 90゚, ∠BAC = 90゚-2θ, AC = 2sin(2θ), BC = 2cos(2θ), 僊BC = (1/2)AC・BC = sin(4θ), 僊BCの内接円の半径 r2 = 2僊BC/(AB+BC+CA) = sin(4θ)/{1+cos(2θ)+sin(2θ)}, r1 / r2 = 1 とおくと sin(3θ/2) = cosθcos(θ/2), θ = 34.5626526262゚ r = 0.290687304 僊BC = 0.6658737165 AC = 1.8687238802 BC = 0.7126507276 AB+BC+CA = 4.5813746078 (イ) A-C-D-B の順に並ぶとき AC < AD, CD <AD より AC=CD, ∠ADC = ∠CAD = θ < 45゚, AD = 2sin(2θ), △ACDの内接円の半径 r1 = sin(2θ)tan(θ/2) = 2sinθcosθtan(θ/2) = 2(1-cosθ)cosθ ∠ABC = ∠ADC = θ, ∠ACB = 90゚, ∠BAC = 90゚-θ, AC = 2sinθ, BC = 2cosθ, 僊BC = (1/2)AC・BC = 2sinθcosθ, 僊BCの内接円の半径 r2 = 2僊BC/(AB+BC+CA) = 2sinθcosθ/(1+cosθ+sinθ), r1 / r2 = (1-cosθ)(1+cosθ+sinθ)/sinθ = sinθ + (1-cosθ), r1 / r2 = 1 とおくと sinθ-cosθ = 0, θ = 45゚, r = √2 -1, このとき D=B, 僊BC = 僊CD である。
491 名前:132人目の素数さん mailto:sage [2018/10/02(火) 08:31:47.91 ID:OJPaRROc.net] nCrが自然数になることを証明せよ
492 名前:132人目の素数さん mailto:sage [2018/10/02(火) 08:34:25.97 ID:8xWV0yiX.net] >>473 r>nのときは?
493 名前:132人目の素数さん mailto:sage [2018/10/02(火) 08:46:22.42 ID:1Z24JhGy.net] >>471 S(a)=0だからです
494 名前:132人目の素数さん [2018/10/02(火) 13:46:59.41 ID:mtlgLTzy.net] 立方体ABCD-EFGHがあり辺CD、GH上にそれぞれM,Nを |↑AM|+|↑MN|+|↑MF|の値が最小となるうにとる。 ↑AB=↑a , ↑AD=↑b ↑AE=↑cとするとき次のベクトルを↑a , b, cを 用いて表わせ。 (1)三角形FMNの重心をPとするとき↑AP (2)EからFMNに垂線EQを下ろす。このとき↑AQ (1)は展開図を考えわかりました。↑AP=2/3 (↑a+↑b+↑c) (2)がわからないのでお願いします (1)を利用するのでしょうか? 答えは8/9 ↑a +3/9 ↑b+7/9 ↑c らしいのですが解き方がわかりません
495 名前:132人目の素数さん mailto:sage [2018/10/02(火) 14:19:00.53 ID:0t8uq4AS.net] APを使えばAM,ANベクトルはすぐ求まって、FM、FNも求まるから FQベク=sFMベク + tFNベクと置いて EQベク⊥FMNだから、 EQ⊥FM、EQ⊥FNででいけるんじゃないの? 多分傍用にも類題があると思う
496 名前:132人目の素数さん mailto:sage [2018/10/02(火) 14:58:18.90 ID:JJS6wCfv.net] >>476 答えあってる?
497 名前:132人目の素数さん [2018/10/02(火) 14:59:17.90 ID:zLpsNvIM.net] >>477 やっぱりそうやるしかないですか… 結構計算が面倒そうなので なんか簡単に解く方法があるのかとも思ったのですが
498 名前:132人目の素数さん [2018/10/02(火) 15:01:38.34 ID:zLpsNvIM.net] >>478 答えは100%あってます。 答えしか本にのってないのです
499 名前:132人目の素数さん mailto:sage [2018/10/02(火) 15:03:01.80 ID:JJS6wCfv.net] >>480 なんて本?
500 名前:132人目の素数さん [2018/10/02(火) 15:06:55.51 ID:zLpsNvIM.net] >>481 ある大学の過去問なんです。答えおかしいですか?
501 名前:132人目の素数さん mailto:sage [2018/10/02(火) 15:10:59.77 ID:++Pj2SEU.net] EQ = 8/9 a + 3/9b - 2/9c になるけどこれ FM = -1/3a + b、NM = -1/3a-c に直交してない希ガス。
502 名前:132人目の素数さん mailto:sage [2018/10/02(火) 15:14:59.80 ID:0t8uq4AS.net] >>479 計算は下手にバラバラにせずにまとめたままで計算すればそれほどでもないと思う けど、平面の方程式が得意なら、そっちつかったほうが楽かな。
503 名前:132人目の素数さん mailto:sage [2018/10/02(火) 15:44:47.76 ID:ortyAoQt.net] xy平面上の2点A(1,0),B(0,1)を直径とする円のy>0の部分をCとする。 C上に異なる2点P(cosα,sinα),Q(cosβ,sinβ)を固定する。AB上を動く点Rとの距離の和PR+RQを最小にしたい。 (1)この時のRの座標をαとβで表せ。 (2)RはPR+RQを最小にする位置にある。α<βとする。AP+PR+RQ+QBをαとβで表せ。
504 名前:476 [2018/10/02(火) 16:42:01.01 ID:zLpsNvIM.net] すいません 476の問題ですがどうしても計算が合いません。 ↑FQ=s↑FM+t↑FNとおいて ↑FQ=s(−2/3 a +b-c )+t(-1/3 a +b) ↑EQ=(1−2/3 s−1/3 t)a+(s+t)b-sc ↑EQ・FM=0 より22s+11t−6=0 ↑EQ・FN=0 より11s+10t−3=0 連立してt=0 s=3/11となってしまうのですが どこで間違えたのでしょうか?
505 名前:132人目の素数さん [2018/10/02(火) 18:19:45.39 ID:zLpsNvIM.net] 失礼 486 解決したので無視して下さい
506 名前:132人目の素数さん [2018/10/02(火) 22:24:42.10 ID:9LiRKrfn.net] 高2 一次変換です お願いします https://i.imgur.com/9KaBb13.jpg
507 名前:132人目の素数さん [2018/10/02(火) 23:01:08.54 ID:WVFRN6vC.net] >>488 楕円上の点(x,y)は(x-αy, βx +(√3)γy) に移るので (x-αy)^2 + {βx +(√3)γy}^2 = 1 (1+β^2)x^2 +(α^2 +3γ^2) y^2 -2{α -(√3)βγ} xy = 1 楕円の式と比べて β^2 = 2 α^2 + 3γ^2 = 9 α = (√3)βγ したがって β = √2 α = (√6) γ = √6 γ = 1
508 名前:132人目の素数さん mailto:sage [2018/10/02(火) 23:01:16.13 ID:ortyAoQt.net] >>488 (x,y)=(Acosθ,Bsinθ)と置いて余裕
509 名前:132人目の素数さん mailto:sage [2018/10/02(火) 23:01:34.12 ID:ortyAoQt.net] >>489 早っ!
510 名前:132人目の素数さん [2018/10/02(火) 23:22:15.10 ID:9LiRKrfn.net] >>489 ありがとうございます 分かりました
511 名前:132人目の素数さん mailto:sage [2018/10/02(火) 23:37:33.22 ID:0t8uq4AS.net] いや、なぜ高2で一次変換をやってるのかそこから説明が聞きたいんだが・・・
512 名前:132人目の素数さん mailto:sage [2018/10/03(水) 00:04:09.62 ID:iAETM6y8.net] >>493 高専じゃね
513 名前:132人目の素数さん [2018/10/03(水) 00:12:26.87 ID:aSuhJUlr.net] >>493 高専2年生です
514 名前:132人目の素数さん mailto:sage [2018/10/03(水) 00:27:28.41 ID:s6MXA51P.net] 【問題】 以下の条件を全て満たす実数xの関数f(x)の具体例を1つ挙げよ。 (A) f(x)は常に正 (B) -∞<x<∞で微分可能 (C) ∫[-∞→∞] f(x) dx は収束する (D) (C)の積分値をaとおき、また ∫[0→1] f(x) dx = b とおくと、b/a>3/4 (E) f’(0) = -2 【発展】 (1)条件(D)の不等式をb/a>c (1>c>3/4)と置き換えた場合のf(x)の具体例を1つ挙げよ。 (2)条件(E)で f'(0) < -2018 とした場合のf(x)の具体例を1つが挙げよ。 (3)上記(1)(2)を共に満たす場合はどうか。
515 名前:132人目の素数さん mailto:sage [2018/10/03(水) 00:30:38.38 ID:0zSj9VO+.net] >>495 ああ、そういうことか。サンキュウ。
516 名前:132人目の素数さん mailto:禁止 [2018/10/03(水) 00:32:35.06 ID:JYGM9rOO.net] Any finite topological tree T {belongs to} C with 2 verices at 0 and 1 determines a unique Belyi Plynomial. の例をしめしてください。
517 名前:132人目の素数さん mailto:sage [2018/10/03(水) 00:35:17.71 ID:TLYZIUEu.net] 集合論の質問です。 今公理 C を C : ∀X ∃f : Pow(X)\{∅} → X ∀S ∈ Pow(X)\{∅} f(S) ∈ S とします。(いわゆる選択公理) ZF 上ではこれで良いとして BG では C1 : ∀X : small ∃f : Pow(X)\{∅} → X ∀S ∈ Pow(X)\{∅} f(S) ∈ S C2 : ∀X ∃f : Pow(X)\{∅} → X ∀S ∈ Pow(X)\{∅} f(S) ∈ S の2つが考えられると思いますが 1) この2つは同値ですか?それともC2 の方が真に強い公理ですか? 2) BG + C1 の無矛盾性と BG + C2 の無矛盾性が同値である事を証明できますか? 3) 一般に BG 上の選択公理といえばどちらを指しますか? よろしくお願いします。
518 名前:132人目の素数さん mailto:sage [2018/10/03(水) 00:46:24.03 ID:zq5P4Oty.net] >>495 今は、高専のあと旧帝大系大学の3年編入がトレンドだもね。
519 名前:132人目の素数さん mailto:sage [2018/10/03(水) 07:54:55.57 ID:7h2ip4rW.net] >>496 f(x) = b・p(x; σ^2) + (a-b)・q(x; δ) は (A) (B) (C) を満たす。 p(x; σ^2) = 1/√(2πσ^2) exp{-(x-1/2)^2 /(2σ^2) … 正規分布} σ=0.2 のとき ∫[0, 1] p(x; σ^2) dx ⁼ 0.98758 σ=0.1 のとき∫[0, 1] p(x; σ^2) dx ⁼ 0.999999 q(x; δ) = 0, (x≦-3δ) = (x+3δ)^2 /(4δ^3) (-3δ≦x≦-2δ) = 1/(2δ) - (x+δ)^2 /(4δ^3) (-2δ≦x≦0) = (x-δ)^2 /(4δ^3) (0≦x≦δ) = 0, (δ≦x) ∫[-3δ, δ] q(x)dx = 1, δは (E) f '(0) = (a-b)q '(0) = -(a-b)/(4δ^2), を満たすように決める。
520 名前:132人目の素数さん mailto:sage [2018/10/03(水) 17:35:50.06 ID:7h2ip4rW.net] 代数的数の全体がなす体をKとする。 〔Belyiの定理〕 射影直線上 高々3点のみで分岐する被覆によって 全てのK上の非特異完備代数曲線が表わされる。 これをBelyi多項式と云う。 標数0の体上の完備非特異曲線XがK上定義される曲線と同型となる条件は、 P^1 の分岐被覆X→P^1 であって、高々3点(0,1,∞としてよい)のみで分岐するものが存在すること。 これをBelyi関数と云う。 すべてのQの有限次代数拡大は P^1 - {0,1,∞} の基本群への作用から得られる。
521 名前:132人目の素数さん mailto:sage [2018/10/03(水) 21:01:46.20 ID:/YDYYeDH.net] >>454 よく知らんが金払えば入れるんじゃないの? 卒業は無理かも。
522 名前:132人目の素数さん mailto:sage [2018/10/04(木) 02:34:02.41 ID:Lvh1QYjd.net] sinx+cosx+siny+cos(x+y)の最大値を求めよ。
523 名前:132人目の素数さん mailto:sage [2018/10/04(木) 02:42:20.41 ID:Lvh1QYjd.net] a,bは正の実数とする。 s(x+a) < ∫[0→1] (a+b)/(ax+b) dx < s(x+b) となるxの一次分数関数s(x)を1つ求めよ。
524 名前:132人目の素数さん mailto:sage [2018/10/04(木) 07:47:31.04 ID:Lvh1QYjd.net] 一辺の長さが1の立方体OABC-DEFGがある。 また、ACを直径とし底面OABCと垂直に交わる半円周をKとし、K上に点Pがある(Kは立方体の内部にある)。 OからPを経由して頂点Xに至る最短経路の長さをd(P,X)と表す。Pが動くとき、以下を求めよ。 (1)min{d(P,B)} (2)min{d(P,F)} (3)min{d(P,E)}
525 名前:132人目の素数さん mailto:sage [2018/10/04(木) 10:29:35.11 ID:XgUpOSQ3.net] ABC内の点FからAC上の点Gに垂線を下ろすとき、|FG|の最大値を求めよという問題をベクトルゴリ押しで解こうとしたんですが、|FG|^2=0とかいうありえない計算結果になりましたどこで計算ミスしたのか教えて下さい https://i.imgur.com/vsEWWZI.jpg
526 名前:132人目の素数さん mailto:sage [2018/10/04(木) 10:31:29.06 ID:XgUpOSQ3.net] 本来αβのとる範囲には多項式の条件がある問題です。 まずαβ、bcの式でFGを表してから解こうとしたということです
527 名前:132人目の素数さん mailto:sage [2018/10/04(木) 11:54:22.32 ID:sxpMnp/q.net] 計算チェックまでする気はないけど、FがABC内にあるなら、F=Gになる時が最小になって当然じゃないの?
528 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:01:17.93 ID:sxpMnp/q.net] 最後の行まで見てもたわ 最後の行の変形間違えてる
529 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:06:07.97 ID:fAxXilhM.net] >>507 > ABC内の点FからAC上の点Gに垂線を下ろす この表現とか6にしか見えないGのほうが気になる
530 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:11:38.81 ID:XgUpOSQ3.net] >>510 あーほんとだ。内積の自乗を約分できるわけないですね……ありがとうございます。
531 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:19:07.11 ID:sxpMnp/q.net] あんまり関係ないけど この問題で、AGベクトルはAFベクトルの正射影ベクトルだ
532 名前:けど セットになるべきFGベクトルの名前はついているのでしょうか。 3次元なら割と綺麗な式になるから名前付いてそうで、なんか気になる AGベクトルの単位ベクトルをeとして FG = (AF×e)×e AG = (AF・e)e [] [ここ壊れてます]
533 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:47:35.74 ID:sxpMnp/q.net] おまけの別解 上にも書いたように、FGベクトル = ((AFベクトル)×e)×e (但し eはAGベクトルの単位ベクトル) なので FG = ((αb+βc)×e)×e = (αb×e)×e だから |FG| = |αb| で片付いてスッキリする
534 名前:132人目の素数さん mailto:sage [2018/10/04(木) 12:48:59.88 ID:sxpMnp/q.net] AGベクトルの単位ベクトルってなんだよ…ACベクトルの単位ベクトルだ
535 名前:132人目の素数さん mailto:sage [2018/10/04(木) 13:51:05.45 ID:sxpMnp/q.net] sin抜けてるやん… |FG|=|αbsin(ABとACの角度)| スッキリしてるけど俺の頭がすっきりしてないらしい
536 名前:132人目の素数さん mailto:sage [2018/10/04(木) 15:18:30.38 ID:Lvh1QYjd.net] >>506 これ分からないのでおねがいします
537 名前:132人目の素数さん mailto:sage [2018/10/04(木) 16:27:58.78 ID:wFWA09/F.net] >>504 まづ y だけ動かす。 sin(y) + cos(x+y) = cos(π/2 -y) + cos(x+y) = 2cos(π/4 +x/2)cos(π/4 -x/2 -y) ≦ 2|cos(π/4 +x/2)|, 次にxを動かして f '(x) = cos(x) - sin(x) ± sin(π/4 +x/2) = 0, x = 0.204830928474733243276 + 2nπ, f(x) = 2.44471599169833602703 (最大) 境界点は cos(π/4 +x/2) = 0, x = (1/2 +2n)π, f(x) = 1, ゆえ最大でない。
538 名前:132人目の素数さん mailto:sage [2018/10/04(木) 16:47:06.95 ID:wFWA09/F.net] >>518 (補足) f(x) = sin(x) + cos(x) + 2 |cos(π/4 + x/2)| とおきました。 (与式) ≦ f(x),
539 名前:132人目の素数さん mailto:sage [2018/10/04(木) 22:23:43.58 ID:5nChFh8I.net] >>506 OP = 1 (一定) なので min PX を考える d(P, B) = 2 (一定) d(P, F) ≥ 1 + √(2 - √2) d(P, E) ≥ 1 + √(3/2) - √(1/2)
540 名前:132人目の素数さん mailto:sage [2018/10/05(金) 02:23:53.03 ID:7iOX1iCn.net] >>506 >>517 O (0, 0, 0) A (1, 0, 0) B (1, 1, 0) C (0, 1, 0) D (0, 0, 1) E (1, 0, 1) F (1, 1, 1) G (0, 1, 1) P ( (1+cosθ)/2, (1-cosθ)/2, sinθ/√2) 0≦θ≦π, とおく。 (1) PB = OP = 1, (2) PF = √{2-(√2)sinθ} ≧ √(2-√2), (3) PE = √{2-cosθ-(√2)sinθ} = √{2-(√3)sin(θ-a)} ≧ √(2-√3) = (√3 -1)/√2,
541 名前:132人目の素数さん mailto:sage [2018/10/05(金) 02:30:55.82 ID:7iOX1iCn.net] >>473 パスカルの漸化式 C(n,r) = C(n-1,r) + C(n-1,r-1) (1≦r≦n-1) C(n,0) = C(n,n) = 1, と数学的帰納法を使えば出る。
542 名前:132人目の素数さん mailto:sage [2018/10/05(金) 03:18:31.26 ID:7iOX1iCn.net] >>473 から Catalan(n) = C(2n,n) - C(2n,n-1) も自然数であることも分かります。
543 名前:132人目の素数さん mailto:sage [2018/10/05(金) 17:05:04.83 ID:+MTpncFe.net] 複素平面上の相異なる2点A(α),B(β)を通る直線に原点から下ろした垂線の足をH(γ)とおく。 A,BがO(2)を中心とする円|z-2|=1上を動くとき、△OABの重心をG(δ)とする。 線分GHが通過する領域の面積を求めよ。
544 名前:132人目の素数さん mailto:sage [2018/10/05(金) 19:18:16.00 ID:+MTpncFe.net] どの桁の数字も0または1または2である自然数の全体からなる集合をSとする。 このとき以下の命題の真偽を述べよ。 「任意の自然数nに対して、Sの要素のうちnの倍数であるものが存在する。」
545 名前:132人目の素数さん mailto:sage [2018/10/05(金) 20:30:23.78 ID:QN0fEriR.net] その数そのもの
546 名前:132人目の素数さん mailto:sage [2018/10/05(金) 21:37:08.21 ID:yYPKslbq.net] >>526 n=3 なら n そのものではダメ 7n = 21 ∈ S
547 名前:132人目の素数さん mailto:sage [2018/10/05(金) 21:57:14.23 ID:HtjB17dL.net] >>525 11…1100…00の形のもので十分じゃね
548 名前:132人目の素数さん [2018/10/06(土) 00:12:34.84 ID:AFWx1g8T.net] 2x5=10 3x37=111 4x25=100 5x2=10 6x(5x37)=1110 7x1573=11011 8x125=1000 9x123456789=1111111101 からどうにかならんか?
