[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 13:01 / Filesize : 337 KB / Number-of Response : 1037
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね447



165 名前:132人目の素数さん mailto:sage [2018/09/20(木) 01:57:40.94 ID:7+n0UQHR.net]
>>90

l ≦ q-n とする。
>>101 の画像は 要するに
S(q, l, n) = Σ[j=l, q-n] (-1)^{j-l} C(q, n+j) C(j, l)
 = Σ[j=l, q-n] (-1)^{j-l} {C(q-1, n+j) + C(q-1, n+j-1)} C(j, l)
 = Σ[j=l-1, q-n-1] (-1)^{j-l} C(q-1, n+j) C(j, l)   ← C(l-1,l)=C(q-1,q)=0
  + Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j+1, l)  ← jをずらす
 = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) {C(j+1,l) - C(j, l)}
 = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j, l-1)
 = S(q-1, l-1, n)
を示す式で、これから
 S(q, l, n) = S(q-l, 0, n),
となる。
S(q', 0, n)
 = Σ[j=0, q'-n] (-1)^j C(q', n+j) C(j, 0)
 = Σ[j=0, q'-n] (-1)^j C(q', n+j)
 = Σ[j=0, q'-n] (-1)^j {C(q'-1, n+j) + C(q'-1, n+j-1)}  ← C(q'-1,q')=0
 = C(q'-1, n-1),
から
 S(q, l, n) = C(q-l-n, n-1),







[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<337KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef