- 415 名前:132人目の素数さん mailto:sage [2018/09/28(金) 23:52:42.11 ID:b1hXYTTV.net]
- >>395
横レス。 それは証明できるよ。 条件をみたすカップルの並び方の数をA[n]とする。 A[n]に属する列のうち 一番先頭の相方が別のカップルに挟まれていない場合の数が 2n(2n-2)A[n-1] 通り。 一番先頭の相方が別のカップルに挟まれていて3番めの場合(ABab…の形)の数が 2nA[n-1] 通り。 一番先頭の相方が別のカップルに挟まれていて3番めでない場合(A…Bab…の形)の数が 2n(2n-2)A[n-1] 通り。 ∴ A[n] = 2n(2n-1)A[n-1] + 2n(2n-2)A[n-2]。 両辺を2n!で割って a[n] = a[n-1] + 1/((2n-1)(2n-3))a[n-2]。
|

|