549 名前:132人目の素数さん mailto:sage [2018/10/06(土) 02:54:56.00 ID:QuzzCzhX.net] >>525 >>528 真 T = {0, 1, 11, 111, 1111, …, (10^n -1)/9} の要素をnで割った剰余は 0 〜 n-1 のいずれか。 #T = n+1 ゆえ、いずれか2つは同じ類に含まれる。 (←鳩ノ巣原理) その差はnの倍数であり、かつ 11…1100…00 または 1……1 の形だから Sの要素である。
550 名前:132人目の素数さん mailto:sage [2018/10/06(土) 03:08:36.86 ID:QuzzCzhX.net] >>529 7 x 158730 = 1111110 9 x 12345679 = 111111111
551 名前:132人目の素数さん mailto:sage [2018/10/06(土) 05:20:05.00 ID:6rd0x0IU.net] nを正の整数とする。2数の積 n×123456789 のすべての桁の数字が1となるようなnを考える。 (1)そのようなnを1つ求めよ。 (2)そのようなnは無数に存在するか。
552 名前:132人目の素数さん [2018/10/06(土) 05:50:24.78 ID:AK1pEjwX.net] x_{ij}と、添字が二つ付いている変数は、数字で例を作るとどうなります? \sigma^a_{i=1} \sigma^b_{j=1} x_{ij} の説明を読んでいてx_{ij}の具体例が浮かばず、式の意味をイメージできず詰まっています。 たとえば、変数に数字を割り当てて、計算例を出してもらえるとわかる気がするのですが、、、 統計学の教科書で、具体例がないまま式だけでて困っています。
553 名前:132人目の素数さん mailto:sage [2018/10/06(土) 05:57:57.90 ID:EzHLY8PD.net] x11=1,x12=2,x21=3,x22=4 Σ^2_{i=1}Σ^2_{j=1}xij=x11+x12+x21+x22=1+2+3+4
554 名前:132人目の素数さん [2018/10/06(土) 06:40:56.07 ID:AK1pEjwX.net] >>534 ありがとうございます。 それは、2*2の行列があって、そこに入っている数字で計算するみたいなイメージでOKですか? 行列にしたら下みたいな感じですか? | |x1.|x2.| |x.1| 1 | 2 | |x.2| 3 | 4 |
555 名前:132人目の素数さん [2018/10/06(土) 06:43:47.63 ID:AK1pEjwX.net] ちょっと表を訂正します (x21=3になるように訂正) | |x.1|x.2| |x1.| 1 | 2 | |x2.| 3 | 4 |
556 名前:132人目の素数さん mailto:sage [2018/10/06(土) 07:21:37.31 ID:d47b6NTM.net] そーですね
557 名前:529 [2018/10/06(土) 10:42:57.49 ID:AFWx1g8T.net] >>530 おお、あまりにも明快簡単な証明。 恐れ入りました。
558 名前:132人目の素数さん [2018/10/06(土) 12:08:38.99 ID:AFWx1g8T.net] >>532 あるんかいな? あるとすれば無数にあるのはほぼ自明だけど。 nx(10^桁数 +1)としてあらたなnを作っていけば桁数を無限に伸ばせるから。
559 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:12:33.76 ID:wEyt2e+O.net] >>532 鳩の巣理論を使うらしいぞ youtubeで似た問題を見た
560 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:15:14.03 ID:yKExIr/P.net] 自分自身を含む6つの素因数が順不同で3つ A+C+E=B+D+FかつB+C+D=E+F+A となるような組はあるかどうか?
561 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:22:54.73 ID:iwFEpJz2.net] 123456789・9と10は互いに素だから k がφ(123456789・9) の倍数のとき 10^k-1 ≡ 0 (mod 123456789・9) ただしφはオイラーの関数。
562 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:25:07.33 ID:14lxMZ5x.net] >>541 意味ぷー
563 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:29:37.72 ID:yKExIr/P.net] ごめん間違えた 自分自身を含む6つの約数だ…
564 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:42:08.12 ID:Ypg353eN.net] A+E+C = B+D+F、 A+E+F = B+D+C なら C = F。
565 名前:132人目の素数さん mailto:sage [2018/10/06(土) 12:53:56.70 ID:yKExIr/P.net] >>545 辺の長さの違う組み換え可能な6角形を求めたいのだが、C=Fって事は1辺は同じ数になるってこと? それとも俺の作った組が間違えてる?
566 名前:132人目の素数さん [2018/10/06(土) 13:26:52.43 ID:JVbQz5AH.net] https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%B3%E3%83%87%E3%83%9E%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86 1 と e^α は Q 上一次独立である。すなわち、0 でない代数的数 α に対して e^α は超越数である。 ここの「すなわち」ってどうやって導かれるのですか?
567 名前:132人目の素数さん [2018/10/06(土) 13:44:19.53 ID:GD5uvEmE.net] >>547 すぐ上の定理に代入してるだけ
568 名前:132人目の素数さん mailto:sage [2018/10/06(土) 14:14:41.96 ID:V97Lm1H9.net] >>546 6元集合Xをいかに3元集合の和A∪B.C∪Dと分けようとも片方の分け方はもう片方の分け方の一個ずつを選んで交換したものにしかならない。 交換して和が不変などあり得ない。
569 名前:132人目の素数さん [2018/10/06(土) 14:16:31.10 ID:JVbQz5AH.net] 0と代数的数αって一次独立じゃないですよね てことは代入ってできないと思うのですが、すみません詳しくお願いします、、!
570 名前:132人目の素数さん mailto:sage [2018/10/06(土) 14:32:10.15 ID:iZgcyYIE.net] 小学生向けの問題で恐縮ですw みかんを何人かの子供に分けることになりました。 1人に3個ずつ分けると21個あまり、5個ずつ分けると11個足りません。 みかんの個数は全部で何個ですか? 答えしかなく、計算式が載ってない。計算式おねがいします。 ちなみに、答えは69個です。
571 名前:132人目の素数さん mailto:sage [2018/10/06(土) 14:32:58.70 ID:YIz2WDOP.net] 「すなわち、〜」の前の部分を陽に使うのであれば 代数的数βでe^α=βとなったとします e^α=β=β*1なので「すなわち」の前の部分からβ=0ですね 一方でe^z=0となる複素数zは存在しませんね よってe^αは代数的数ではないですね したがってe^αは超越数ですね
572 名前:132人目の素数さん mailto:sage [2018/10/06(土) 14:45:03.56 ID:sMR0Hk38.net] >>551 あと11個あったら5個ずつ分けるとピッタリで3個ずつ分けると32個余ることになる これは、あと11個あったら3個ずつ分けたあと、さらに余った32個を2個ずつ分けるとピッタリになるわけだから(以下略
573 名前:132人目の素数さん mailto:sage [2018/10/06(土) 14:59:14.79 ID:YIz2WDOP.net] >>552 ごめん 変なこと言ってるから訂正 e^α=βとなったとします これは1*e^α+(-β)*1=0となり、これはe^αと1がalg(Q)上一次従属であることになります これは「すなわち」の前の部分に矛盾します したがってe^αは代数的数ではない、すなわち超越数です
574 名前:132人目の素数さん mailto:sage [2018/10/06(土) 16:19:47.63 ID:lZB6drwe.net] 共同ツール 1 https://seleck.cc/685 https://trello.com/ ボードのメニュー → Power-Upsから拡張可能 Slack DropBoxなど Trello Chrome拡張機能 elegant ttp://www.kikakulabo.com/service-eft/ trelloのオープンソースあり 共同ツール 2 https://www.google.com/intl/ja_jp/sheets/about/ 共同ツール 3 https://slack.com/intl/ja-jp https://www.dropbox.com/ja/ https://www.google.com/intl/ja_ALL/drive/ https://getpocket.com/a/queue/ https://gsuite.google.co.jp/intl/ja/products/calendar/ https://bitbucket.org/ https://ja.atlassian.com/software/sourcetree https://ja.atlassian.com/software/jira/pricing?tab=self-hosted 千円 https://www.sketchapp.com/ ttp://photoshopvip.net/103903 ttps://goodpatch.com/blog/sketch-plugins/ trelloと他のサービスの連携 IFTTT https://ferret-plus.com/7940 https://chrome.google.com/webstore/search/trello?_category=extensions
575 名前:132人目の素数さん mailto:sage [2018/10/06(土) 17:04:01.04 ID:BjdHvyDk.net] >>551 wolfram先生に聞いてみました。 m.
576 名前:wolframalpha.com/input/?i=solve++y%3D3*x+%2B21%3D5*x-11for+y [] [ここ壊れてます]
577 名前:132人目の素数さん [2018/10/06(土) 17:09:15.84 ID:JVbQz5AH.net] >>554 シャワーしてたら同じこと思いつきました!(笑) 丁寧な説明ありがとうございます!
578 名前:132人目の素数さん mailto:sage [2018/10/06(土) 19:42:30.88 ID:0CbnY1eI.net] 本を読んでいたら 円が一番高い時で1ドル135.2円 円が一番安い時で1ドル87.1円 36%の変動があった と書かれていました そもそも変動というものを知らなかったので調べたら2つの方法が載っており @ 87.1÷135.2×100で出るとのことでそしたら64%になってしまいました 100から引くと本に書いてある36にはなりました A (87.1-135.2)×100÷135.2 で求められるそうで-35.57…四捨五入して36がでました @とAで答えが反対になるのはそれぞれどのように考えているからなのでしょうか? それと調べた時にどちらも変動率ではなく変化率と書いてありました 変動率と変化率の違いもわかりません もしよろしければ@とAの計算式はどのような考え方で成り立っているのか、変動率や変化率について教えてください
579 名前:132人目の素数さん mailto:sage [2018/10/06(土) 20:16:25.91 ID:m2GNmx3Y.net] 普段は1000円で売っているものがセールで900円で売られていました 何%の割引だったでしょう? @ 900円は1000円の90%だから、割り引かれた金額は1000円の10%分である 900÷1000×100=90, 100-90=10 A 割り引かれた金額は100円分で、それは1000円の10%である (1000-900)÷1000×100=10 の違い
580 名前:132人目の素数さん mailto:sage [2018/10/06(土) 20:43:07.28 ID:uc+03N+V.net] >>551 ■何人かの子供をx人とする 3x+21=5x−11……A 2x=32 x=16 子供は全部で16人いる みかんの個数はAにxを代入して ∵3x+21=5x−11=69個.
581 名前:132人目の素数さん mailto:sage [2018/10/06(土) 21:08:19.10 ID:0CbnY1eI.net] >>559 うおおお ありがとうございます
582 名前:132人目の素数さん mailto:sage [2018/10/06(土) 21:54:52.93 ID:hXGI5q9x.net] >>560 関数を使うなボケ >小学生向けの問題で恐縮ですw
583 名前:132人目の素数さん [2018/10/06(土) 22:58:40.44 ID:few7ZUvi.net] 死ね
584 名前:132人目の素数さん mailto:sage [2018/10/06(土) 23:15:03.79 ID:6rd0x0IU.net] >>562 アホみてーな何とか算教えるくらいならさっさと方程式教えろっつーの 日本の教育はよお
585 名前:132人目の素数さん mailto:sage [2018/10/06(土) 23:21:35.18 ID:6rd0x0IU.net] (問題) 平面上に凸四角形ABCDと動点Pがあるとき、線分長の和L=PA+PB+PC+PDを最小にする点はどこか。 (発展) kは実数で、先の(問題)のLの最小値以上の値をとる。 A(0,0),B(1,0),C(a,1),D(b,c),とおくとき、 L=kとなる点全体からなる図形を平面上に示せ。
586 名前:132人目の素数さん mailto:sage [2018/10/06(土) 23:25:32.04 ID:f628einX.net] なんとか算は後々役に立つ 方程式の未知数の数を直感で一つ減らす能力は後付するのは難しい ついでになんとか算を習ってる連中は、>>560 の方程式位なら解けるし、立式できる生徒も多い 塾によっては>>560 の解法がメインのところもあるだろ
587 名前:132人目の素数さん mailto:sage [2018/10/07(日) 00:19:47.33 ID:E9xbjymX.net] >>532 (1) 123456789・9 = (3^4)・3607・3803 >>542 により φ(123456789・9) = φ(3^4)φ(3607)φ(3803) … 乗法的函数 = 54・3606・3802 = 740340648 実際は k = φ(…)/36 = 20565018 でよい。 10^k - 1 ≡ 0 (mod 123456789・9), n = (10^k - 1)/(123456789・9), (2) 存在する。 n = {10^(20565018m) - 1}/(123456789・9), m∈N
588 名前:132人目の素数さん mailto:sage [2018/10/07(日) 00:57:19.16 ID:E9xbjymX.net] 〔類題〕 nを正の整数とする。2数の積 n×12345679 のすべての桁の数字が1となるようなnを考える。 (1)そのようなnを1つ求めよ。 (2)そのようなnは無数に存在するか。
589 名前:132人目の素数さん mailto:sage [2018/10/07(日) 01:12:23.42 ID:fa6Jg2kI.net] >>568 >>542 の何が通用しなくなるのかがわからん。
590 名前:132人目の素数さん mailto:sage [2018/10/07(日) 01:23:34.09 ID:E9xbjymX.net] >>568 電卓マジック「一瞬で画面をすべて同じ数字にする手品」 www.youtube.com/watch?v=raDUAsTO1OQ www.youtube.com/watch?v=x0PdyMWyYQE www.youtube.com/watch?v=Sxal80snPig
591 名前:132人目の素数さん mailto:sage [2018/10/07(日) 01:30:47.32 ID:fa6Jg2kI.net] なるほど。 コレは大違いww
592 名前:132人目の素数さん mailto:sage [2018/10/07(日) 02:07:40.53 ID:7p05xuhh.net] >>565 これ発展じゃない方は簡単なのになあ なんで誰も解かないかなあ
593 名前:132人目の素数さん mailto:sage [2018/10/07(日) 02:09:11.39 ID:fa6Jg2kI.net] 簡単すぎて面白くもなんともないから
594 名前:132人目の素数さん mailto:sage [2018/10/07(日) 10:44:28.12 ID:c0oX5rPZ.net] >>553 方程式を使わない解法の方が難しいね。
595 名前:132人目の素数さん mailto:sage [2018/10/07(日) 12:22:38.63 ID:dRzMmBrK.net] 人┏┯┯┯┯┯┯┯┯┯┯┯┯┯┯┯┯┯┯┓ こんなかんじでみかんの数を長方形の面積で考える 数┃ ┃ ┃ 3個ずつ分けたらBのエリアのみかんがあまり、 ┃ ┃ B:21個 ┃ 5個ずつ分けたらCのエリアのみかんが足りない ┃ ┃ ┃ BとCを足せば32(個)、1人当たりのみかんの個数は ┃ A ┣┿┿┿┿┿┿┫ 32÷2=16(個)、3人なら16*3=48(個 ┃ ┃ ┃ :Aのエリア) ┃ ┃ ┃ 求めるみかんの数は48+21=69(個) ┃ ┃ C:11個 ┃ ┃ ┃ ┃ ┗┷┷┷┷┷┷┷┷┷┷┷┷┷┷┷┷┷┷┛ 0 3 5 1人当たりのみかんの個数
596 名前:132人目の素数さん mailto:sage [2018/10/07(日) 14:40:25.11 ID:evu0+YND.net] >>551 鶴亀算では、「仮に全てが鶴だとすると脚の数は○○であり、実際の数と△△違うから、...」 という考えで問題と解くのが一般的。これを応用すると... 仮に20人いるとすると、みかんの個数は前半からは 3*20+21=81個、後半からは 5*20-11=89個。ずれが8個 仮に21人いるとすると、みかんの個数は前半からは 3*21+21=84個、後半からは 5*21-11=94個。ずれが10個 一人増やすと、「ずれ」が8個から10個に、2個増えた。 「ずれ」を0にするためには、20人の時から、4人減らせばよい。つまり、子供の数は16人 みかんの数は、前半から 3*16+21=69 であり、後半からも 5*16-11=69 と同じ値が出る。 あえて計算式を書くとすると、3 * {(21-(-11))/(5-3)} + 21
597 名前:132人目の素数さん mailto:sage [2018/10/07(日) 17:36:57.12 ID:zksXVA/M.net] 過不足算は、ある物を何人かで分配するときに、1人分の数量や分配後の 余りまたは不足などから全体の数量や人数を求める算術です。 全体の差 最初に余り、次にちょうど → 最初の余り 最初に不足、次にちょうど → 最初の不足 最初に余り、次も余る → 余り-余り 最初に不足、次も不足 → 不足-不足 最初に余り、次に不足 → 余り+不足 人数=全体の差÷1人分の数量の差 総数 余る場合 → 1人分の数量×人数+余り 不足する場合 → 1人分の数量×人数-不足
598 名前:132人目の素数さん [2018/10/07(日) 18:10:17.17 ID:ICgU2uBX.net] >>569 だよね。 でも、nを求めよって言ってるから、具体的な数値を書けってことかも。 オイラーの関数って初耳だけど、どうやんの? (存在自体は、おっしゃるように鳩ノ巣なんたらと、10と12…9x9が 互いに素から、10^k-1 ≡0となるk が存在するって初等的に証明できる んだけど)
599 名前:132人目の素数さん [2018/10/07(日) 18:13:56.30 ID:ICgU2uBX.net] すまん、>>567 を読んでなかった。 2000万桁の数なんて書き下せんわw
600 名前:132人目の素数さん mailto:sage [2018/10/07(日) 18:40:00.87 ID:5LTPL5bP.net] >>436 n=12
601 名前:まで {2^n+2^(n−1)+n-4-α/12+643(n-5)α/120 -2251β/720+501(n-7)β/112+20107a/840 +80167(n-9)a/90720+1925209b/259200 +1109375429934433(n-11)b/13305600} q=――――――――――――――――――――――――― {2^(n+2)+2^(n-1)+2n-10-{(n-2)^2(n-4)} +607(n-5)α/40-357β/40+10607(n-7)β/840 +1339a/20+822251(n-9)a/362880+18769033b/907200 +264154294609541(n-11)b/1140480} ,α=(n-1)(n-2)(n-3)(n-4),β=α(n-5)(n-6) ,a=β(n-7)(n-8),b=a(n-9)(n-10) [] [ここ壊れてます]
602 名前:132人目の素数さん mailto:sage [2018/10/07(日) 21:23:46.84 ID:cf3HhlHm.net] >>573 なら解いてみろ 解けないくせに
603 名前:132人目の素数さん mailto:sage [2018/10/07(日) 21:24:58.09 ID:vtlFnQU8.net] | Hit! | ぱくっ| /V\ /◎;;;,;,,,,ヽ そんなエサで _ ム::::(,,゚Д゚)::| 俺様が釣られると思ってんのか!! ヽツ.(ノ:::::::::.:::::.:..|) ヾソ:::::::::::::::::.:ノ ` ー U'"U'
604 名前:132人目の素数さん [2018/10/07(日) 21:28:25.63 ID:ICgU2uBX.net] すべての桁数の数字が1となるような素数で11より大きいものはあるか?
605 名前:132人目の素数さん mailto:sage [2018/10/07(日) 21:50:53.77 ID:IvQ4mrLs.net] (10^19-1)/9
606 名前:132人目の素数さん mailto:sage [2018/10/07(日) 23:01:47.43 ID:E9xbjymX.net] >>583 {10^(ab) -1}/9 は (10^a -1)/9 及び (10^b -1)/9 の公倍数。 (10^3 -1)/9 = 3 x 37, (10^5 -1)/9 = 41 x 271, (10^7 -1)/9 = 239 x 4649, (10^11 -1)/9 = 21649 x 513239, (10^13 -1)/9 = 53 x 79 x 264371653, (10^17 -1)/9 = 2071723 x 5363222357, ゆえ、>>584 が最小のもの。
607 名前:132人目の素数さん [2018/10/07(日) 23:10:22.85 ID:0dQh3xfV.net] この問題教えてください。 imepic.jp/20181007/833770
608 名前:132人目の素数さん [2018/10/07(日) 23:37:23.37 ID:X/c1GjM/.net] 高2 行列 この連立方程式を行列を用いて解いてください (出来ればクラメルの公式以外でお願いします) https://i.imgur.com/N2py1ii.jpg
609 名前:132人目の素数さん mailto:sage [2018/10/07(日) 23:39:33.85 ID:TXizzDUQ.net] 3-1のグレブナー基底を直接計算が困難なんだけど何かアイディア無いかな? 例えばグレブナウォークや変換器などの直接計算を迂回する方法など... それに準ずるヒントになりそうなものとか無いかな? https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/223141/1/1907-21.pdf
610 名前:132人目の素数さん mailto:sage [2018/10/07(日) 23:45:48.39 ID:ExsNFjY/.net] 下手に素人がアレコレ考えても専門家の作ったもんにはかなわない。 自分がその専門家を目指すならともかく。 あくまでグレブナー基底のユーザーなら偉い人の作ったやつそのまま使うのが吉。
611 名前:132人目の素数さん mailto:sage [2018/10/07(日) 23:53:43.14 ID:TXizzDUQ.net] >>589 そうか、厳しいな…
612 名前:132人目の素数さん [2018/10/08(月) 00:26:43.00 ID:6Cwpy4cK.net] >>584 ,585 流石! では、すべての桁数が1となる素数が無数にあることを証明せよ。
613 名前:132人目の素数さん mailto:sage [2018/10/08(月) 01:08:38.91 ID:xzibYj7k.net] >>591 https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%94%E3%83%A5%E3%83%8B%E3%83%83%E3%83%88 レピュニット
614 名前:132人目の素数さん mailto:sage [2018/10/08(月) 02:52:31.57 ID:wsugaKT2.net] www5e.biglobe.ne.jp/~emm386/2015/equation/c04.html このページの式(5)の2番目以降の解がどのように出て着たのかがよくわかりません すぐ上のy=ωB1+ω^2C1から計算してみても辿り着けなかったのですが、どのように導出されるのでしょうか?
