- 346 名前:132人目の素数さん mailto:sage [2018/09/26(水) 15:54:28.25 ID:zomwMvsu.net]
- >>328 補足
x > 0, x≠平方数のとき y≒0 では πcot(πy) ≒ 1/y, また、cot(πy) は周期1をもつから、 πcot(πy) = 1/y + Σ[n=1,∞] {1/(y-n) + 1/(y+n)} = 1/y + 2yΣ[n=1,∞] 1/(yy-nn), x<0 のとき y≒0 では πcoth(πy) ≒ 1/y, また、coth(πy) は周期 i をもつから、 πcoth(πy) = 1/y + Σ[n=1,∞] {1/(y-ni) + 1/(y+ni)} = 1/y + 2yΣ[n=1,∞] 1/(yy+nn),
|

|