615 名前:132人目の素数さん mailto:sage [2018/10/08(月) 06:30:10.06 ID:moWJj/Va.net] >>587 (3) ax+y+z = 1, x+ay+z = a, x+y+az = aa, ・a=1 のとき、x+y+z = 1 全体。 ・a=-2 のとき 与式を辺々たすと (a+2)(x+y+z) = 1+a+aa > 0, ∴ 解なし。 ・a≠1, a≠-2 のとき 係数行列 [ a, 1, 1 ] [ 1, a, 1 ] [ 1, 1, a ] の行列式=(a-1)(a+2)≠0 で、逆行列が存在する。 [ a+1, -1, -1 ] [ -1, a+1, -1 ] / [ -1, -1, a+1 ] これを右辺に乗じて x = -(a+1)/(a+2), y = 1/(a+2), z = (a+1)^2 /(a+2),
616 名前:132人目の素数さん mailto:sage [2018/10/08(月) 06:39:58.55 ID:JVgPvsCi.net] >>593 三倍角の公式に cos(3θ) = 4(cosθ)^3 - 3cosθ 等がありますが、cosθを未知数 x 、cos(3θ)を定数 a と考えれば、 4x^3-3x=a となります。どんな三次方程式でも、二次の項は平行移動で消すことができ、 三次の係数と一次の係数の比を4:3になる様に、スケール変換すれば、この形に持って行けます。 |a|≦1なら、cost=aとなるtを持ってくると、cos((t+2πk)/3)、k=0,1,2 が解になります。
617 名前:132人目の素数さん [2018/10/08(月) 07:12:10.04 ID:m3fUDFm2.net] >>594 ありがとうございます
618 名前:132人目の素数さん mailto:sage [2018/10/08(月) 07:14:29.11 ID:moWJj/Va.net] >>595 |a|≧1 のときは 実数解が r = (1/2) { [a+√(aa-1)]^(1/3) + (1/2)[a-√(aa-1)]^(1/3) }, 虚数解が (1/2) {-r±i√(a/r - rr)}, なんだろうな…
619 名前:132人目の素数さん mailto:sage [2018/10/08(月) 07:29:36.00 ID:moWJj/Va.net] >>597 訂正 実数解が r = (1/2) { [a+√(aa-1)]^(1/3) + [a-√(aa-1)]^(1/3) }, でした。
620 名前:132人目の素数さん mailto:sage [2018/10/08(月) 07:34:53.07 ID:moWJj/Va.net] >>594 訂正 の行列式=(a-1)^2・(a+2)≠0 で、逆行列が存在する。 [ a+1, -1, -1 ] [ -1, a+1, -1 ] /{(a-1)(a+2)} [ -1, -1, a+1 ] だった。
621 名前:132人目の素数さん [2018/10/08(月) 09:12:26.53 ID:6Cwpy4cK.net] >>592 ありがとう!! おかげさまで無駄に時間をつぶさなくて済んでよかった。 しかし、こんな項目があるのなら、もっと早く紹介して欲しかった。
622 名前:132人目の素数さん [2018/10/08(月) 13:21:41.03 ID:UjxGSNCg.net] 部分分数分解の要領でやるのと思ったのですが、どうしても導けなかったので手順を教えてください (x-1) / (3x+2) が、 1/3 - 5 / (3(3k+2)) と なるものです
623 名前:132人目の素数さん [2018/10/08(月) 13:34:43.66 ID:UjxGSNCg.net] >>601 あ、k と書きました x と読み替えてください
624 名前:132人目の素数さん mailto:sage [2018/10/08(月) 13:39:54.00 ID:cTN63gp0.net] >>601 分母が1次式なのに部分分数分解はない 分子÷分母を計算して余りが 3x+2 の分子に残る
625 名前:132人目の素数さん [2018/10/08(月) 15:24:21.90 ID:m3fUDFm2.net] 高2 行列式 お願いします https://i.imgur.com/lgt9MjI.jpg
626 名前:132人目の素数さん mailto:XXX [2018/10/08(月) 15:33:44.59 ID:ClttM/Xa.net] −− (馬^ェ^) ーー f´ ,.} (鹿^ェ^ ) ,ム ィ´_}._.小. / .` `ヽ ーーー Y.ゝ‐´ |. ∨ーfト. __ . 、 廴}| ( ★^ェ^ ) :| ヽ阪 .ノ!゙1 /:| ト._リ ,。-" ~ヽ .弋._ノ`{: | 弋リ f、 。 | / } }、.ノ ! ` 、_ .ノ! | {_ .-、 f: メ. {. リ ‘. 京__ノ l / 三! . ノ|´ l 弋_) マ リ マ ア~  ̄ !、 ‘. { ー'| 〉r‐' l! マ 〉 }: { i | o ハ `´ { ヘ | } 、 ノ !  ̄ l `::禿 :! ゝ==イ `| ,' 👀 Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)
627 名前:132人目の素数さん mailto:sage [2018/10/08(月) 18:29:49.39 ID:Aq/jFjy9.net] >>584 Haskellでそれが素数であることを確認してみました。 Prelude Data.List> import Data.List Prelude Data.List> divisor n = find (\m -> n `mod` m ==0 )[2..floor.sqrt.fromIntegral $ n] Prelude Data.List> divisor $ (10^19-1) `div` 9 Nothing
628 名前:132人目の素数さん mailto:sage [2018/10/08(月) 19:00:24.95 ID:lM7NdvHZ.net] >>604 偉いね、チコちゃんは! 高2なのに、nxnの行列式を知っているんだね。
629 名前:132人目の素数さん mailto:sage [2018/10/08(月) 19:46:59.03 ID:m3fUDFm2.net] >>607 本当に高専2年です 高専の数学問題集2の問題ですが解説抜きで答えだけ書いてあるので解説してもらいたくて載せました
630 名前:132人目の素数さん [2018/10/08(月) 19:50:41.93 ID:Q/DjdR62.net] >>604 「第 n 列に沿っての余因子展開し、」 って日本語がおかしくないですか?
631 名前:132人目の素数さん [2018/10/08(月) 20:01:04.50 ID:Q/DjdR62.net] >>608 (1) D_n = D_(n-1) + D_(n-2) (2) D5 = D4 + D3 = D3 + D2 + D3 = 2*D3 + D2 = 2*3 + 2 = 8
632 名前:132人目の素数さん mailto:sage [2018/10/08(月) 20:03:04.20 ID:m3fUDFm2.net] >>610 それ正解です
633 名前:132人目の素数さん [2018/10/08(月) 20:03:48.50 ID:UjxGSNCg.net] >>603 ありがとうございます 3x+2 を x-1 でくくって 5 がでてくるとこまではいけましたが 分数を二つに分けるとこまでは理解できず… 雰囲気は感じることができましたが、僕は数学のセンスは無いんでしょうね…
634 名前:132人目の素数さん [2018/10/08(月) 20:05:35.75 ID:Q/DjdR62.net] 第 n 列に関して展開すると、 D_n = (-1)^[(n-1)+n] * (-1)^[(n-1)+(n-1)] * (-1) * D_(n-2) + (-1)^[n + n] * D_(n-1) = (-1)^[4*n - 2] * D_(n-2) + (-1)^[2*n] * D_(n-1) = D_(n-2) + D_(n-1)
635 名前:132人目の素数さん mailto:sage [2018/10/08(月) 20:20:38.35 ID:m3fUDFm2.net] >>613 今自分でもやってみましたが第n列で展開するとdet A_(n-1)-A_(n-1,n)[余因子展開]になり、A_(n-1,n)は-det A_(n-2)+0となりますね。さっきは計算ミスで0にならなくて困ってました(笑)解説ありがとうございます。
636 名前:132人目の素数さん [2018/10/08(月) 20:24:27.98 ID:Q/DjdR62.net] >>604 https://imgur.com/kPT5iMw.jpg
637 名前:132人目の素数さん mailto:sage [2018/10/08(月) 23:13:41.55 ID:moWJj/Va.net] >>604 〔問題〕 nを2以上の自然数として、n次の正方行列A_n = (a_{i,j}) を次のように定める。 a_{i,j} = 1, i-j = 0 または -1 = -1, i-j = 1 = 0, |i-j|≧2 たとえば A_5 = … (ry … である。 (1) D_n = det A_n とする。第n列に沿って余因子展開し、 D_nに関する漸化式を求めよ。 (2) D_5 を求めよ。 (新潟大*, 類:電通大*) 蛇足ですが、 D_n = F_{n+1} …… フィボナッチ数
638 名前:132人目の素数さん mailto:sage [2018/10/09(火) 01:14:11.74 ID:GgPxPPOK.net] >>616 >>610 さんの回答で尽きていますよ。 D_0=1と置くのは乗法の自然な措定。 改めてフィボナッチなどと言及せずとも自明なことなのです。
639 名前:132人目の素数さん mailto:sage [2018/10/09(火) 08:13:43.63 ID:HEM5WUg1.net] どの桁も0と1からなり、最高位の数字が1の自然数を考える。 いま数字列100,101,110,111のうち1つを無作為に選び、この自然数の最高位にそれを付け加え、新しく3n+3桁の自然数を作る。 すなわち元の自然数をNとすれば、それに101を付け加えた新しい自然数とは{N+101^(n+2)}である。 初期状態100からこの操作を繰り返し行うとき、n回目の操作で出来た自然数が7の倍数となる確率p[n]を求めよ。
640 名前:132人目の素数さん [2018/10/09(火) 10:09:47.56 ID:yBLic6yD.net] >>618 >どの桁も0と1からなり、最高位の数字が1の自然数を考える。 どの桁も0と1なら、最高位の数字は1しかない。 >新しく3n+3桁の自然数を作る。 nが未定義。桁数だとすれば、n+3桁じゃねーの? >それに101を付け加えた新しい自然数とは{N+101^(n+2)} N+101*10^nではなくて? やりなおし。
641 名前:132人目の素数さん mailto:sage [2018/10/09(火) 15:20:14.86 ID:jtiWu+AA.net] >>583 n<100 では (10^19 -1)/9, >>584 (10^23 -1)/9, (10^71 -1)/9, かな
642 名前:132人目の素数さん mailto:sage [2018/10/09(火) 18:41:48.70 ID:HEM5WUg1.net] n,kは自然数、pは素数で、2<n, 0<k<nである。 nCk=p! となる(n,k,p)の組を全て決定せよ。
643 名前:132人目の素数さん mailto:sage [2018/10/09(火) 20:45:12.53 ID:xcOAMVL5.net] 確率ってなんですか?確率という値を計算するその体系に矛盾はないし数学分野として成り立っているとは思いますが、それの意味ってなんでしょう 別に600回サイコロ投げたからってそれぞれの目が100回ずつになるわけではないしn回投げたときに1の出た回数をp(n)としたときにp(n)/nの極限が収束するとも言えないわけですから
644 名前:132人目の素数さん mailto:sage [2018/10/09(火) 21:46:28.53 ID:cJoPTE1+.net] そもそも確率はギャンブルから生まれたもの 数学が2000年以上前に生まれたものであるのに対し 確率という概念の歴史はわずか300年程度だという事実
645 名前:132人目の素数さん mailto:sage [2018/10/09(火) 21:47:19.62 ID:ftvdk1wC.net] >>622 確率をcredibilityと考えた方が現実世界ではすっきりする。 降水確率とか、予報士の確信度の指標。
646 名前:132人目の素数さん mailto:sage [2018/10/09(火) 22:33:24.27 ID:bCXG4PtT.net] >>621 import Data.List divisor n = find (\m -> n `mod` m ==0 )[2..floor.sqrt.fromIntegral $ n] choose n r = product[1..n] `div` product[1..n-r] `div` product[1..r] [(n,k,p) | n <- [2..], k <- [1..(n-1)], p <-[2..], divisor p == Nothing, choose n k == product[1..p]] [(2,1,2)
647 名前:132人目の素数さん mailto:sage [2018/10/09(火) 22:35:50.28 ID:bCXG4PtT.net] >>625 100までだと [(2,1,2),(4,2,3),(6,1,3),(6,5,3),(10,3,5),(10,7,5),(16,2,5),(16,14,5)] と出てきた。
648 名前:132人目の素数さん mailto:sage [2018/10/09(火) 23:40:40.21 ID:OI8jFpH4.net] >>622 >n回投げたときに1の出た回数をp(n)としたときにp(n)/nの極限が収束するとも言えないわけですから 言えますよ 大数の法則と言います p(n)/nの値を経験的確率といいますが、経験的確率と数学的確率が一致するということですね
649 名前:132人目の素数さん mailto:sage [2018/10/09(火) 23:59:41.98 ID:jtiWu+AA.net] >>621 k=1 のとき (p!, 1, p) k=n-1 のとき (p!, p!-1, p) 1<k<n-1 のときは…
650 名前:132人目の素数さん mailto:sage [2018/10/10(水) 04:05:29.38 ID:Ax45ymrl.net] m,nを自然数とする。 m^n-mn=n^m を満たすm,nは存在しないことを示せ。
651 名前:132人目の素数さん mailto:sage [2018/10/10(水) 13:41:42.04 ID:pvkW6d0e.net] https://i.imgur.com/is4mya8.jpg この問題の(3)の回答がどうしても納得いきません。 y=a+btと置くのですがaとbを求めて yイコールのxの2次式と連立するのですが何故y=a+btと置くのかが分かりません。 変数も違うし1次式だし 先生に質問したら微分したから次数が下がってると言われましたがxの二次関数なのに微分したらtの一次関数ってのでさらに混乱してしまって分かりません
652 名前:132人目の素数さん mailto:sage [2018/10/10(水) 14:02:46.51 ID:wEZbtXig.net] xとtは線形と書いてあるからyを微分してxの一次式になるならtの一次式でも書けるんじゃない?
653 名前:132人目の素数さん mailto:sage [2018/10/10(水) 14:10:07.68 ID:VXF0ffa4.net] なんで画像上げていながら質問している部分を隠すん?
654 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:03:04.81 ID:vEXC+dXU.net] 書き込むところ間違えてしまったのでマルチになりますがすいません https://i.imgur.com/Yu5U8ny.jpg この数学的帰納法の右辺を変形するという解説を読んでいますが、一行目から分かりません なぜこう変わるのか分かりやすく解説して頂けるとありがたいです
655 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:15:56.24 ID:VXF0ffa4.net] >>633 (1/4)A+B=(1/4)(A+4B)はわかる?
656 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:26:49.85 ID:e2kXXEdW.net] >>632 imgurのアプリが調子悪くて上げられませんでした
657 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:28:38.28 ID:vEXC+dXU.net] >>634 分かります
658 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:35:35.08 ID:xW+z4MD0.net] >>631 それは何故ですか? >>632 https://i.imgur.com/Ih1fwKC.jpg 何故y=a+btとおけるのかが納得いきません
659 名前:132人目の素数さん mailto:sage [2018/10/10(水) 16:58:47.30 ID:ylJVFA/f.net] >>633 一行目なら1/4(k+1)^2が共通因数だからまとめてるだけ
660 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:02:52.95 ID:vEXC+dXU.net] >>638 この一行目に間の式がありませんが、いきなりこんな風に出せるものですか? また、共通因数と見つける事が出来なかったんですが、どう考えたら見つけられますか?
661 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:06:00.25 ID:vEXC+dXU.net] https://i.imgur.com/BXdrUK9.jpg 因みに自分で一時間くらいかけてさっき作った式がこれです 遠回り過ぎな気がしています
662 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:09:06.58 ID:VXF0ffa4.net] >>636 んじゃ、1行目はわかるだろ (1/4)(k+1)^2をくくっただけだよ 2行目は中括弧内を展開してまとめた 最後は因数分解
663 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:10:18.05 ID:wEZbtXig.net] >>633 画像一行目の左辺、2つの式の足し算になってるけど、両方(k+1)^2で割れるのはわかる? 両方を(k+1)^2で割って足してるだけだよ a*b + a*c = a*(b+c) (k+1)^2で割り切れるのはひと目でわかる
664 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:14:27.81 ID:Ax45ymrl.net] nは平方数でない自然数とする。 √nを十進法で無限小数の形に表記したときの、小数点以下i桁目の数字をa[n,i]とする。 次の命題は偽であることを証明せよ。 「任意の自然数kに対しa[n,k]が0または1となるようなnが存在する。」
665 名前:132人目の素数さん [2018/10/10(水) 17:22:30.93 ID:cFkgEp8b.net] 「整数x,y,zに対し、5x^3+11y^3+13z^3=0 ⇒ x=y=z=0を示せ」 ぐぐったら海外の掲示板が出てきて、mod 7 を使うっぽいんだけど、明確な答えがありませんでした… 分かる人いますか…?
666 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:26:54.40 ID:vEXC+dXU.net] >>641 >>642 https://i.imgur.com/A2OYB81.jpg こんな感じの脳内ですが合ってますか?
667 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:30:41.76 ID:H2Q7m9TT.net] >>644 まさにmod 7でいいじゃん。 |x|+|y|+|z|が0でない解が最小となるものとってくる。 mod 7で考えると全部7の倍数。するとx/7,y/7,z/7も解になって矛盾。
668 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:30:58.59 ID:wEZbtXig.net] >>644 整数の3乗を7で割った余りは0か1か6しかない 5p+4q-r=0(pqrは016のどれか)を満たすpqrは000しかない xyz全て7の倍数ならそれぞれを7で割ったwvuについても最初の三乗についての等式が成立しないとおかしい しかしwvuも全て7の倍数ではないといけないのでそれぞれ7で割ったtsrについても最初の等式が成り立たないとおかしい しかしtsrも全て7の倍数なので…… こんな感じで無限に小さい組が作れてしまうので矛盾 000以外解がない
669 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:31:35.46 ID:wEZbtXig.net] >>645 全然あってる
670 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:35:36.54 ID:xW+z4MD0.net] >>630 >>637 がわかる方居ませんか???
671 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:35:48.89 ID:ylJVFA/f.net] >>639 帰納法やってるなら解答ぐらいの途中式で出せるべき 考え方っていうより計算の数こなすのが一番 わからないうちは(k+1)=tみたいな感じで置くと分かりやすいのかも
672 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:36:13.66 ID:vEXC+dXU.net] >>648 ありがとうございます 本のようにいきなりは出せませんが繋がっていることは分かりました ちなみに本のように間の式なく出せるものなんでしょうか?
673 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:38:08.72 ID:cFkgEp8b.net] >>646 >>647 なるほど、ありがとうございます。
674 名前:132人目の素数さん mailto:sage [2018/10/10(水) 17:40:38.96 ID:vEXC+dXU.net] >>650 ありがとうございます やはり本くらいの途中式で出せるんですね もっと問題演習をこなして精進します 皆さんありがとうございました
675 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:03:18.85 ID:VXF0ffa4.net] >>640 かなり数学をやり慣れている人の文字に見える k+1が共通していることに気付けないとは思えない ちょっと疲れてるんでは?
676 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:05:58.55 ID:VXF0ffa4.net] >>651 x^3+x^2=x^2(x+1)って出来るだろう? これやるのにx*x^2+x^2を間に挟んだりしないんじゃ?
677 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:17:24.68 ID:RG/gU3xe.net] >>630 「性質yを温度測定に使用する」は「yと温度は線形関係にあるとみなす」ってことじゃないの?
678 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:21:25.08 ID:/kAilI1U.net] 辛口スパイスに辛さ一振り1倍と書いてある 一振りだけなら辛さ変わらんってどういうことですか? i.imgur.com/JqRr4GZ.jpg
679 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:22:15.48 ID:FjabLsPu.net] p=7, a≠0 (mod p) とすると、フェルマーの小定理より (a^3 +1)(a^3 -1) = a^(p-1) - 1 ≡ 0 (mod p) a^3 ≡ ±1 (mod p) >>646 >>647 (p, q, r) = (1, 6, 1) (6, 1, 6)
680 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:24:18.71 ID:wEZbtXig.net] >>651 なれたらできるようになる 共通因数でくくるだけ
681 名前:132人目の素数さん [2018/10/10(水) 18:28:58.39 ID:Ze7o7Xyw.net] https://imgur.com/a/3OvQNQc.jpg 高校数学の整数の問題です お願いします
682 名前:132人目の素数さん mailto:sage [2018/10/10(水) 18:30:14.78 ID:xW+z4MD0.net] >>656 そういうことなのですか? だとしたらかなりの悪問ですが
683 名前:132人目の素数さん mailto:sage [2018/10/10(水) 19:42:57.22 ID:4xxA7Z/e.net] 基準点0mのA地点で1ポイント B地点ではXポイント C地点ではYポイント D地点だとZポイント AからDへ行くに従って増加するポイントを計算する方法を教えてください たとえばBは500m地点にあり300P、Cは1000m地点にあり800P、Dは2000mで1400Pという場合 どういう式になるのでしょうか?
684 名前:132人目の素数さん mailto:sage [2018/10/10(水) 20:25:32.68 ID:DH+UqkdO.net] いや、分からない問題って問題の意味が分からない問題のスレじゃないんだぞ
685 名前:132人目の素数さん mailto:sage [2018/10/10(水) 20:27:29.46 ID:2GqbBXjh.net] 今、三角関数のページを読んでるけど、本当に難しい・・・・・。 何が難しいかって、今までだったらとりあえず論理は追えたけど、 三角関数はそうはいかない。 この数字どこから出てきたの!!!!!???????? そんなのばっかり・・・・・・・・・・・・・・。 マジで意味不。
686 名前:132人目の素数さん mailto:sage [2018/10/10(水) 20:35:49.26 ID:Ug7IqUiV.net] そんなにレス欲しいのかおっさん?
687 名前:132人目の素数さん mailto:sage [2018/10/10(水) 20:45:16.22 ID:yit4JFzN.net] >>662 最小二乗法
688 名前:132人目の素数さん mailto:sage [2018/10/10(水) 21:00:39.95 ID:/kAilI1U.net] n=10まで一致する式 {2^n+2^(n−1)+n−4−α/12+643(n−5)α/120−2251β/720 +501(n−7)β/112+20107γ/840+80167(n−9)γ/90720} q=――――――――――――――――――――――――――――――――― {2^(n+2)+2^(n−1)+2n−10−{(n−2)^2(n−4)}+607(n−5)α/40 −357β/40+10607(n−7)β/840+1339γ/20+822251(n−9)γ/362880} ,α=(n−1)(n−2)(n−3)(n−4),β=α(n−5)(n−6),γ=β(n−7)(n−8) この関数をガンマ関数を使って補正してくれ〜(・ω・)ノ
689 名前:132人目の素数さん mailto:sage [2018/10/10(水) 21:31:17.35 ID:fYCFwUcJ.net] >>644 >>646 >>658 ≡ -2x^2 + 4y^2 -z^2 ≡ -(2x^2 +3y^2+z^2) か。 真ん中の符号間違えた。 だとするとムズい。 どうすんだろ?
690 名前:132人目の素数さん mailto:sage [2018/10/10(水) 22:10:54.01 ID:H2Q7m9TT.net] >>644 mod13だ 以下>>646
691 名前:132人目の素数さん [2018/10/10(水) 22:15:53.18 ID:VAAOTxkF.net] 『アルゴリズムイントロダクション』を読んでいます。 枢軸変換をしていって、目的「関数」 z が以下のようになったときに、 最適解が、 28 になるのは明らかですよね? z = 28 - (1/6) * x_3 - (1/6) * x_5 - (2/3) * x_6 『アルゴリズムイントロダクション』には、 「 本章で後ほど証明するが、この状況は、基底解が最適解であるように 線形計画が書き換わったときにだけ起きる。 」 などと書いてあります。 これは、なぜでしょうか?
692 名前:132人目の素数さん [2018/10/10(水) 22:16:51.80 ID:VAAOTxkF.net] 訂正します: 『アルゴリズムイントロダクション』を読んでいます。 枢軸変換をしていって、目的「関数」 z が以下のようになったときに、 最適目的値が、 28 になるのは明らかですよね? z = 28 - (1/6) * x_3 - (1/6) * x_5 - (2/3) * x_6 『アルゴリズムイントロダクション』には、 「 本章で後ほど証明するが、この状況は、基底解が最適解であるように
693 名前:形計画が書き換わったときにだけ起きる。 」 などと書いてあります。 これは、なぜでしょうか? [] [ここ壊れてます]
694 名前:132人目の素数さん [2018/10/10(水) 22:19:14.22 ID:VAAOTxkF.net] >>671 実際、後に、双対性により証明しています。 でも、明らかですよね。
695 名前:132人目の素数さん [2018/10/10(水) 22:59:34.81 ID:VAAOTxkF.net] >>671 Mathematica で枢軸変換の様子を計算・表示させました↓ https://imgur.com/YCcSC3C.jpg
696 名前:132人目の素数さん [2018/10/11(木) 00:00:15.32 ID:pE1ftl4e.net] >>672 別にわざわざ後で、証明するまでもなく、この時点で最適解が得られていることは明らかですよね。
697 名前:132人目の素数さん mailto:sage [2018/10/11(木) 00:44:09.83 ID:XBFA4KXK.net] >>669 p=13, a≠0 (mod p) とすると (a^3 -1)(a^3 +1)(a^3 +5)(a^3 -5) = (a^6 -1)(a^6 +1-2p) ≡ (a^6 -1)(a^6 +1) = a^(p-1) -1 ≡ 0 (mod p) a^3 = ±1, ±5 (mod p) 5x^3 +11y^3 + pz^3 = 0 ⇒ x≡y≡0 (mod p) ∴ z^3 ≡ 0 (mod pp) ∴ z≡0 (mod p)
698 名前:132人目の素数さん mailto:sage [2018/10/11(木) 01:05:37.64 ID:OZ6fRFUS.net] こうもできる。参考までに。 >>669 (-11/5)^4 ≡ 3^4 ≡ 3 (mod 13) (∵ -11/5 ≡ 3 (mod 13)) ∴ (-11/5) not in ker(-)^4 = im(-)^3。 ∴ 5x^3 + 11y^3 ≡0 (mod 13) ⇒ x ≡ y ≡ 0 (mod 13) (∵ otherwise (-11/5) ≡ (x/y)^3 (mod 13)) x ≡ y ≡ 0 (mod 13) ⇒ 13z ≡ 0 (mod 13^3) ⇒ z ≡ 0 (mod 13)
699 名前:132人目の素数さん mailto:sage [2018/10/11(木) 10:49:26.73 ID:JZn9qutH.net] 大学の数学を勉強したいと思うのですが、どのような順番で勉強するのがよいでしょうか。 まずは微積分、線形代数から始めてみようと思うのですが、この後はどうしたらいいのでしょうか。
700 名前:132人目の素数さん mailto:sage [2018/10/11(木) 11:02:30.62 ID:dFMUDM3M.net] 集合と位相とか? 興味のある分野を見つけて、その勉強に必要な知識を逆算する方が良いと思うが
701 名前:132人目の素数さん mailto:sage [2018/10/11(木) 11:18:52.86 ID:JqxDHm5z.net] すべての内角が120°である凸六角形の6辺の長さをa,b,c,d,e,fとおくとき、これらの中で相異なるものは最大でも3種類しかないことを示せ。
702 名前:132人目の素数さん mailto:sage [2018/10/11(木) 11:21:26.50 ID:JZn9qutH.net] >>678 最終的に数理ファイナンスを勉強したいと思うのですが、高校数学までしか勉強したことがなくて…
703 名前:132人目の素数さん mailto:sage [2018/10/11(木) 12:15:08.91 ID:cYKIAcSQ.net] >>677 板名が読めるか?ここは数学板、経済板は別のところだ
704 名前:132人目の素数さん [2018/10/11(木) 12:33:42.94 ID:QTHfApUE.net] >>679 本当にそう? (a,b,c,d,e,f)=(4,7,5,2,9,3)は?
705 名前:132人目の素数さん mailto:sage [2018/10/11(木) 12:50:32.45 ID:jVsEqCRl.net] >>681 分かってねえ奴は口を出すな
706 名前:132人目の素数さん mailto:sage [2018/10/11(木) 15:12:42.34 ID:q+ft0vgH.net] >>683 お山の大将(笑)
707 名前:132人目の素数さん mailto:sage [2018/10/11(木) 16:32:36.56 ID:fe6C3daM.net] 数論幾何学と時空の哲学はどっちの方が難しいですか?
708 名前:132人目の素数さん mailto:sage [2018/10/11(木) 17:36:27.92 ID:ihKDrhDc.net] >>666 たぶんこれです どうもありがとうございます Eが3000mのとき何Pが予想されるか Fのポイントが5000PならFは何mなのか も計算したいので、グラフを描くことになるだろうとは考えてました
709 名前:132人目の素数さん mailto:sage [2018/10/11(木) 20:53:22.57 ID:Rq7tM4w4.net] 高2 行列 お願いします https://i.imgur.com/XlOZlqv.jpg
710 名前:132人目の素数さん [2018/10/11(木) 20:55:26.23 ID:JxWPyNKY.net] >>687 係数行列の行列式を計算するだけだが 何が分からないのだ?
711 名前:132人目の素数さん mailto:sage [2018/10/11(木) 21:36:54.70 ID:Rq7tM4w4.net] (2)のxyzの関係がわからないです
712 名前:132人目の素数さん mailto:sage [2018/10/11(木) 21:42:21.61 ID:7PKu0HUr.net] >>685 心の哲学の方が難しいですね
713 名前:132人目の素数さん mailto:sage [2018/10/11(木) 22:32:15.38 ID:hzPrGNJ2.net] >>687 今は高専とふつうの高校ではやることが全然違う 高専なら高専と書いとけ
714 名前:132人目の素数さん mailto:sage [2018/10/11(木) 22:36:48.28 ID:7PKu0HUr.net] わからないんですか?
715 名前:132人目の素数さん mailto:sage [2018/10/11(木) 22:45:36.33 ID:ofJjjGE+.net] eの2.1乗を小数点第3位まで計算したいです。 電卓そろばん計算機コンピュータ計算尺などがない、いわゆる手計算の場合、 どうやって求めるのが手っ取り早いですか? 試験中で使えるぐらいの実践的な方法を教えてください。
716 名前:132人目の素数さん mailto:sage [2018/10/11(木) 22:53:28.76 ID:7PKu0HUr.net] なんの試験ですか? そんな問題ありえないと思いますが
717 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:08:42.04 ID:isyCRGuY.net] >>687 k=2のとき、x=y=z k=-16/5のとき、x/29=5y/119=-z/23 かもしれない
718 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:09:06.04 ID:7PKu0HUr.net] >>693 VIPの方でもマルチしてたんですね 私はそんな試験問題出すのは現実的ではないので、あなたが何か勘違いをしてるんじゃないかと思ってるんです たとえば、他の方法を使えば簡単に求められるだとかですね 元の問題を書いてください
719 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:12:57.77 ID:0weyKuKI.net] e^2 を計算して、1+0.1+(0.1)^2/2 あたりを掛け算すればいいんじゃないの? eを覚えてないなら…1+1+1/2+1/6+…で頑張る こんなのやりたくないけどな
720 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:15:19.32 ID:xmxC4T19.net] (1+x/n)^nがe^xに一様収束することを示せという問題が解けません。 教えてください!
721 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:25:05.97 ID:Rq7tM4w4.net] >>695 kの値はあってます 別の方に聞いた結果、xyzの関係はx:y:zで表すそうです 2個の連立同次一次方程式のx:y:zの関係は公式で求められますね ありがとうございました
722 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:27:24.78 ID:isyCRGuY.net] マルチかよ!
723 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:27:42.34 ID:+j9+yq4P.net] >>687 >>699 kx+y-3z=0から y=3z-kx……α kx=3z-y……β 5x-3y-kz=0にαを代入して kz=5x-3y=5x-3(3z-kx)=5x-9z+3kx……@ 4x-7y+(k+1)z=0にαを代入して (k+1)z=7y-4x=7(3z-kx)-4x kz=21z-7kx-4x-z=20z-7kx-4x……A @とAから 5x-9z+3kx=20z-7kx-4x 10kx=29z-9x……B Bにβを代入して 10(3z-y)=29z-9x 30z-10y=29z-9x ∵z=10y-9x……C Cから x=(10y-z)/9 y=(9x+z)/10
724 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:29:27.27 ID:XBFA4KXK.net] >>679 120゚をなす3方向への射影を考えると (a-d)/2 + (b-e) + (c-f)/2 = 0, (b-e)/2 + (c-f) + (d-a)/2 = 0, (c-f)/2 + (d-a) + (e-b)/2 = 0, これより a-d = c-f = e-b, >>682 はこれを満足する。
725 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:44:02.09 ID:fRJUxZCh.net] >>698 それホントに一様収束する? 局所一様収束ぐらいにしかならん希ガス。
726 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:50:10.14 ID:JqxDHm5z.net] p,rは相異なる素数、qは1<q<pをみたす素数とする。 (p,q)/r!が整数となる素数の組(p,q,r)をすべて求めよ。
727 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:52:53.81 ID:fRJUxZCh.net] (P,q)
728 名前:132人目の素数さん mailto:sage [2018/10/11(木) 23:53:28.27 ID:xmxC4T19.net] >>703 任意の閉区間[-a,a]上でです。
729 名前:132人目の素数さん mailto:sage [2018/10/12(金) 00:42:19.48 ID:qmB9G7el.net] >>706 (1+x/n)^n = exp(n log (1+x/n)) で exp は局所一様連続だから n log(1+x/n) → x が局所一様収束を言えば良い。 n log (1+x/n) = x + nO((x/n)^2) なので桶。
730 名前:132人目の素数さん mailto:sage [2018/10/12(金) 01:02:47.03 ID:njPQD2L8.net] >>701 何を示したいのだろう・・・
731 名前:132人目の素数さん mailto:sage [2018/10/12(金) 12:36:23.22 ID:jKHSwFRK.net] 直方体のどの3点をむすんでひらいて得られる三角形も、鈍角三角形ではないことを示せ。
732 名前:132人目の素数さん mailto:sage [2018/10/12(金) 13:17:10.03 ID:wIR97veq.net] イミフ
733 名前:132人目の素数さん mailto:sage [2018/10/12(金) 15:45:15.75 ID:oQ+V5cXR.net] 意味はわかるけどしょうもない。 頂点の座標を全非負にとればOA・OB全部非負。
734 名前:132人目の素数さん mailto:sage [2018/10/12(金) 16:29:36.18 ID:3zCC5P6S.net] >>703 多分これx→(1+x^2/n)^nがe^(x^2)に一様収束って問題だったと思う
735 名前:132人目の素数さん mailto:sage [2018/10/12(金) 17:17:04.29 ID:jKHSwFRK.net] aを実数とする。 次の式が成立する0でない整数m,nが存在するためのaの条件を求めよ。 (m^2+1)/m = (n+a)/n
736 名前:132人目の素数さん mailto:sage [2018/10/12(金) 17:56:12.87 ID:jKHSwFRK.net] xyz空間の点Aと点Pは、OA=3、AP=2、1≦OP≦3/2を満たしながら動く。 ただしOは空間の原点である。 折れ線OAPの動きうる領域の体積を求めよ。
737 名前:132人目の素数さん mailto:sage [2018/10/12(金) 18:02:53.21 ID:jKHSwFRK.net] (1)次の3条件を満たす四面体の例を挙げよ。 ・どの辺の長さも整数 ・どの面の面積も整数 ・体積は整数 (2)(1)において、少なくとも1つの条件で「整数」を「素数」に変更する。その場合、3条件を満たす四面体が存在するか。 存在する場合、どの条件を変更してもよいか、すべて述べよ。
738 名前:132人目の素数さん mailto:sage [2018/10/12(金) 19:56:35.44 ID:b/v1Oc9z.net] 確率について 宝くじでのお話です 一等が0.000009713007815474608%の確率の物があります 今回自分は287口購入し0.002787633243041213%という確率で1等が当たることになりました これは3桁近く確率が上がっていますよね? 例えばなんですけど0.1%の物が2桁確率が上がり10%になったらかなり当たりそうな気がしますが今回のように3桁近く上がっても正直当たる気配は恐ろしい程ありません それは元の確率が恐ろしい程低いからというのが原因ではあると思うのですが0.1%→10%より確率は上がっているとみてよろしいのでしょうか? 小数点第〜以下は何桁上がろうと確率の上昇率は無意味なのでしょうか?
739 名前:132人目の素数さん mailto:sage [2018/10/12(金) 20:25:35.46 ID:6VjVia9c.net] 人生は有限時間しかないので、無限回抽選ができるわけでなく 宝くじが年4回あるとして、4*60年で一
740 名前:生に240回しか引けない 240回程度で0.002%を一度でも引ける確率はあまり高くないので、 毎回287口買ってても、60年で宝くじ1等に一度でも当選する確率は1000回に1回とかしかない 案外引けそうじゃんと思うかも知んないけど、期待値で言えば毎回287枚買うのを1万年続けても一度しか当たらないみたいな感じだから 何枚買おうと一生のうちに億万長者になれる確率がかなりゼロに近いのは変わらない [] [ここ壊れてます]
741 名前:132人目の素数さん mailto:sage [2018/10/12(金) 20:29:01.09 ID:b/v1Oc9z.net] ありがとうございます 以前1億で3%ちょいで一度に複数口買って効果があるのは数億単位お金をつぎ込まないと無意味と聞いたことがあります やっぱこのレベルだと対して変わらないんですね… 大人しく10口くらいにしてあくまでお遊びなの忘れないようにします
742 名前:132人目の素数さん mailto:sage [2018/10/12(金) 20:31:39.04 ID:6VjVia9c.net] 一生が100万年くらいあって、無限回抽選ができるなら 1000倍早く当選するけどね 一生はそんなにないから…
743 名前:132人目の素数さん mailto:sage [2018/10/12(金) 20:35:11.88 ID:b/v1Oc9z.net] >>719 そうですよね 仮にお金があったとしても寿命があるわけですし それを考えると当選確率だけでなく宝くじに参加できる回数も考慮しないとで やっぱ恐ろしい
744 名前:132人目の素数さん mailto:sage [2018/10/12(金) 20:41:32.21 ID:6zXSta7a.net] ■■■□□□■■■ ■■■□□□■■■ ■■■□□□■■■ □□□■■■□□□ □□□■■■□□□ □□□■■■□□□ ■■■□□□■■■ ■■■□□□■■■ ■■■□□□■■■ 👀 Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)
745 名前:132人目の素数さん [2018/10/12(金) 22:43:22.37 ID:FcltUanb.net] 数学のことを訊ける知人がいないので、ここに質問させていただくことにしました 宜しくお願いいたします ○原チャリの法定最高速度である時速30キロはマッハでいうとマッハ幾つになるのでしょうか? ちょっと調べたらマッハ1は時速約1200キロと書いてありました 変な質問で申し訳ありませんが、どうかお答えください
746 名前:132人目の素数さん mailto:sage [2018/10/12(金) 22:52:17.59 ID:72cesl8m.net] マッハとは音速と比べてどうかという話なんですね 室温程度ならマッハはあなたのいうくらいになるので、0.025マッハくらいですかね
747 名前:132人目の素数さん mailto:sage [2018/10/13(土) 00:35:56.45 ID:YOeldhda.net] >>713 こんな感じじゃないのか r = n / m とする n, m は0でない整数 ⇔ r は 0 でない有理数 元の式に n = rm を代入して r について解くと r = a / (m^2 - m +1) 右辺の分母は整数なので r は 0 でない有理数 ⇔ a は 0 でない有理数
748 名前:132人目の素数さん [2018/10/13(土) 12:24:56.33 ID:yOHq4j0d.net] >>724 aが有理数ってのが必要条件であるのはほとんど自明だけど、 十分条件にはなってないでしょ。 たとえば、|a|<1だとnの整数解が存在しないことは簡単に示せる。
749 名前:132人目の素数さん [2018/10/13(土) 12:52:29.68 ID:41sNyvN9.net] m^2 -m +1 = a/r = (a/n)m m^2 +{(a/n) -1}m +1 = 0 a/n が整数で無いとすると、(a/n)d が整数となる最小の正整数 d を取れば (m^2 +1)d +
750 名前:132人目の素数さん mailto:sage [2018/10/13(土) 14:24:24.39 ID:N9u30B23.net] >>713 はどうしようもないでしょ? |a| = (m+1/m-1)n となる自然数 m,n が存在する時だけど正直こっからどうしようもない。 右辺が m,n について単調に増大するからアルゴリズムくらいは存在するけど明示的な条件はつくれないよ、たぶん。 数論まともに勉強した知識からでてきた問題じゃなくて適当に思いつくまま作った問題でしょ? 学ぶべきトコなんかなんもないよ。
751 名前:132人目の素数さん mailto:sage [2018/10/13(土) 14:29:08.85 ID:P0/MSS7D
] [ここ壊れてます]
752 名前:.net mailto: >>727 715は知の結晶です [] [ここ壊れてます]
753 名前:132人目の素数さん mailto:sage [2018/10/13(土) 14:34:11.78 ID:FhJ7WV41.net] >>728 知の結晶語れるくらい数論勉強した記憶ある?
754 名前:132人目の素数さん [2018/10/13(土) 14:44:31.83 ID:USJtVTFl.net] 全=無、無=全 これに勝るものはないのでしょうか?
755 名前:132人目の素数さん mailto:sage [2018/10/13(土) 15:15:13.55 ID:MrS7D/hi.net] >>701 5x-3y-kz=0から kz=5x-3y……@ 4x-7y+(k+1)z=0に@を代入して 4x-7y+5x-3y+z=0 ∵9x-10y+z=0
756 名前:132人目の素数さん mailto:sage [2018/10/13(土) 16:40:39.64 ID:P0/MSS7D.net] n以下の自然数で、相異なる素数2個の積として表せるものの個数をa[n]、相異なる素数3個の積として表せるものの個数をb[n]とおく。 lim[n→∞] b[n]/a[n] =0 を証明せよ。
757 名前:722 [2018/10/13(土) 19:30:53.70 ID:QfN2n5nP.net] >>723 感謝 ありがとうございました
758 名前:132人目の素数さん mailto:sage [2018/10/13(土) 19:45:21.17 ID:w7e+P03O.net] >>732 しょうもない問題出すな
759 名前:132人目の素数さん mailto:sage [2018/10/13(土) 21:49:52.04 ID:P0/MSS7D.net] kを非負整数とし、自然数nについての関数 f(n)=n^2+kn+1 を考える。f(1),f(2),...f(100)のうち素数であるものの個数をg(k)とおくとき、g(k)の最小値を求めよ。 またそれを与えるkを全て決定せよ。
760 名前:132人目の素数さん [2018/10/14(日) 01:52:32.09 ID:xkRoYFRI.net] g(2)=0が最小なのは1秒でわかるが、それ以外にg(k)=0に なるkがあるかどうかは知らん。
761 名前:132人目の素数さん mailto:sage [2018/10/14(日) 02:20:20.60 ID:t/H/Tw4Y.net] 質問です。 f[n](x) = (1/x d/dx)^n exp(-x)/x とします。 f[0] = exp(-x)/x、f[1] = -(x+1)exp(-x)/x^3、f[2] = (x^2+3x+3)exp(-x)/x^5、 f[3] = -(x^3+6x^2+15x+15)exp(-x)/x^7、f[4] = (x^4+10x^3+45x^2+105x+105)exp(-x)/x^9、… lim[n→∞] f[n](-1) 2^n n!/(2n)! を求めたいのです。 どうも -1/e に収束するらしいです。 どなたか証明できますか?
762 名前:132人目の素数さん mailto:sage [2018/10/14(日) 02:35:33.65 ID:+Ydb06GI.net] >>736 余りに注目する
763 名前:132人目の素数さん mailto:sage [2018/10/14(日) 02:37:21.32 ID:w1hp1stH.net] >>737 訂正です。収束先は-1のようです。 よろしくお願いします。
764 名前:132人目の素数さん mailto:sage [2018/10/14(日) 03:31:27.19 ID:KkBlRZKF.net] 計算機のない時代にガウスの乗法公式なんて良くたどり着いたな
765 名前:132人目の素数さん mailto:sage [2018/10/14(日) 03:34:19.25 ID:KkBlRZKF.net] 自然数nについて Γ(n+1)=n!が成り立つという
766 名前:132人目の素数さん mailto:sage [2018/10/14(日) 03:40:17.00 ID:oC9vdnxW.net] なぜ a/b を c/d で割ると ad/bc になるの教えせて〜。
767 名前:BLACKX mailto:sage [2018/10/14(日) 03:59:40.77 ID:WRFSD9Ui.net] >>735 この手の問題ってk1 k2って置いて足したパターンはいくつ?って解くんだけど そもそもn^2+kn+1だから掛けたら1になる数字しかない 2→(n+1)^2 ちなみに0も存在するけどn^2+1で問題の定義から虚数解なのでNG
768 名前:132人目の素数さん mailto:sage [2018/10/14(日) 06:25:27.25 ID:0CPQSloM.net] >>737 >>739 f[0](x) = exp(-x)/x = √(2/πx) K_{1/2}(x), f[n](x) = (-1)^n exp(-x) Σ[k=0,n] C(n+k, n-k) (2k-1)!! / x^(n+k+1) = √(2/πx) K_{n+1/2}(x), ただし (-1)!! = 1!! = 1 とする。 f[n](-1) = √(-2/π) K_{n+1/2}(-1), K_{…}(x) は第1種の不完全楕円積分と云うらしい。
769 名前:132人目の素数さん mailto:sage [2018/10/14(日) 06:38:59.38 ID:6VEy8x08.net] >>744 それなんです。 変形ベッセル関数でパラメータが半整数の関数。 それの n→∞ のときの >>737 の極限が求まるというレスがこのスレ?であってそれの証明がわかんなくて困ってるんですよ。 まぁ困ってるって言っても気持ち悪いだけですけど。
770 名前:132人目の素数さん mailto:sage [2018/10/14(日) 06:58:37.10 ID:0CPQSloM.net] >>744 まちが
771 名前:えた。K_{…}(x) は第2種の変形ベッセル函数でござった。 f[n](x) = √(2/πx) K{n+1/2}(x) = (1/n!) (x/2)^n∫[1,∞] exp(-xt) (tt-1)^n dt = (1/n!) exp(-x)/x ∫[0,∞] exp(-t) t^n (1-t/2x)^n dt = (1/n!) exp(-x)/x Σ[r=0,∞] (n+r)! C[n, r] (2x)^(-r), [] [ここ壊れてます]
772 名前:132人目の素数さん mailto:sage [2018/10/14(日) 16:20:18.17 ID:zUCY3+71.net] nは3以上の自然数、kは1<k<nを満たし平方数でない自然数とする。 各nに対しn^2-kを素数とするようなkが少なくとも1つ存在することを示せ。
773 名前:132人目の素数さん mailto:sage [2018/10/14(日) 17:41:26.76 ID:obbD/tK3.net] >>747 それは証明できないんじゃなかったっけかな? π(x+y)-π(x)>0 が言えるためには最低でもある定数ε>0が存在してy>x^(1/2+ε)までしか言えないって話を聞いた希ガス。
774 名前:132人目の素数さん mailto:sage [2018/10/14(日) 19:18:51.41 ID:dxn070zT.net] 基礎的な問題ですいません 1列目の式がなぜ2列目になるのかわかりません 途中式を省かずに教えてもらえますか? 2列目の左側が平方完成でこの形になるのはわかるんですが右側がわかりません https://i.imgur.com/zXHEZid.jpg
775 名前:132人目の素数さん mailto:sage [2018/10/14(日) 19:23:10.40 ID:DXhMjQ+O.net] >>749 結果を展開しろ 「結果のほうを変形して確かめる」ということを覚えよ
776 名前:132人目の素数さん mailto:sage [2018/10/14(日) 19:56:36.87 ID:NT2gFiqK.net] >>749 >>749 a((x-(-a+2)/2a)^2 - ((-a+2)/2a)^2) - a^2-a+2 =a(x-(-a+2)/2a)^2 -a((-a+2)/2a)^2 -a^2-a+2 =おしまい 多分あってると思うけど目がちかちかして自信がない -aと-a^2を写しまちがえてるのに気が付いてないってのはやめてくれよ
777 名前:132人目の素数さん mailto:sage [2018/10/14(日) 20:01:41.87 ID:rYLVHAc9.net] >>749 平方完成 でググればすげー親切な解説見つかるからそれ読むといいよ ここは数式が見づらいし
778 名前:132人目の素数さん mailto:sage [2018/10/14(日) 20:02:17.30 ID:KkBlRZKF.net] y=a{x-(-a+2)/2a}^2-(9a^2-12a+4)/4a =a{x^2-2(-a+2)x/2a+(-a+2)^2/4a^2}-(3a-2)^2/4a
779 名前:132人目の素数さん mailto:sage [2018/10/14(日) 20:23:11.55 ID:KkBlRZKF.net] >>749 左側の平方完成 -a-a+2-(-a+2)^2/4a =-2a+2-(-a+2)^2/4a =2-2a-(a^2-4a+4)/4a =(8a-8a^2-a^2+4a-4)/4a =(-9a^2+12a-4)/4a =-(9a^2-12a+4)/4a∵ 以上
780 名前:132人目の素数さん mailto:sage [2018/10/14(日) 20:27:25.17 ID:KkBlRZKF.net] 右側だった
781 名前:132人目の素数さん [2018/10/14(日) 21:14:26.76 ID:9zQHOaSO.net] 質問です 2^x ≠ 12y (x,yともに自然数) この式の証明は可能でしょうか
782 名前:132人目の素数さん mailto:sage [2018/10/14(日) 21:14:42.85 ID:dxn070zT.net] みなさんご親切にありがとうございます 書かれてる式をにらめっこしながら頑張ってみます
783 名前:132人目の素数さん mailto:sage [2018/10/14(日) 21:31:10.96 ID:dxn070zT.net] 再度質問します 初歩的な勘違いをしてるのかも これは数字だけ2乗が正しいのですか? 数字と文字両方を2乗するものだと思ってたんですが https://i.imgur.com/j5E8lXE.jpg
784 名前:132人目の素数さん mailto:sage [2018/10/14(日) 21:32:00.81 ID:9i9cl1ov.net] 両方ですよ
785 名前:132人目の素数さん mailto:sage [2018/10/14(日) 21:51:11.37 ID:dxn070zT.net] >>759 ありがとうございます >>749 これわかりました 理由があって家でひとりで勉強してるもんだから聞く人がいないんですよ だからまた初歩的なこと聞きにくるかもしれませんがその時はお願いします
786 名前:132人目の素数さん mailto:sage [2018/10/14(日) 22:35:25.34 ID:nRibaf3U.net] もっと順を追ってやっていった方がいいと思うよ 場当たり的過ぎる 先人が試行錯誤の上に作り上げた教育課程を自ら構築するつもりなのか?
787 名前:132人目の素数さん mailto:sage [2018/10/14(日) 22:56:37.36 ID:5PthFd38.net] >>750 >>761 質問にちゃんと答えてる人がいる一方で、答えもせずに説教をする馬鹿もいる この違いがなぜ生まれるのかを考えよう
788 名前:132人目の素数さん mailto:sage [2018/10/14(日) 23:00:58.85 ID:nRibaf3U.net] >>762 何度か答えてるよ
789 名前:132人目の素数さん mailto:sage [2018/10/14(日) 23:16:25.64 ID:ZJ8mHGiC.net] >>751 > -aと-a^2を写しまちがえてるのに気が付いてないってのはやめてくれよ これ、どういう意味? [] [ここ壊れてます]
791 名前:132人目の素数さん mailto:sage [2018/10/14(日) 23:57:26.25 ID:NT2gFiqK.net] >>764 >>749 の画像の1行目の後ろの方 -a-a+2 って書いてあるけど 計算はちゃんと -a^2-a+2 を使ってやってるよね?ってこと
792 名前:132人目の素数さん mailto:sage [2018/10/15(月) 00:16:33.21 ID:id4K6nR+.net] >>765 >>754 を見ればわかる通り -a-a+2=-2a+2 で合ってるんじゃないの?
793 名前:132人目の素数さん mailto:sage [2018/10/15(月) 00:22:29.69 ID:7xOWNZMY.net] -a-a+2そのままの意味ですよ
794 名前:132人目の素数さん mailto:sage [2018/10/15(月) 00:44:37.64 ID:id4K6nR+.net] ああ、分った。 最初の質問者は2行目の右側が問題集かなにかの解答と違っているのが分らない、と言っている、という意味ね。
795 名前:132人目の素数さん mailto:sage [2018/10/15(月) 02:23:42.78 ID:Zm7H7leg.net] アラン・コンヌとウィリアム・ジェイムズ・サイディズはどっちの方が頭が良いですか?
796 名前:132人目の素数さん mailto:sage [2018/10/15(月) 09:25:03.54 ID:FRzng5Ty.net] >>761 こういう奴がもし教育関係の職についてたら生徒はかわいそうだな 749は平方完成のやり方はわかってるのに式の半分の展開がわからないと言ってる それならどこが引っ掛かってるのかを察知してあげないとな 「順を追ってやる」→「順を追って教えてる」立場の人ならよくある質問
797 名前:132人目の素数さん mailto:sage [2018/10/15(月) 12:13:25.05 ID:7e+ZqB9F.net] 5 < Σ[k=1,...,7] sin(kπ/8) < 5.1 を示せ。 必要ならばπ=3.141592..を用いてよい。
798 名前:132人目の素数さん [2018/10/15(月) 12:22:30.59 ID:/TyV0zg+.net] >>761 教育なんてそんな細部まできっちり決めるもんじゃないぜ んなことしようとするから 掛け算の順序問題なんてアホな話が出てくる
799 名前:132人目の素数さん mailto:sage [2018/10/15(月) 12:54:47.12 ID:kOpwpmpP.net] トランプの束がある 2〜10までの数字が描かれたカードが各スートに1枚ずつと、ジョーカーのカードが24枚ある 全てを混ぜて無作為に切り直して12枚のカードを無作為に引いたとき その12枚のカードのうちジョーカー以外にいずれも違う数字が書かれている確率はいくらか
800 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:10:53.06 ID:7e+ZqB9F.net] 2n枚のカードがあり、それぞれには1,2,...,2nの数が1つずつ書かれている。 この中からn枚のカードを取り出すとき、取り出したn枚のカードに書かれている数の和Sについて考える。 (1)Sは{n(n+1)/2}以上{n(2n+1)-n(n+1)/2}以下の全ての整数値をとるか述べよ。 (2)Sの期待値を求めよ。
801 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:12:30.95 ID:7e+ZqB9F.net] 体積1の四面体で、6辺の長さの総和を最小とするものを求めよ。
802 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:44:43.85 ID:7e+ZqB9F.net] >>771 これはコンピューター使わずに解くのがエレガント
803 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:45:09.59 ID:7e+ZqB9F.net] >>774 易しい
804 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:45:56.67 ID:7e+ZqB9F.net] >>775 やや難しい
805 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:50:05.08 ID:j4+CUj76.net] そんなに自作問題を公開したいなら自作問題スレを作ればどうですか? あなたの問題を見たい人はそのスレも見てくれるでしょう
806 名前:132人目の素数さん mailto:sage [2018/10/15(月) 14:52:51.09 ID:7e+ZqB9F.net] >>779 好きな実数を1つ選んで
807 名前:132人目の素数さん mailto:sage [2018/10/15(月) 16:29:51.17 ID:7xOWNZMY.net] >>751 これは不正解
808 名前:132人目の素数さん [2018/10/15(月) 17:01:42.98 ID:I979f5xZ.net] 平川-松村の定理 の証明おしえて
809 名前:132人目の素数さん mailto:sage [2018/10/15(月) 17:37:52.92 ID:ce+APxab.net] ggrks
810 名前:132人目の素数さん mailto:sage [2018/10/15(月) 17:39:15.65 ID:7e+ZqB9F.net] 半径1の円に内接する正七角形の対角線の長さの総和を求めよという問題が分かりません。 正七角形の対角線の長さが直接求まらないのでどう工夫したらいいでしょうか。
811 名前:132人目の素数さん mailto:sage [2018/10/15(月) 19:22:20.41 ID:5zaj2zrJ.net] >>784 対角線が文字通り辺ではない2頂点のなす線分なら3次方程式とかないと無理だな。
812 名前:132人目の素数さん mailto:sage [2018/10/15(月) 19:29:59.23 ID:CksPZ4TZ.net] >>784 三次方程式解けば直接求まるだろ 甘えるな
813 名前:132人目の素数さん mailto:sage [2018/10/15(月) 19:32:52.10 ID:7e+ZqB9F.net] >>786 分かりません。詳細な解答をよろしくおねがいします。
814 名前:132人目の素数さん mailto:sage [2018/10/15(月) 21:27:32.21 ID:7xOWNZMY.net] 強者の戦略 tsuwamono.kenshinkan.net/way/pdf/09mathematics_27.pdf
815 名前:132人目の素数さん mailto:sage [2018/10/16(火) 04:34:53.21 ID:xW+nW6TE.net] mを3以上の自然数とする。 2を底とする対数について、自然数nと実数aを用いて log_2 (m) = (n+a)/(n-a) と表すことを考える。 (1)aをmとnで表せ。 (2)以下の不等式の左辺を最小にする素数pと有理数bの組(p,b)を求めよ。 log_2 (2018) - (p+b)/(p-b) > 0
816 名前:132人目の素数さん mailto:sage [2018/10/16(火) 04:36:57.89 ID:xW+nW6TE.net] k=2018のとき、二項係数nCk=123456789 となるnは存在するか。
817 名前:132人目の素数さん mailto:sage [2018/10/16(火) 04:48:31.55 ID:xW+nW6TE.net] a[1]=2 a[n+1]=a[n]/{1+a[1]+a[2]+...+a[n]} で表される数列{a[n]}を考える。 (1)lim[n→∞] a[n] =0 を示せ。 (2)lim[n→∞] (n^k)*a[n] が0でない有限の値に収束する自然数kを求めよ。
818 名前:132人目の素数さん mailto:sage [2018/10/16(火) 05:06:10.64 ID:yKsqwta7.net] 最小値なし。存在しない。存在しない。
819 名前:132人目の素数さん mailto:sage [2018/10/16(火) 06:16:45.24 ID:AwYdxW7r.net] この荒らしは小学生レベルの知能しかないから相手すんな
820 名前:132人目の素数さん mailto:sage [2018/10/16(火) 08:35:16.42 ID:5DYkLdwz.net] >>756 両辺を3で割ってみる。 >>771 sin(π/8) + sin(7π/8) = √{2-2cos(π/4)} = √(2-√2), sin(2π/8) + sin(6π/8) = √2, sin(3π/8) + sin(5π/8) = √{2+2cos(π/4)} = √(2+√2), sin(4π/8) = 1, ∴ S(π/8) = √(2-√2) + √2 + √(2+√2) + 1, (2-√2) - 0.76^2 = 1.4224 - √2 > 0, (2-√2) - 0.77^2 = 1.4071 - √2 < 0, ∴ 0.76 < √(2-√2) < 0.77 (2+√2) - 1.84^2 = √2 - 1.3856 > 0, (2+√2) - 1.85^2 = √2 - 1.4225 < 0, ∴ 1.84 < √(2+√2) < 1.85 (与式) > 0.76 + 1.41 + 1.84 + 1.00 = 5.01 (与式) < 0.77 + 1.42 + 1.85 + 1.00 = 5.04 >>784 辺 L1 = 2sin(π/7) = -2sin(8π/7), 対角線 L2 = 2sin(2π/7), 対角線 L3 = 2sin(3π/7) = 2sin(4π/7), いずれも7本づつある。 -L1 + L2 + L3 = 2{sin(2π/7)+sin(4π/7)+sin(8π/7)} = √7, L1・L2・L3 = √7, L3 = L1・(3-L1^2) L^6 -7L^4 +14L^2 -7 = 0, >>790 存在しない。 n=2018, 2019, 2020 のとき C[n,2018] ≦ C[2020,2] = 2039190 < 123456789 n≧2021 のとき C[n,2018] ≧ C[2021,3] = 1373734330 > 123456789
821 名前:132人目の素数さん mailto:sage [2018/10/16(火) 09:19:29.13 ID:5DYkLdwz.net] >>771 S = √(2-√2) + √2 + √(2+√2) + 1 = 5.027339492126… >>784 L1 = 2sin(π/7) = 0.8677674782351 L2 = 2sin(2π/7) = 1.563662964936 L3 = 2sin(3π/7) = 1.9498558243636 L1+L2+L3 = 4.38128626753476
822 名前:132人目の素数さん mailto:sage [2018/10/16(火) 10:30:15.37 ID:Q/JBGpn1.net] >>784 対角線の長さは > DOP(7,p=T) [1] 1.801938 2.246980 計算と作図のプログラムはここ excuteをクリックすると実行できる。 tpcg.io/WzLq7V
823 名前:132人目の素数さん mailto:sage [2018/10/16(火) 16:22:51.06 ID:Q/JBGpn1.net] >>796 計算ミスしていた。 $Rscript main.r $side [1] 0.8677675 $diagonal [1] 1.563663 1.949856 バグ修正後 tpcg.io/18pVOx
824 名前:132人目の素数さん mailto:sage [2018/10/16(火) 21:45:49.96 ID:xW+nW6TE.net] p,qを素数、kを自然数とする。 △ABCは∠A=60°、AB=p、AC=q、BC=kの三角形である。 p,q,kの間に成り立つ関係式を求めよ。
825 名前:132人目の素数さん [2018/10/16(火) 22:53:10.33 ID:Rp6DSvYR.net] 少佐と大佐の間には中佐があります 小陰唇と大陰唇の間には何がありますか?
826 名前:132人目の素数さん mailto:sage [2018/10/16(火) 22:55:27.93 ID:Jr7ZoTQC.net] 400
827 名前:132人目の素数さん mailto:sage [2018/10/16(火) 23:03:28.51 ID:xW+nW6TE.net] 一辺の長さが1の正四面体SとTがある。 Sは空間に固定され、TはSと1点のみを共有しながらSの外部を移動する。 Tが動きうる領域の体積を求めよ。
828 名前:132人目の素数さん mailto:sage [2018/10/16(火) 23:40:20.29 ID:xW+nW6TE.net] 現象に確率密度関数を合わせるとはどういうことでしょうか。
829 名前:132人目の素数さん mailto:sage [2018/10/17(水) 02:09:37.79 ID:kvrMD9Ju.net] xyz空間の半球 x^2+y^2+z^2=1 (x≧0) を平面x=sおよびx=t(0<s<t<1)で切り、切り分けられた立体のs≦x≦tの部分とt≦x≦1の部分の体積が等しくなるようにする。 いまtをsの関数と見てt=f(s)とおくとき、次の極限を求めよ。 lim[s→1] (1-f(s))/(1-s)
830 名前:132人目の素数さん mailto:sage [2018/10/17(水) 02:26:57.50 ID:RkkcdSW0.net] >>737 自己解決。 なんのことはない。 exp(-x)/x をマクローリン展開すればいいだけ。 第0項を除く部分は0にいってしまう。 お騒がせしました。
831 名前:132人目の素数さん mailto:sage [2018/10/17(水) 05:14:41.19 ID:CNsWZSmr.net] >>791 S = 1 + a[1] + a[2] + … + a[n] + … = 3.91202535564 が収束するから、n → ∞ のとき a[n+1] ≒ a[n] / S, … 等比数列っぽい。 a[n] ≒ 11.127284700 / S^n, ln(a[n]) ≒ 2.409400 - 1.364055233655 n,
832 名前:132人目の素数さん mailto:sage [2018/10/17(水) 05:21:15.19 ID:CNsWZSmr.net] 〔類題〕 半径1の円に内接する正七角形の (対角線の長さの総和) - (辺の長さの総和) = の (2/3)乗 を求めよ、という問題が分かりません。。。
833 名前:132人目の素数さん mailto:sage [2018/10/17(水) 05:33:01.02 ID:kvrMD9Ju.net] kを実数とする。 実数xについての方程式 x^3-kx+1 = 0 ...(F) について以下の問いに答えよ。 (1)kが十分大きいとき、(F)は相異なる3つの実数解を持つことを示せ。 (2)kが十分大きいとき、(F)の3つの解をα、β、γ(α<β<γ)とする。 以下の極限(ア)〜(オ)をそれぞれ求めよ。 (ア)lim[k→∞] α (イ)lim[k→∞] β (ウ)lim[k→∞] γ (エ)lim[k→∞] αβ (オ)lim[k→∞] γ/α
834 名前:132人目の素数さん mailto:sage [2018/10/17(水) 07:10:34.08 ID:CNsWZSmr.net] >>807 (1) 題意より k > 0 としてよい。 F(-1-k/3) = -(k/3)^3 < 0, F(0) = 1 > 0, k > 3・(1/4)^(1/3) のとき F(√(k/3)) = 1 - 2・(k/3)^(3/2) < 0, F(√k) = 1 > 0, ∴ k > 3・(1/4)^(1/3) のとき 中間値の定理により各区間に実解が1個以上ある。相異なる3つの実解を持つ。 (2) (ア) α 〜 -√k - 1/(2k) +3/(8k^2.5) → -∞, (イ) β 〜 1/k + 1/k^4 → 0, (ウ) γ 〜 √k - 1/(2k) -3/(8k^2.5) → ∞, (エ) αβ = - 1/γ 〜 - 1/(√k) - 1/(2kk) → 0, (オ) γ/α 〜 -1 + 1/(k^1.5) → -1,
835 名前:132人目の素数さん mailto:sage [2018/10/17(水) 07:32:44.28 ID:XmI0cwXc.net] 問1: 2多項式の平方の和 f_1^2 + f_2^2 として表される多項式の全体は, 乗法に関して半群をつくる事をしめせ. (服部昭「現代代数学」 p.5 より) 多項式について特に記載がないのですが, 有理数係数の1変数多項式だと思います。 簡単な例だと (x^2 + x^2)(x^2 + (2x)^2) = 10x^4 = (x)^2 + (3x)^2 こんな感じで乗法に関して閉じてるらしいのです (本当かな...) どうかよろしくお願いします。
836 名前:132人目の素数さん mailto:sage [2018/10/17(水) 07:41:06.57 ID:NNY6L07n.net] >>802 どんな分布に合致するかを推測するんじゃないのかな
837 名前:132人目の素数さん mailto:sage [2018/10/17(水) 07:56:44.89 ID:LYxop/Jb.net] >>809 (f^2+g^2)(h^2+k^2)=
838 名前:(fh+gk)^2+(fk-gh)^2 単位元は 1=1^2+0^2 [] [ここ壊れてます]
839 名前:132人目の素数さん mailto:sage [2018/10/17(水) 08:04:23.76 ID:XmI0cwXc.net] >>811 ありがとうございます。
840 名前:132人目の素数さん mailto:sage [2018/10/17(水) 11:41:40.69 ID:uOvStamk.net] y=x^2のグラフの上に傾き正のある直線を引いたところ、a、bの2点で交わった。 x座標が負の点をaとした場合、aのx座標の絶対値はbのそれより小さい。 これはグラフ書くと直感的に明らかですが、図形的に説明する方法はありますか? 直線の式立てて二次方程式の解の公式使えば計算ですぐ分かりますが 直感的に説明できないのが気持ち悪くて
841 名前:132人目の素数さん mailto:sage [2018/10/17(水) 11:52:59.02 ID:eVoD0jAd.net] aを通り傾き0の直線を引く。 この直線の傾きを、少し正に/負に 変化させたとき、交点がどのように変化するか考察。
842 名前:132人目の素数さん mailto:sage [2018/10/17(水) 11:55:50.76 ID:eVoD0jAd.net] どちらでも、かまわないかもしれないけど、一応訂正 誤:aを通り傾き0の直線を引く。 正:bを通り傾き0の直線を引く。
843 名前:132人目の素数さん mailto:sage [2018/10/17(水) 12:12:33.18 ID:q4TTBiFC.net] 直観的に明らかとか言ってるけど、x座標が両方とも正になる場合があるのには気付いてる? 単純に a,bの座標をそれぞれ(Xa,Ya)と(Xb,Yb) 但しXa<Xb を考えれば 傾き正だから、Yb>Ya (>0)なので、両辺のルートを考えれば |Xb| > |Xa|, になる 図形的に考えれば、「Y座標が大きいほうがY軸から離れている」 ってこと。
844 名前:132人目の素数さん mailto:sage [2018/10/17(水) 12:25:23.65 ID:Qz/b3TB8.net] 二点を通る直線の傾きはa+bで与えられ、それが正かつa<bだから|a|<|b|
845 名前:132人目の素数さん mailto:sage [2018/10/17(水) 13:02:17.30 ID:uOvStamk.net] 色々な解答ありがとうございますm(_ _)m 両方正になるパターンを忘れてました…… 直線がy軸の正の部分と交わるという条件が言いたかったことです。 簡単というか秒で言えそうですね……なぜ煮詰まったのか不思議です。ありがとうございました
846 名前:132人目の素数さん mailto:sage [2018/10/17(水) 13:03:43.56 ID:uOvStamk.net] 二次曲線と直線が共有点を持つかどうかという問題では、単純に連立するだけでよく、解の範囲が二次曲線の取りうるxyの条件を満たすかどうかは調べる必要が無いのに 二次曲線どうしが共有点を持つかどうか判定する場合にはその条件を調べなければならないのはなぜですか?
847 名前:132人目の素数さん mailto:sage [2018/10/17(水) 13:27:27.06 ID:Wn9LnLuR.net] 単純に解けないからだろ
848 名前:132人目の素数さん mailto:sage [2018/10/17(水) 13:33:56.24 ID:uOvStamk.net] 単に連立して得られる方程式の実解と実際の交点が一対一対応しないのはなぜか?ということです。
849 名前:132人目の素数さん [2018/10/17(水) 13:48:37.28 ID:lYXNgkR/.net] でかるとせんせーに喧嘩売るぞって話?
850 名前:132人目の素数さん mailto:sage [2018/10/17(水) 15:36:37.32 ID:LYxop/Jb.net] >>821 そんなことあるの? 例を一つ出してみて。
851 名前:イナ mailto:sage [2018/10/17(水) 15:48:40.97 ID:T1WitPnt.net] >>801 正三角錘Tが動く領域内部にある正三角錘Sは領域に含まれない。 Sのすぐ外の部分は3つの領域からなる。 正三角柱4つ={(√3)/4}×4 =√3 扇形柱6つ=π(1^2){(360-90-90-109.5)/360} =47π/40 球1つ=(4π/3)(1^3) =4π/3 あわせると、 Tが動く領域=4π/3+47π/40+√3 =(301/120)π +√3
852 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:10:30.18 ID:Tt/OT1lL.net] あいかわらずだなぁ
853 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:45:22.47 ID:uOvStamk.net] >>823 例 楕円x^2+2y^2=1、放物線2y=x^2+11の交点を求めたい。 交点となるxyはx^2=2y-11を満たすので 楕円の式に代入して2y^2+2y-12=0、y^2+y-6=0 y=2,-3となるが、どちらも楕円にはかすりもしてないので解にはならない。楕円の図形的条件を考えないといけない。
854 名前:アうなるのはなぜでしょうか? [] [ここ壊れてます]
855 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:48:25.70 ID:CLF9yvIF.net] >>826 y=2,-3のとき、x^2はいくつになる?
856 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:53:37.26 ID:0klAX64q.net] >>826 x^2+2y^2=1 & 2y=x^2+11 ⇔y^2+y-6=0 & x^2=2y-11 であって、2式はワンセット。 y^2+y-6=0を解いた y について x^2=2y-11 を満たす x があるかどうかは確認しないとわからない。 両方OKのときもあれば、片方だけOKのときもあれば、全滅するときもある。 一次式を利用して一文字消去した場合には対応する x が必ず見つかる。
857 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:53:45.31 ID:eVoD0jAd.net] >>826 交点と言うからには、(x,y)を求めてから、言ってください。 y座標だけ求まったとしても、それに対応するxが実数として 存在しなければ、それは、交点ではありません。
858 名前:132人目の素数さん mailto:sage [2018/10/17(水) 16:54:56.49 ID:kvrMD9Ju.net] >>826 実数条件
859 名前:132人目の素数さん mailto:sage [2018/10/17(水) 17:18:22.82 ID:uOvStamk.net] いえ、この場合は実数条件を考慮しないとダメ、というのは分かるんですよ なぜ直線と二次曲線の交点の場合はそれを考えなくてよくなるのでしょうか?というのが最初の質問です
860 名前:132人目の素数さん mailto:sage [2018/10/17(水) 17:36:08.92 ID:CLF9yvIF.net] 直線と二次曲線だって考えなきゃダメじゃね? y=x^2+1とy=0の交点を求めようとして連立させてx^2+1=0とすると虚数解しか出て来なくて解無し、つまり交点無しってわかるだろ?
861 名前:132人目の素数さん mailto:sage [2018/10/17(水) 17:42:17.61 ID:CVjHYV3z.net] 直線の式をy=ax+b(a,bは実数)とする ある曲線がこの直線と交わるか交わらないか、という問題を考えよう 連立した方程式を仮にxについて解いて実数解が得られたとすれば、関係式y=ax+bによって対応するyの値も自動的に実数になる 逆に、xについて解いて虚数解が得られたとすれば、対応するyの値も自動的に虚数になる なので、直線との交点を求める際に限ってはxについて解くかyについて解くかに関わらず、一方の値が実数なのか否かさえ見れば良いことになる もちろん直線との交点ではない場合は>>826 のように、一方の値が実数であったとしてももう一方の値が虚数になることがあり得るので、それも確かめないといけない
862 名前:132人目の素数さん mailto:sage [2018/10/17(水) 17:43:35.22 ID:hDxIuId+.net] >>828 読んでも分からん?
863 名前:132人目の素数さん mailto:sage [2018/10/17(水) 17:49:50.11 ID:CVjHYV3z.net] >>833 軸に平行な直線との場合は別に考えてくれ
864 名前:132人目の素数さん mailto:sage [2018/10/17(水) 20:16:01.16 ID:9LFKH85i.net] 「無」は最強ですか?
865 名前:イナ mailto:sage [2018/10/17(水) 20:17:30.59 ID:T1WitPnt.net] >>825 なんだよ。あってんだろ。前>>824
866 名前:132人目の素数さん [2018/10/17(水) 20:31:32.39 ID:9LFKH85i.net] 東大医学部医学科で断然トップの人と、東大理学部数学科で断然トップの人はどっちの方が頭が良いのでしょうか?
867 名前:132人目の素数さん mailto:sage [2018/10/17(水) 21:20:47.14 ID:hDxIuId+.net] >>824 >>837 > 扇形柱6つ=π(1^2){(360-90-90-109.5)/360}
868 名前:132人目の素数さん mailto:sage [2018/10/17(水) 22:29:08.09 ID:kM/tPq2A.net] >>833 ありがとうございます
869 名前:132人目の素数さん mailto:sage [2018/10/17(水) 23:25:30.19 ID:+VXQr7tm.net] 9点円の定理みたいなのって三角形じゃないと出来ないん?
870 名前:132人目の素数さん mailto:sage [2018/10/18(木) 00:46:28.48 ID:CGKdq0JP.net] test
871 名前:イナ mailto:sage [2018/10/18(木) 01:16:28.16 ID:fIJ2dSz/.net] >>839 ご指摘ありがとう。 前>>837 修正。 Tが動く領域は、正三角柱4つと扇形柱6つと球1つからなる。 (正三角柱4つ)={(√3)/4}×4 =√3 (扇形柱6つ)=π(1^2){(360-90-90-109.5)/360}×6 =70.5π/60 =47π/40 (球1つ)=(4π/3)(1^3) =4π/3 あわせると、 (Tが動く領域)=4π/3+47π/40+√3 =(301/120)π +√3
872 名前:132人目の素数さん mailto:sage [2018/10/18(木) 02:44:29.46 ID:ybZLuwXw.net] Oを原点とするxy平面の点A(1,1)を中心とする半径r(1≦r<√2)の円Cがある。 Cの周とx軸との交点のうち、原点Oに近い方をPとする。また、y軸との交点のうち原点に近い方をRQとする。 扇形APQの面積をS(r)とし、また線分OP、線分OQ、Cの劣弧PQとで囲まれる領域の面積をT(r)とする。 このとき、次の極限を求めよ。 lim[r→√2] {(√2 - r)*S(r)}/{T(r)}
873 名前:132人目の素数さん mailto:sage [2018/10/18(木) 03:12:42.66 ID:7YqgJU0i.net] >>843 そもそも109.5とわ???
874 名前:132人目の素数さん mailto:sage [2018/10/18(木) 04:28:52.29 ID:Dw4OfxmO.net] >>826 xx = X とおくと 「楕円」は放物線 X = 1 -2yy となり、 「放物線」は直線 2y = X+11 となる。 これらは (X,y) = (-7,2) (-17,-3) の2点で交わる。 X≧0 の交点のみが(実)xy-平面上の交点(x,y)に対応する。 X<0 の交点は xが虚数になるので、(実)xy-平面上では絣もしない。
875 名前:イナ mailto:sage [2018/10/18(木) 04:53:42.15 ID:fIJ2dSz/.net] >>845 前>>843 108°ぐらいかなとは思ったんだけど。 底角1、斜角(√3)/2の二等辺三角形の頂角。 正四面体の辺と辺がなす角。 なぜかと言われても自然の摂理だから。一周を360°と決めたから、109.5°になったとしか言いようがない。
876 名前:132人目の素数さん mailto:sage [2018/10/18(木) 13:11:19.58 ID:7YqgJU0i.net] >>847 109.47122063449069
877 名前:132人目の素数さん mailto:sage [2018/10/18(木) 17:25:18.82 ID:v2a6/08p.net] 正四面体は(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)とか (-3,1,1,1),(,1-3,1,1),(1,1,-3,1),(1,1,1,-3)で表せる。 中心から2つの頂点を見た時の角度をtとすると、 cos(t)=(-3,1,1,1).(1,-3,1,1)/(9+1+1+1)=-1/3 だから arccos(-1/3) あるいは、 (180/pi)arccos(-1/3)=109.471220634490691369245999339962435963006843100907948288...°
878 名前:イナ mailto:sage [2018/10/18(木) 17:54:55.56 ID:fIJ2dSz/.net] 前>>847 5π/2 +√3 とどっちが近いかな。
879 名前:132人目の素数さん mailto:sage [2018/10/18(木) 18:15:24.79 ID:VK8UuorO.net] 農学部だと近けりゃいいんだなw
880 名前:132人目の素数さん mailto:sage [2018/10/18(木) 19:27:14.93 ID:6fhQd4Cs.net] 頂点が1/4で上に凸の放物線 y=-x^2/676+1/4が 座標(3,10/49)を通るように調整してくれ〜(・ω・)ノ
881 名前:132人目の素数さん mailto:sage [2018/10/18(木) 19:57:27.43 ID:ybZLuwXw.net] >>844 これお願いします 数研出版の問題集を解いていますが図形の面積が表せません
882 名前:132人目の素数さん [2018/10/18(木) 20:57:05.48 ID:S3KlGNXW.net] >>852 y=-x^2/676+1/4 (x≠3),10/49(x=3)
883 名前:132人目の素数さん mailto:sage [2018/10/18(木) 23:14:17.10 ID:ZVonDrj/.net] >>853 ∠OAP=θと置けばできそうじゃん rもOPもθで表せるからあとは適当にいけるんじゃね?
884 名前:132人目の素数さん mailto:sage [2018/10/18(木) 23:31:59.86 ID:ZLom+Usi.net] わからない、教えて 抽選ボックスが2つ、どちらかから1つからボールを1つだけ引き当選の有無を確認する。 抽選ボックスAはボールが3コ、ボックスBは7コ。 一等は1本、2等は2本、計3本がどちらかのボックスに偏っているとする。 この時どちらのボックスを引くのが良いか?または同じか?
885 名前:イナ mailto:sage [2018/10/18(木) 23:33:54.23 ID:fIJ2dSz/.net] (正三角柱4つ)={(√3)/4}×4 =√3 (扇形柱6つ)=π(1^2){(360-90-90-109.47122063449069)/360}×6 =7.052877936550931π/6 =(1.1754796560918218333……)π (球1つ)=(4π/3)(1^3) =4π/3 =1.333…… あわせると、 (Tが動く領域)=(2.5088129894251551666……)π+√3 (5/2)π+√3< (301/120)π+√3=2.508333…… <(2.5088129894251551666……)π+√3 簡単な分数にはならないかと思ったが、そんな簡単じゃなかった。
886 名前:132人目の素数さん mailto:sage [2018/10/18(木) 23:45:03.55 ID:LmxfrDVL.net] >>844 r→√2の極限だと高次の微小量を無視すれば円弧PQは直線として考えられるぞ x=√2-rと置くと T=x^2 S=x(√2-x) xS/Tにx=0を代入して、答えは√2だ 厳密な証明は、まあ頑張れ
887 名前:132人目の素数さん mailto:sage [2018/10/18(木) 23:47:44.94 ID:y4R+MJMW.net] >>855 こんな感じか? θ = ∠OAP とし、 AOを斜辺とし、x軸を底辺とする直角三角形の面積をUとすると S = πr^2 * 2θ / (2π) = θr^2 U = r sin(π/4-θ) / 2 T
888 名前: = 1 - 2U - S 先ほどの直角三角形の辺の長さと角度の関係から r = 1/cos(∠A) = 1/cos(π/4-θ) よって U = 1/2 * sin(π/4-θ)/cos(π/4-θ)、S = θ / cos(π/4-θ)^2 T/S = (1 - 2U)/S - 1 = (1 - sin(π/4-θ) / cos(π/4-θ)) 2cos(π/4-θ)^2 / θ - 1 f(θ) = (1 - sin(π/4-θ) / cos(π/4-θ)) 2cos(π/4-θ)^2 とすると f’(θ) = 2 (cos(2θ) + sin(2θ)) なので (ここは綺麗な式にしなくてもとにかく微分できていればいい) lim T/S = lim f(θ)/θ - 1 = f’(0) - 1 = 1 θ→0 [] [ここ壊れてます]
889 名前:132人目の素数さん mailto:sage [2018/10/18(木) 23:50:10.45 ID:y4R+MJMW.net] いや流石に1はおかしいか。どこ間違えたかな
890 名前:132人目の素数さん mailto:sage [2018/10/19(金) 02:05:32.23 ID:gzQJ/Bd2.net] >>859 ありがとうございます。 美しい結論、程よい難易度ですね 私の作問能力の高さを再確認いたしました
891 名前:132人目の素数さん mailto:sage [2018/10/19(金) 02:48:48.84 ID:/MhliacY.net] なんにしろ答えは√2だな 適当な問題の背景が透けて見えてる 2T/(√2-r)が大雑把にTの三角形の高さで、S/(T/(√2-r))はSの底辺の極限。だから√2
892 名前:132人目の素数さん mailto:sage [2018/10/19(金) 02:51:38.57 ID:5btDxqP5.net] 作問能力? ならば正当をお願いいたす(・∀・)
893 名前:132人目の素数さん mailto:sage [2018/10/19(金) 02:53:59.21 ID:HH37cTSY.net] なぁんの数学的深みも感じないけど。 しょせん受験数学どまり。
894 名前:132人目の素数さん mailto:sage [2018/10/19(金) 03:01:29.91 ID:gzQJ/Bd2.net] >>864 数学的深みはゲームとしての面白さではなく研究により得られるものです 私はゲームとしての面白さを追求いたします
895 名前:132人目の素数さん [2018/10/19(金) 04:20:06.08 ID:jtToVnaO.net] a, bを正の実数として、双曲線: (x^2/a^2) - (y^2/b^2) = 1 の上の点P(Pのx座標,y座標はともに正とする)における接線へ この双曲線の焦点(√(a^2+b^2),0), (-√(a^2+b^2),0)から 下した垂線の足をそれぞれH, H'とすると、 H, H'は頂点A(a,0), A'(-a,0)を直径とする円周上にあることを証明せよ。
896 名前:132人目の素数さん mailto:sage [2018/10/19(金) 04:23:27.84 ID:jtToVnaO.net] 焦点はF, F'で F((a^2+b^2)^(1/2),0), F'(-(a^2+b^2)^(1/2),0)ということ
897 名前:132人目の素数さん mailto:sage [2018/10/19(金) 06:14:46.67 ID:rcCrT93A.net] >>866 だけど スマンが当方はわかった 双曲線の性質を使えばめっちゃ簡単だった 考えてわからない奴はバカ
898 名前:132人目の素数さん mailto:sage [2018/10/19(金) 06:49:41.40 ID:UmCMoNsS.net] >>866 原点Oを通らない任意の直線を kx - Ly = 1, … (1) とする。 (kk+LL≠0) F から(1)におろした垂線: L{x - √(aa+bb)} + ky = 0, F ' から(1)におろした垂線: L{x + √(aa+bb)} + ky = 0, をまとめて Lx + ky = ±L √(aa+bb), …(2) (1)と(2)の交点 H,H ' (x,y)では (kk+LL)(xx+yy) = (kx-Ly)^2 + (Lx+ky)^2 = 1 + (aa+bb)LL, xx + yy = {1 + (aa+bb)LL}/(kk+LL), ∴ 右辺が一定値になるように(k,L)をとればよい。 (1) を2次曲線 {k/x(P)}xx - {L/y(P)}yy = 1, の点Pにおける接線とし、 x(P)/k + y(P)/L = aa+bb とすれば、この条件を満足する。 xx + yy = aa.
899 名前:132人目の素数さん mailto:sage [2018/10/19(金) 08:28:57.75 ID:UmCMoNsS.net] >>869 (1) は双曲線 (x/a)^2 - (y/b)^2 = 1, の接線だから k = x(P)/aa, L = y(P)/bb, これを使うと (ak)^2 - (bL)^2 = 1, 1+ (aa+bb)LL = aa(kk+LL),
900 名前:132人目の素数さん mailto:sage [2018/10/19(金) 13:00:12.33 ID:/MhliacY.net] >>859 いくつかの間違いを修正して、wolframセンセーに頑張ってもらった結果 (一度じゃ計算成功しなかったけど) 答えは√2です 1. Uの定義がおかしい UはAPを斜辺とし…とすべき(というか、計算ではそうなっている) 2. T/S = (1 - 2U)/S - 1 = (1 - sin(π/4-θ) / cos(π/4-θ)) 2cos(π/4-θ)^2 / θ - 1 の 2cos(π/4-θ)^2の最初の
901 名前:2はいらない T/S = (1 - 2U)/S - 1 = (1 - sin(π/4-θ) / cos(π/4-θ)) cos(π/4-θ)^2 / θ - 1 で T/S → 0 になる 3. 求めるのは、T/Sではなくて、 (√2-r) (S/T) >>859 のやり方なら、φ=Pi/4-θと置いて、簡略化しながら計算しないと計算量が嫌になるかも。 書くのしんどいから書かないけど △AOPの面積をVとすれば、V=√2/2 rsinθで T=2V-Sだから計算はぐっと楽 >>855 を書いた時はこれを想定してた 普通に手計算できるレベル [] [ここ壊れてます]
902 名前:132人目の素数さん mailto:sage [2018/10/19(金) 14:15:28.72 ID:y9YD4c9P.net] 体上の線型代数はあるけど、微積分はあるの?
903 名前:132人目の素数さん mailto:sage [2018/10/19(金) 14:28:35.10 ID:BexAa1Re.net] 君の知っている微積分はどんなものなの?
904 名前:132人目の素数さん mailto:sage [2018/10/19(金) 14:51:06.11 ID:ma8AGNiA.net] 純代数的な微積分がある
905 名前:132人目の素数さん mailto:sage [2018/10/19(金) 16:00:45.25 ID:NBYzEtA1.net] >>873 思い付きの質問、4元数体の関数論があるみたいだから一般論があるのかと思って聞いてみた >>874 ありがとう
906 名前:学術 [2018/10/19(金) 16:16:42.06 ID:LC9EEibV.net] 数学はモノの方便みたいなところもあるよね。簡略化しすぎるといい体作りに ならない面があると思うが。まだ数学頭脳はほとんど起きていない。
907 名前:学術 [2018/10/19(金) 16:17:56.65 ID:LC9EEibV.net] 精神のまといを数学者でも雇って数式化してもらいたいなあ。精神障碍者だし。
908 名前:132人目の素数さん mailto:sage [2018/10/19(金) 17:06:30.72 ID:TGAmzOye.net] >>872 ヒルベルト空間でよくね っていうか微積自体ある特殊な内積空間の位相的側面の話では?
909 名前:132人目の素数さん mailto:sage [2018/10/19(金) 17:25:44.90 ID:VQK89IbP.net] >>878 体上のヒルベルト空間ってあるの?まず微積分が展開出来ないと無理だと思うが
910 名前:132人目の素数さん mailto:sage [2018/10/19(金) 17:31:37.32 ID:6sV8jbaX.net] >>876-877 何を言いたいのか分からないけど、雑談スレじゃあないから
911 名前:132人目の素数さん mailto:sage [2018/10/19(金) 17:34:52.44 ID:mv6/b+kI.net] 100個の自然数 1,2,3,...100から50個の数字を次の条件を満たすように選ぶとどうなるか 条件1 任意の二数は互いに素 条件2 全部の和を最小にする
912 名前:132人目の素数さん [2018/10/19(金) 17:34:59.58 ID:6IbeljhY.net] 教科書の演習問題についてですが自力でなかなか解けません.. [問題] {Yn}がn=1,2,...について自由度nのχ^2分布に従う確率変数のとき、 (Yn-n)/√(2n)が標準正規分布に法則収束することを示せ。 という問題です。 積率母関数を求めて極限を取る方法で示そうとしているのですがどうもうまくいきません。。。 解説お願いします。
913 名前:132人目の素数さん mailto:sage [2018/10/19(金) 18:10:48.07 ID:APtw9LEn.net] >>881 解なし
914 名前:132人目の素数さん mailto:sage [2018/10/19(金) 18:25:23.36 ID:mv6/b+kI.net] >>881 > 条件1 任意の二数は互いに素 ごめん。「互いに素」ではなくて「互いに約数、倍数の関係になっていない」に訂正
915 名前:132人目の素数さん mailto:sage [2018/10/19(金) 19:22:33.21 ID:NLKU5RVl.net] >>881 勘で [34..66] ++ [67,69..99]
916 名前:132人目の素数さん mailto:sage [2018/10/19(金) 20:07:40.93 ID:Y9R3XVNj.net] >>885 いや、48抜いて24にとりかえられるorz
917 名前:132人目の素数さん [2018/10/19(金) 22:57:17.43 ID:tYw/U/2m.net] 以下の命題を証明してください。 F を閉凸集合、 z を F に含まれない点とする。このとき、次を満たすベクトル a およびスカラー Θ が存在する: ∀x ∈ F、 a^T * z < Θ < a^T * x.
918 名前:132人目の素数さん [2018/10/19(金) 23:12:45.48 ID:DKRhmVm3.net] fを実係数n次多項式、s_0,s_1,...,s_nを相異なる実数とすると f(x+s_0),f(x+s_1),f(x+s_2),...,f(x+s_n)は一次独立であることを示してください
919 名前:132人目の素数さん mailto:sage [2018/10/19(金) 23:29:0
] [ここ壊れてます]
920 名前:1.73 ID:rSBjQu9b.net mailto: 方法A:X回中65/10000X回成功 方法B:Y回中7/1000Y回成功 という統計データがあるとき 「真の(正確な)成功確率が方法Bの方が高い」確率が 80%以上である為の最小のXとYを求めよ よろしくお願いします [] [ここ壊れてます]
921 名前:132人目の素数さん mailto:sage [2018/10/19(金) 23:40:34.82 ID:5btDxqP5.net] q=1−{{165n−3n^2+936}/(193n−7n^2+1248)} n=3のときにqはいくつですか?
922 名前:132人目の素数さん mailto:sage [2018/10/20(土) 00:10:06.35 ID:sShhXPI8.net] >>881 >>884 [16] ++ [24] ++ [20,28,36,44] ++ [26,30..66] ++ [35,37..99] かな。
923 名前:132人目の素数さん mailto:sage [2018/10/20(土) 00:16:15.93 ID:NDYZOMGl.net] >>887 イミフ >>888 成立しない >>889 イミフ
924 名前:132人目の素数さん mailto:sage [2018/10/20(土) 02:36:55.24 ID:/zyiypza.net] >>888 実数体のなかでならn=0以外では成立しない。 多項式環のなかで一次独立ならVandermonde行列式を考えれば自明。
925 名前:132人目の素数さん mailto:sage [2018/10/20(土) 10:16:02.31 ID:fEQDQMFE.net] xyz空間の円板C:x^2+y^2=1,z=0の周または内部の点A(a,b,0)における方べきの値をf(a,b)とおく。 また空間の原点をOとしたときの半直線OAとx軸の正の部分とのなす角をθ(a,b)、積f(a,b)・sinθ(a,b)=g(a,b)と定める。 ただしθ(a,b)は0≦θ(a,b)<2πを動く。 (1)f(a,b)をa,bで表せ。 (2)a,bが動くとき、点P(a,b,g(a,b))が囲む領域をVとする。Vを平面x=t(-1≦t≦1)で切った断面図を描け。
926 名前:132人目の素数さん mailto:sage [2018/10/20(土) 10:17:36.58 ID:fEQDQMFE.net] 894は(1)は簡単でしたが、(2)で断面図を描くところで手が止まります。極座標でもやってみましたが難しくて計算ができません。 教えてください。
927 名前:132人目の素数さん [2018/10/20(土) 10:21:27.53 ID:18CdzPVG.net] 以下の命題を証明してください。 F を閉凸集合、 z を F に含まれない点とする。このとき、次を満たすベクトル a およびスカラー Θ が存在する: ∀x ∈ F、 <a, z> < Θ < <a, x>.
928 名前:132人目の素数さん [2018/10/20(土) 12:12:10.35 ID:saQgO1Bc.net] サイコロを繰り返し投げ、出た目が直前の回に出た目の約数でなくなったら終了します。 n回目にサイコロを投げ、かつその目が1である確率 p[n] を求め、n回目に終了する確率をp[n]とp[n+1]を用いて表してください。 プロセス(解き方)もお願いします。
929 名前:132人目の素数さん [2018/10/20(土) 12:36:42.60 ID:35006q00.net] >>893 どう自明なのかわからないです
930 名前:132人目の素数さん mailto:sage [2018/10/20(土) 12:40:29.18 ID:fEQDQMFE.net] >>897 普通に考えればいい n-1回目が 1→n回目が2,3,4,5,6で終了 2→n回目が3,4,5,6で終了 3→n回目が2,4,5,6で終了 4→n回目が3,5,6で終了 5→n回目が2,3,4,6で終了 6→n回目が4,5で終了 あとはa[n]を上の結果使ってa[n-1]とつなげるだけ p[n]経由しなくても直接解ける
931 名前:132人目の素数さん mailto:sage [2018/10/20(土) 12:46:32.17 ID:/MrLnf1N.net] 2のべき指数で分類するとこうか? >>885 S = [64] + [・] + [48] + [40+56] + [36+44+52+60] + [34+38+42+…+66] + [35+37+39+…+99] (9個) (33個) = 64 + 0 + 48 + 96 + 192 + 450 + 2211 = 3061, >>886 48→24 S = 64 + 0 + 0 + 120 + 192 + 450 + 2211 = 3037 >>891 4の倍数のうち、40,52,56,60 →半分, 64→16 S = [・] + [・] + [16] + [24] + [20+28+36+44] + [26+30+34+…+66] + [35+37+39+…+99] (11個) (33個) = 0 + 0 + 16 + 24+ 128 + 506 + 2211 = 2885,
932 名前:132人目の素数さん mailto:sage [2018/10/20(土) 13:10:33.07 ID:yaPDybmU.net] 16+20+22+24+26+28+30+33+34+35+ 36+37+38+39+41+42+43+45+46+47+ 49+50+51+53+54+55+57+58+59+61+ 62+63+65+67+69+71+73+75+77+79+ 81+83+85+87+89+91+93+95+97+99=2830
933 名前:132人目の素数さん mailto:sage [2018/10/20(土) 13:27:29.29 ID:w/u4gzJ2.net] 33 99
934 名前:132人目の素数さん mailto:sage [2018/10/20(土) 13:40:57.68 ID:yaPDybmU.net] >>902 oops 22 →44 33 →66 で2830+55=2885 で>>900 と一致
935 名前:132人目の素数さん mailto:sage [2018/10/20(土) 13:58:22.46 ID:w/u4gzJ2.net] 1〜100だからかえってわかりにくい。 いっそ1〜10000から5000個とかで考えた方がいい。 奇数kに対して2べき×kの全体をC[k]とする。 1〜10000=C[1]+C[3]+…C[9999] 同じ類から2つ取れないので各類から一個づつ。 C[9999]は全部9999の倍数なので3333は取れない。 よってC[3333]から選ばれるのは6666の倍数。 同様にしてC[1]〜C[3333]の各類で選ばれるのは2…6666の倍数。 同様にしてC[1]〜C[1111]の各類で選ばれるのは4…13332の倍数。 … の必要条件出しといて十分性チェックして完了。
936 名前:132人目の素数さん [2018/10/20(土) 14:59:57.68 ID:saQgO1Bc.net] >>899 質問の目的はn回目に終了する確率を上手に求めることです。誘導を使うも、誘導を無視してn回目に終了する確率を直接求めてもらうも構いません。ただしなるべく計算のいらない面白い解法を追求したいです。
937 名前:132人目の素数さん [2018/10/20(土) 15:05:59.12 ID:saQgO1Bc.net] >>905 はいわば>>897 の補足みたいなものと解釈してください、レス先を間違えました >>899 a[n]とはなんでしょうか 何を主張するものか理解できないし、もっと詳しく説明して頂けないでしょうか >>897 を確認してください
938 名前:132人目の素数さん mailto:sage [2018/10/20(土) 15:15:49.64 ID:wkVWJV/A.net] >>856 一等と二等に分ける意味あんの?
939 名前:132人目の素数さん mailto:sage [2018/10/20(土) 15:32:23.56 ID:vN0Acfvc.net] n回目の目がkで未終了の確率p(k,n)、q(k,n)=6^np(k,n)として q(1,n+1)= q(1,n)+…+ q(6,n) q(2,n+1)= q(2,n)+ q(4,n)+ q(6,n) q(3,n+1)= q(3,n)+ q(6,n) q(4,n+1)= q(4,n) q(5,n+1)= q(5,n) q(6,n+1)= q(6,n) こんなモンなんか一工夫したいと思える余地ない希ガス。
940 名前:132人目の素数さん mailto:sage [2018/10/20(土) 18:02:35.43 ID:kWakH5+C.net] >>890 次の式はn=3,[0≦c≦124]の範囲ですべてq=10/49 ∴q=1−{{165n−3n^2+(39+39c)}/{(216−c)n−7n^2+(52+52c)}} ■q=10/49 ∵n=3,c=23
941 名前:132人目の素数さん mailto:sage [2018/10/20(土) 19:17:14.59 ID:fEQDQMFE.net] I_2018=∫[0→1] 1/(1+x^2018) dx の値を求めよ。
942 名前:132人目の素数さん mailto:sage [2018/10/20(土) 19:19:30.40 ID:fEQDQMFE.net] 2^n+1と3^n+2を17で割ったとき、余りが等しくなるような最小の自然数nを求めよ。
943 名前:132人目の素数さん mailto:sage [2018/10/20(土) 19:23:53.29 ID:fEQDQMFE.net] 凸六角形ABCDEFの対角線AD、BE、CFの長さはいずれも1であるという。 このような凸六角形の最大値と最小値が存在するかを述べよ。存在するならばその値を求めよ。
944 名前:132人目の素数さん mailto:sage [2018/10/20(土) 19:37:44.91 ID:SFwssW9o.net] >>911 11
945 名前:132人目の素数さん [2018/10/20(土) 19:48:30.47 ID:rGRdCP56.net] imgur.com/gallery/iLyvlhQ
946 名前:132人目の素数さん mailto:sage [2018/10/20(土) 20:52:35.60 ID:fEQDQMFE.net] aとbは互いに素な自然数で、cとdも互いに素な自然数である。 ab=cdかつa≠cかつa≠dであるa,b,c,dの例を挙げよ。また、a=2018となる場合は存在するか。
947 名前:132人目の素数さん mailto:sage [2018/10/20(土) 20:59:09.23 ID:rGRdCP56.net] imgur.com/a/t3rJEDy.jpg 何をしていいかわかりません。教えてくださいお願いします。
948 名前:132人目の素数さん mailto:sage [2018/10/20(土) 21:01:07.75 ID:w/u4gzJ2.net] 2018×3=1009×6
949 名前:132人目の素数さん mailto:sage [2018/10/21(日) 01:20:02.15 ID:wgL9G251.net] >>910 I_n = ∫[0,1] 1/(1+x^n) dx = (1/n)∫[0,1] 1/(1+y) y^(1/n -1) dy = (1/2n) {ψ((n+1)/2n) - ψ(1/2n)}
950 名前:, ここに ψ(x) = Γ '(x)/Γ(x), (digamma函数) ∫[0,1] 1/(1+x^2018) dx = (1/4036) {ψ(2019/4036) - ψ(1/4036)} = 0.999656719605351957806207034918974864517522986561577745876 [] [ここ壊れてます]
951 名前:132人目の素数さん [2018/10/21(日) 01:52:10.61 ID:JIJeBFXr.net] 先日ここでマッハの意を問わせてもらった者です その節はありがとうございました ついでに伺いたいのですが「平均速度マッハ1」という表現(書き方)は間違いでしょうか? 例えば「平均時速60キロ」は聞き慣れててしっくり来るのですけど 「平均速度マッハ1」ってのは聞き慣れていません もし平均速度をマッハで書きたい場合はどうすればいいですか?
952 名前:132人目の素数さん mailto:sage [2018/10/21(日) 02:00:56.59 ID:ltcwrDDV.net] m級
953 名前:132人目の素数さん mailto:sage [2018/10/21(日) 06:56:44.00 ID:k1ajnchQ.net] 916です。ヒントだけでも教えてください。focus gold なども見ましたが全然わかりません。
954 名前:132人目の素数さん mailto:sage [2018/10/21(日) 07:24:33.26 ID:p2Myh/Bc.net] 以下の命題を証明してください。 F を閉凸集合、 z を F に含まれない点とする。このとき、次を満たすベクトル a およびスカラー Θ が存在する: ∀x ∈ F、 <a, z> < Θ < <a, x>.
955 名前:132人目の素数さん mailto:sage [2018/10/21(日) 08:44:29.21 ID:B3jo5NYm.net] 画像見れへんがな
956 名前:132人目の素数さん mailto:sage [2018/10/21(日) 09:20:11.18 ID:4cLWIlRi.net] >>922 d(zw) = d(z,F) となる w∈F をとり a = w - z とおく。
957 名前:132人目の素数さん mailto:sage [2018/10/21(日) 09:26:30.10 ID:4cLWIlRi.net] >>922 d(x0,z) = d(F,z) となる x0∈F をとり a = x0 - z、Θ = d(x0,z)/2 とおく。
958 名前:132人目の素数さん mailto:sage [2018/10/21(日) 09:29:27.72 ID:pKb4/VWz.net] >>922 d(x0,z) = d(F,z) となる x0∈F をとり a = x0 - z、Θ = d(x0,z)/2 とおく。
959 名前:イナ mailto:sage [2018/10/21(日) 11:41:46.10 ID:MYCwKHXh.net] >>773 答えもう出てる? 前>>857 2〜10は各スート一枚ずつなんで、 9×4=36枚 ジョーカー24枚 あわせて36+24=60枚 すべての取り方は、 60C12=60・59・58・……・49/12・11・10・……・1 つづく。
960 名前:132人目の素数さん mailto:sage [2018/10/21(日) 12:55:18.85 ID:aS+HsF0h.net] 連続するn個の自然数k,k+1,...,k+n-1を2つのグループに分ける。また次の操作(T)を行う。 (T)一方のグループに含まれる自然数の和と他方のグループに含まれる自然数の和が等しくなるようにする。 (1)(T)が可能なとき、k,nはどのような整数か。 (2)あるk,nをとったところ、その連続する自然数は(T)が可能であった。またその連続する自然数の中から、ある自然数1つを取り去ると、(T)は不可能になるという。取り去る自然数が満たすべき条件を述べよ。
961 名前:132人目の素数さん mailto:sage [2018/10/21(日) 13:12:12.14 ID:l2E3XuiN.net] >>923 まさに、 >何をしていいかわかりません
962 名前:132人目の素数さん mailto:sage [2018/10/21(日) 13:31:59.24 ID:l2E3XuiN.net] >>927 1万回のシミュレーションを1万回やって平均を求めてみた x=c(rep(2:10,4),rep(0,24)) f <- function(){ y=sample(x,12) z=y[which(y!=0)] length(z)==length(unique(z)) } re=replicate(1e4,mean(replicate(1e4,f()))) > summary(re) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0992 0.1085 0.1106 0.1106 0.1127 0.1217
963 名前:イナ mailto:sage [2018/10/21(日) 15:33:14.26 ID:MYCwKHXh.net] 前>>927 (確率)=(その場合の数)/(すべての場合の数) すべての場合の数は先に示した。 その場合の数は、 ジョーカーが1枚2枚のときは数字のカードが少なくとも1枚2枚かぶるのでありえない。 よってジョーカーが3枚から12枚のときを考える。 ジョーカーが3枚
964 名前:フとき、 24C3・4^9=23・22・4^10 ジョーカーが4枚のとき、 24C4・4^8=6・23・11・7・4^8 ジョーカーが5枚のとき、 24C5・4^7=23・22・21・4^8 ジョーカーが6枚のとき、 24C6・4^6=23・11・7・19・4^7 ジョーカーが7枚のとき、 24C7・4^5=23・11・19・18・4^6 ジョーカーが8枚のとき、 24C8・4^4=23・11・19・9・17・4^4 ジョーカーが9枚のとき、 24C9・4^3=23・11・19・17・4^5 ジョーカーが10枚のとき、 24C10・4^2=23・11・19・17・6・4^3 ジョーカーが11枚のとき、24C11・4=23・19・17・3・7・4^3 ジョーカーが12枚のとき、24C12=23・19・13・7・4 これらをすべて足して、すべての場合の数で割ると、 ――つづく。 [] [ここ壊れてます]
965 名前:132人目の素数さん mailto:sage [2018/10/21(日) 17:09:21.51 ID:l2E3XuiN.net] >>930 re=NULL re[1:2]=0 for (k in 3:12){ re[k]=choose(24,k)*choose(9,12-k)*4^(12-k)/choose(60,12) } sum(re) > sum(re) [1] 0.1106278 シミュレーション解とほぼ一致
966 名前:132人目の素数さん mailto:sage [2018/10/21(日) 17:30:10.66 ID:l2E3XuiN.net] Prelude> choose (n,r) = product[1..n] `div` product[1..n-r] `div` product[1..r] Prelude> fromIntegral(sum $ map (\k -> choose(24,k)*choose(9,12-k)*4^(12-k)) [0..12]) /fromIntegral(choose(60,12)) 0.1106278297721166
967 名前:132人目の素数さん mailto:sage [2018/10/21(日) 17:36:08.25 ID:l2E3XuiN.net] >>933 分数で書くと 7371811052/66636135475
968 名前:132人目の素数さん mailto:sage [2018/10/21(日) 19:30:38.13 ID:ltcwrDDV.net] トランプの束がある 2〜10までの数字が描かれたカードが各スートに1枚ずつと、 ジョーカーのカードが24枚ある 全てを混ぜて無作為に切り直して12枚のカードを無作為に引いたとき その12枚のカードのうちジョーカー以外にいずれも違う数字が 書かれている確率はいくらか 2〜10各スート一枚ずつ9×4=36枚 ジョーカー24枚 合計60枚 この中から12枚ではなく10枚のカードを取り出すとすると 数字のカード6枚、ジョーカー4枚となる この組み合わせの確率は (9x8x7x6x5x4)/9^6=60480/531441 =0.11380379007
969 名前:132人目の素数さん mailto:sage [2018/10/21(日) 20:15:39.50 ID:s1BxX/xG.net] >>935 なにこれ?
970 名前:132人目の素数さん mailto:sage [2018/10/21(日) 20:18:12.12 ID:aS+HsF0h.net] 放物線y=x^2上の2点P,QはPQ=1を満たしている。点Pのx座標は点Qのx座標より小さいとする。 (1)P(p,p^2)とする。線分PQ上の一点Kを無作為に選び、点A(0,a)と結んで線分AKを作る。AKの長さの期待値E(p,a)をp,aで表せ。 (2)aを固定し、pの関数f(p)をf(p)=E(p,a)-(AP+AQ)/2と定義する。 f(p)と0の大小を比較せよ。
971 名前:132人目の素数さん mailto:sage [2018/10/21(日) 20:57:46.76 ID:k1ajnchQ.net] https://i.imgur.com/JXADUXQ.jpg よろしくお願いします。
972 名前:132人目の素数さん mailto:sage [2018/10/21(日) 20:59:44.02 ID:k1ajnchQ.net] ヒントだけでも教えてください
973 名前:132人目の素数さん mailto:sage [2018/10/21(日) 21:42:58.34 ID:B3jo5NYm.net] とりあえず、ゴリ押しで式を書き並べて整理して積分したらいいんじゃないの? 最終的には(0,0,1)か(0,0,2)からの角度で置換積分することになりそうだけど 文字3個くらい置いて計算していけばとりあえず一本道だと思う 自作?
974 名前:132人目の素数さん [2018/10/21(日) 23:07:24.17 ID:fSpMiCT5.net] >>938 Pの座標を(a,b,c)として U(0,b,1) W(0,b,0) t = ∠WUP とすれば a = sin(t) c = 1-cos(t) t を固定した時 0 ≦ b ≦t sin(t) 求める立体の x = a における断面の面積S(a)は t sin(t) { 1 -cos(t)} ∫_{0≦a≦1} S(a) da = ∫_{0 ≦ t ≦ π/2} t sin(t)cos(t) { 1 -cos(t)} dt = (π/8) -(2/9) みたいな感じ 計算は合ってるかは知らん
975 名前:132人目の素数さん mailto:sage [2018/10/21(日) 23:28:20.59 ID:ltcwrDDV.net] >>935 12枚の時は 2.916{(9x8x7x6x5x4x3)/9^7} =0.11061728395 061728395循環節の長さ9の循環小数になる
976 名前:132人目の素数さん mailto:sage [2018/10/21(日) 23:37:44.41 ID:hLeBvSR0.net] 2.916⁉
977 名前:132人目の素数さん mailto:sage [2018/10/22(月) 00:05:10.04 ID:E8LyAx4E.net] >>935 10枚引いた時の確率を12枚に置き換えるには α=1458139/1500000=0.97209266666 6が循環節の長さ1の循環小数を係数としてかける β=(9x8x7x6x5x4)/9^6=60480/531441 =0.11380379007 とすると αβ≒0.97209266666x0.11380379007 ≒0.11062782976
978 名前:132人目の素数さん mailto:sage [2018/10/22(月) 00:38:48.92 ID:0aLL4RLP.net] >>944 30 桁計算させたけど違うよ? Prelude Data.List Data.Ratio> let dec x y = map fst $ iterate (¥(n,(x,y))->(div (10*x) y,(mod (10*x) y,y))) (0,(x,y)) Prelude Data.List Data.Ratio> let decstr x y = concat $ map show $ dec x y Prelude Data.List Data.Ratio> take 30 $ decstr 20413946 184528125 "011062782976849734965875798066" Prelude Data.List Data.Ratio> take 30 $ decstr 7371811052 66636135475 "011062782977211659797262575272"
979 名前:132人目の素数さん mailto:sage [2018/10/22(月) 01:53:14.37 ID:E8LyAx4E.net] 小数点以下10桁の精度
980 名前:132人目の素数さん mailto:sage [2018/10/22(月) 02:36:43.42 ID:m6H0QzkR.net] M_n(C)を複素成分のn次行列全体とし、C^(n^2)との対応で位相を入れます。 このときM_n(C)の元aをaの転置に写す写像が連族であることはどのように示せるでしょうか?
981 名前:132人目の素数さん mailto:sage [2018/10/22(月) 02:40:26.39 ID:DzGenx4d.net] 自然数からなる単調増加数列{a[n]}で、以下の性質を全て満たすものが存在するか述べよ。 (1)i=1,2,...に対し、a[2^i]とa[2^i+1]は互いに素 (2)自然数jに対し,a[2j-1]とa[2j+1]をともに割り切る2以上の自然数が存在する (3)n≧3のとき、常に漸化式a[n]=pa[n-1]+qa[n-2]が成り立つような自然数p,qが存在する。
982 名前:イナ mailto:sage [2018/10/22(月) 02:48:37.81 ID:GdrzxeMu.net] 前>>931 ジョーカー以外の数字がぜんぶバラバラの確率は、 3028441372×100÷1399358844975 =0.216416353(%)
983 名前:132人目の素数さん mailto:sage [2018/10/22(月) 02:54:56.75 ID:CpCVN4SV.net] >>948 Prelude> let x = map fst $ iterate (¥(x,y) -> (y,6*y+x)) (2,3) Prelude> take 10 x [2,3,20,123,758,4671,28784,177375,1093034,6735579]
984 名前:132人目の素数さん [2018/10/22(月) 06:44:16.11 ID:71Di82/e.net] >>941 ありがとうございます
985 名前:132人目の素数さん [2018/10/22(月) 06:45:33.50 ID:71Di82/e.net] >>940 ありがとうございます。学校から出された課題です。
986 名前:132人目の素数さん mailto:sage [2018/10/22(月) 06:48:33.84 ID:71Di82/e.net] https://i.imgur.com/SwONJrA.jpg お願いします。
987 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2018/10/22(月) 07:06:52.23 ID:GFEwvm9b.net] 意味不明 https://twitter.com/yori_shirou/status/1053611678292570113 (deleted an unsolicited ad)
988 名前:名無しさん@そうだ選挙に行こう! Go to vote! [2018/10/22(月) 10:06:42.32 ID:87JVnPFu.net] 世界的建築家とスペースシャトルのパイロットはどっちの方が空間認識能力が上ですか?
989 名前:イナ mailto:sage [2018/10/22(月) 10:15:13.31 ID:GdrzxeMu.net] 前>>949 >>930 の実験値は、 0.216416353の半分ぐらいの値のようだ。 計算間違いしたかな。約分したとき2を忘れたとかならありうる。 0.1082081765(%)
990 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2018/10/22(月) 10:27:22.64 ID:yi4KPPpT.net] >>955 蝉 「おまえさ、人としじみのどっちが偉いか知ってるか?」 伊坂幸太郎 「グラスホッパー」 角川文庫 (2007)
991 名前:132人目の素数さん mailto:sage [2018/10/22(月) 12:08:25.04 ID:H8LEUjR3.net] >>956 >931のジョーカーがk枚のとき 24Ck*9C(12-k)*4^(12-k) じゃね?
992 名前:132人目の素数さん mailto:sage [2018/10/22(月) 12:21:35.18 ID:jC3gOZDc.net] あとからレスかぶせてきてしかも間違うってのはどうなん?
993 名前:イナ mailto:sage [2018/10/22(月) 12:45:19.40 ID:GdrzxeMu.net] >>958 そのとおり! 数字のトランプの取り方の数を掛けるのを忘れてました。 前>>956
994 名前:132人目の素数さん mailto:sage [2018/10/22(月) 13:05:56.57 ID:yi4KPPpT.net] >>948 存在する。 p = q-1 とおくと 漸化式 (3) の特性根は q=p+1 と -1. 一般項は a[n] = { (3p±1)(p+1)^{n-1} + (-1)^n・(-pp+p±1) }/(p+2), a[1] = p と a[2] = 2p±1 は互いに素。 (2) 漸化式より、 a[1] ≡ a[3] ≡ … ≡ a[2j-1] ≡ a[2j+1] ≡ 0 (mod p) a[2] ≡ a[4] ≡ … ≡ a[2j] ≡ … ≠ 0, (mod p) 問題は (1) だが…
995 名前:132人目の素数さん mailto:sage [2018/10/22(月) 13:43:57.58 ID:rsK1WO2z.net] u,v≧2、(u,v)=1、p=uv、q=1、a[1]=u、a[2]=v。
996 名前:132人目の素数さん mailto:sage [2018/10/22(月) 14:45:12.43 ID:6Vwg3PAT.net] >>959 いつものほのぼの芸風と言われているw
997 名前:イナ mailto:sage [2018/10/22(月) 15:55:35.74 ID:GdrzxeMu.net] 前>>960 その場合の数をぜんぶ足すとこから。 ジョーカーが3枚のとき、 24C3・4^9=23・22・4^10 ジョーカーが4枚のとき、 24C4・9C8・4^8=6・23・11・7・9・4^8 ジョーカーが5枚のとき、 24C5・9C7・4^7=23・22・21・9・4・4^8 ジョーカーが6枚のとき、 24C6・9C6・4^6=23・11・7・19・3・7・4^8 ジョーカーが7枚のとき、 24C7・9C5・4^5=23・11・19・18・3・7・6・4^6 ジョーカーが8枚のとき、 24C8・9C4・4^4=23・11・19・9・17・9・2・7・4^4 ジョーカーが9枚のとき、 24C9・9C3・4^3=23・11・19・17・3・7・4^6 ジョーカーが10枚のとき、 24C10・9C2・4^2=23・11・19・17・9・6・4^4 ジョーカーが11枚のとき、24C11・9C1・4=23・19・17・3・7・9・4^3 ジョーカーが12枚のとき、24C12=23・19・13・7・4 (その場合の数)=23・22・4^10+6・23・11・7・9・4^8+23・22・21・9・4・4^8+23・11・7・19・3・7・4^8+23・11・19・18・3・7・6・4^6+23・11・19・9・17・9・2・7・4^4+23・11・19・17・3・7・4^6+23・11・19・17・9・6・4^4+23・19・17・3・7・9・4^3+23・19・13・7・4 =
998 名前:132人目の素数さん mailto:sage [2018/10/22(月) 16:14:12.44 ID:6Vwg3PAT.net] >>953 p1=(1/3)^n*2 p2=(1/3)^n+n*(1/3)*2*(1/3)^(n-1)+(2/3)^n - 2*(1/3)^n かなぁ?
999 名前:132人目の素数さん mailto:sage [2018/10/22(月) 16:21:06.20 ID:6Vwg3PAT.net] >>965 p2は整理すると (1/3)^n*(2^n+2*n-1)
1000 名前:132人目の素数さん mailto:sage [2018/10/22(月) 16:38:19.29 ID:m6H0QzkR.net] >>947 お願いします
1001 名前:132人目の素数さん mailto:sage [2018/10/22(月) 16:48:17.46 ID:6Vwg3PAT.net] >>934 Wolfram先生に1000桁表示してもらいました。 https://www.wolframalpha.com/input/?i=N%5B7371811052%2F66636135475,+1000%5D 0.110627829772116597972625752724145352308187707069307653303704734386834578059690 51808972720142576665532538522410463960057551641803099326567001820869024517811745 14457390207771498921846802971432370568455448083591014999508417996234347201990107 60535104395622966609319265899400508414612559732929200153319665481396225881600016 36109285492744880700931734216839350706659508603503690802831629845503131647506453 77968626863861510570290165825376445271716141638989607087504949580811506386355308 06943152790929462285117607955040252880150985376452009801968486678661192274070722 58642261847043283987800914710833176509325475705792345845818274472796473346205856 03520099692575997182705769748121786619859500488237159434402209381725854053213310 23661077638446289265396508950236358225724373761787391527899825286199191910746081 57264239969792455915226527472930407058543486160952223197634346306605050013218822 54607142642075613254191343844583898418217807070391187027341639217411414568530694 043823525016626873949130376096438836889198..
1002 名前:132人目の素数さん mailto:sage [2018/10/22(月) 17:35:10.83 ID:DzGenx4d.net] 分子が1、分母がn桁の正整数である有理数全体からなる集合をS_nとする。 S_nの要素のうち、循環節の長さを最小とするものを1つ取り、その長さをm[n]とする。同様に循環節の長さを最大とするものについてその長さをM[n]とする。 (1)m[n]を求めよ。 (2)以下を示せ。 (a) lim[n→∞] m[n]/M[n] = 0 (b) M[n]≦M[n+1] (c) M[n]<10^n
1003 名前:132人目の素数さん [2018/10/22(月) 18:32:30.96 ID:Bec2HI7q.net] >>965 P3がΣが2個でてきてうまくできません どうすればいいですか?
1004 名前:132人目の素数さん mailto:sage [2018/10/22(月) 19:08:33.59 ID:N2Ov4rc5.net] >>970 先にp4出して 1-p1-p2-p4で計算したらどう?
1005 名前:132人目の素数さん mailto:sage [2018/10/22(月) 19:12:47.07 ID:7iHP/wTl.net] m、nは1以上の自然数とする。 S_n^mΣ_{k=1,...,n} k^m の値を綺麗な式で表示する事は可能ですか?
1006 名前:132人目の素数さん mailto:sage [2018/10/22(月) 19:13:16.25 ID:7iHP/wTl.net] 訂正 m、nは1以上の自然数とする。 S_n^m = Σ_{k=1,...,n} k^m の値を綺麗な式で表示する事は可能ですか?
1007 名前:132人目の素数さん mailto:sage [2018/10/22(月) 20:37:39.64 ID:UlyuzeXD.net] >>973 つhttps://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A6%E3%83%AB%E3%83%8F%E3%83%BC%E3%83%90%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F
1008 名前:132人目の素数さん mailto:sage [2018/10/22(月) 20:37:53.82 ID:UlyuzeXD.net] >>973 つhttps://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A6%E3%83%AB%E3%83%8F%E3%83%BC%E3%83%90%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F
1009 名前:132人目の素数さん mailto:sage [2018/10/22(月) 20:38:54.96 ID:UlyuzeXD.net] >>973 つhttps://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A6%E3%83%AB%E3%83%8F%E3%83%BC%E3%83%90%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F
1010 名前:132人目の素数さん mailto:sage [2018/10/22(月) 20:38:55.19 ID:UlyuzeXD.net] >>973 つhttps://ja.m.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A6%E3%83%AB%E3%83%8F%E3%83%BC%E3%83%90%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F
1011 名前:132人目の素数さん mailto:sage [2018/10/22(月) 22:17:49.64 ID:DzGenx4d.net] nを2以上の整数、a[0]=0とする。 整数1,2,...,nを2つのグループAとBに分ける。ただしAとBのいずれにも1つ以上の整数が入るものとする。 いま1からnまでの整数から1つを選ぶ。n個の整数のうちどれが選ばれるかは同様に確からしいものとする。 選ばれた整数がAに属していた場合、a[1]をa[1]=a[0]+0とし、Bに属していた場合a[1]=a[0]+1とする。 以下同様にして整数を選ぶことを繰り返し、a[2],a[3],...、を定める。 a[k]が偶数となる確率はk、AとBへの振り分け方、に依存する。その確率をp[k,A,B]とおく。 しかしn個の整数をどのようにAとBに振り分けても、以下が成り立つことを示せ。 lim[k→∞] p[k,A,B] = 1/2
1012 名前:132人目の素数さん mailto:sage [2018/10/22(月) 23:16:45.86 ID:KR8aDfwA.net] B(n/2,1/2)=2∫[0→∞]sin^n x dx となることを示す方法を教えてください!
1013 名前:132人目の素数さん mailto:sage [2018/10/22(月) 23:34:32.18 ID:E/Wq6zj4.net] 分からない問題はここに書いてね448 https://rio2016.5ch.net/test/read.cgi/math/1540218853/
1014 名前:132人目の素数さん mailto:sage [2018/10/23(火) 00:19:11.35 ID:50P4ShkH.net] >>979 2∫[0→π/2]sin^n x dx =∫[0→1]t^(n/2-1/2)(1-t)^(-1/2) dt (sin^2 x = t、2sinx cosx dx = dt、2dx = t^(-1/2)(1-t)^(-1/2) dt) =B(n/2+1/2,1/2)
1015 名前:132人目の素数さん mailto:sage [2018/10/23(火) 03:31:51.59 ID:7VJ0horD.net] >>974 ありがとうです でも全然綺麗な式に纏まってはいないですね
1016 名前:132人目の素数さん mailto:sage [2018/10/23(火) 04:36:12.50 ID:hJH+d7Hk.net] 数学界で一番権威ある論文誌の名前がAnnals of Mathematics(数学のアナル) ってマジ??
1017 名前:132人目の素数さん mailto:sage [2018/10/23(火) 05:51:27.28 ID:dMSY06HH.net] AB=c,BC=a,CA=bである△ABCの外接円をKとする。 Kの劣弧AB,BC,CA上にそれぞれ点P,Q,Rをとり、△PQRと△ABCの面積が等しくなるようにする。 このとき、△PQRの重心となり得る領域の面積を求めよ。
1018 名前:132人目の素数さん mailto:sage [2018/10/23(火) 05:58:24.35 ID:dMSY06HH.net] ∫[1→n] 1/x dx = I[n] Σ[k=1,2,...,n] 1/k = S[n] とおく。 次の極限が0でない定数に収束するような有理数pを求めよ。 ただしγはオイラーの定数である。 lim[n→∞] {S[n]-I[n]-γ}/n^p
1019 名前:132人目の素数さん mailto:sage [2018/10/23(火) 06:07:21
] [ここ壊れてます]
1020 名前:.06 ID:dMSY06HH.net mailto: 3辺の長さがa,b,c(0<a≦b≦c)の直方体ABCD-EFGHがある。 その対角線である線分AG上で点Pを動かし、4つの線分長の積PA・PG・PB・PD=Lと定める。 Lが最大となるとき、PがAGの中点と一致するかどうかを判定せよ。 [] [ここ壊れてます]
1021 名前:132人目の素数さん mailto:sage [2018/10/23(火) 10:35:55.51 ID:1am1aLey.net] 簡約階段行列の一意性の証明で、 「どの行の先頭列にも〜」あたりが分かりません。 教えてください。 https://i.imgur.com/YyMFQ8I.jpg https://i.imgur.com/X3BQW6R.jpg
1022 名前:132人目の素数さん mailto:sage [2018/10/23(火) 15:33:00.64 ID:K3lfmPoe.net] (2)のxについての(0,0)においての偏微分係数の求め方がわかりません。教えて欲しいです。そもそも(0.0)において連続じゃなくないので存在しないかなと思ったら存在するらしく、しかも0ではありませんでした。 https://i.imgur.com/D5gVZjc.jpg
1023 名前:132人目の素数さん mailto:sage [2018/10/23(火) 15:45:55.81 ID:foOj88Cn.net] >>985 I[n] = log(n), S[n] - γ = ψ(n+1) = log(n) + 1/(2n) - 1/(12n^2) + 1/(120n^4) - 1/(252n^6) + … ただし ψ(x) = Γ '(x)/Γ(x) は digamma函数である。 lim(n→∞) {S[n] - I[n] -γ}n → 1/2, p = -1.
1024 名前:132人目の素数さん mailto:sage [2018/10/23(火) 18:06:19.95 ID:foOj88Cn.net] >>989 〔Wolstenholmeの定理〕 素数 p に対して p≧5 ⇒ 1 + 2^(-1) + 3^(-1) + …… + (p-1)^(-1) ≡ 0 (mod pp) p≧5 ⇒ 1 + 2^(-2) + 3^(-2) + …… + (p-1)^(-2) ≡ 0 (mod p) p≧7 ⇒ 1 + 2^(-3) + 3^(-3) + …… + (p-1)^(-3) ≡ 0 (mod pp) p≧7 ⇒ 1 + 2^(-4) + 3^(-4) + …… + (p-1)^(-4) ≡ 0 (mod p) p≧7 ⇒ 1 + 2^(-5) + 3^(-5) + …… + (p-1)^(-5) ≡ 0 (mod p) p≧7 ⇒ 1 + 2^(-7) + 3^(-7) + …… + (p-1)^(-7) ≡ 0 (mod p^3) ?
1025 名前:132人目の素数さん mailto:sage [2018/10/23(火) 18:27:04.92 ID:foOj88Cn.net] >>973 〔Faulhaberの定理〕 ・m が奇数のとき S_m (n) = Σ_[k=1,...,n] k^m = {1/(m+1)} P_m(n(n+1)) P_m は (m+1)/2 次のモニック多項式。 ・m が偶数のとき S_m (n) = Σ_[k=1,...,n] k^m = {1/(m+1)}(n+1/2) P_m(n(n+1)) P_m は m/2 次のモニック多項式。
1026 名前:132人目の素数さん mailto:sage [2018/10/24(水) 00:26:52.40 ID:KXmJuC2r.net] https://i.imgur.com/IPQJkRU.jpg お願いします。
1027 名前:132人目の素数さん mailto:sage [2018/10/24(水) 00:28:08.12 ID:KXmJuC2r.net] https://i.imgur.com/arD46dB.jpg 難問
1028 名前:132人目の素数さん mailto:sage [2018/10/24(水) 01:52:16.82 ID:iHuXh2WT.net] (3/4)√3
1029 名前:132人目の素数さん [2018/10/24(水) 09:16:49.21 ID:EgKzyAb9.net] 完全に最難関大学の数学って感じだな どこかの模試の過去問とかなのか?
1030 名前:132人目の素数さん [2018/10/24(水) 10:45:19.42 ID:aiEw2PJ0.net] これの18問ってどうやって解けば良いの? www.ms.u-tokyo.ac.jp/kyoumu/b20170524.pdf
1031 名前:132人目の素数さん [2018/10/24(水) 11:24:48.90 ID:gdPWKmcN.net] >>993 Kは単に底面が半径aで高さaの円柱じゃないの?
1032 名前:132人目の素数さん [2018/10/24(水) 12:30:17.56 ID:jMnLPXeV.net] >>992 次スレに書いとこうか?
1033 名前:132人目の素数さん mailto:sage [2018/10/24(水) 13:42:49.03 ID:NPF3jN6V.net] 問題の出典も書いてほしい
1034 名前:132人目の素数さん mailto:sage [2018/10/24(水) 15:13:34.85 ID:rpF32u/S.net] 呼んでいる 胸のどこか奥で いつも心躍る 夢をみたい〜♫
1035 名前:1001 [Over 1000 Thread.net] このスレッドは1000を超えました。 新しいスレッドを立ててください。 life time: 37日 16時間 12分 11秒
1036 名前:過去ログ ★ [[過去ログ]] ■ このスレッドは過去ログ倉庫に格納されています