[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/10 23:57 / Filesize : 507 KB / Number-of Response : 794
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む18



1 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/01/15(金) 21:19:38.51 ID:d++PCd/C.net]
旧スレが500KBオーバーに近づいたので、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)
過去スレ
現代数学の系譜11 ガロア理論を読む17
wc2014.2ch.net/test/read.cgi/math/1448673805/
現代数学の系譜11 ガロア理論を読む16
wc2014.2ch.net/test/read.cgi/math/1444562562/
現代数学の系譜11 ガロア理論を読む15
wc2014.2ch.net/test/read.cgi/math/1439642249/
現代数学の系譜11 ガロア理論を読む14
wc2014.2ch.net/test/read.cgi/math/1434753250/
現代数学の系譜11 ガロア理論を読む13
wc2014.2ch.net/test/read.cgi/math/1428205549/
現代数学の系譜11 ガロア理論を読む12
wc2014.2ch.net/test/read.cgi/math/1423957563/
現代数学の系譜11 ガロア理論を読む11
wc2014.2ch.net/test/read.cgi/math/1420001500/
現代数学の系譜11 ガロア理論を読む10
wc2014.2ch.net/test/read.cgi/math/1411454303/
現代数学の系譜11 ガロア理論を読む9
wc2014.2ch.net/test/read.cgi/math/1408235017/
現代数学の系譜11 ガロア理論を読む8
wc2014.2ch.net/test/read.cgi/math/1364681707/
現代数学の系譜11 ガロア理論を読む7
uni.2ch.net/test/read.cgi/math/1349469460/
現代数学の系譜11 ガロア理論を読む6 uni.2ch.net/test/read.cgi/math/1342356874/
現代数学の系譜11 ガロア理論を読む5 uni.2ch.net/test/read.cgi/math/1338016432/
現代数学の系譜11 ガロア理論を読む(4) uni.2ch.net/test/read.cgi/math/1335598642/
現代数学の系譜11 ガロア理論を読む3 uni.2ch.net/test/read.cgi/math/1334319436/
現代数学の系譜11 ガロア理論を読む2 uni.2ch.net/test/read.cgi/math/1331903075/
現代数学の系譜11 ガロア理論を読む uni.2ch.net/test/read.cgi/math/1328016756/
古いものは、そのままクリックで過去ログが読める。また、ネットで検索すると、無料の過去ログ倉庫やキャッシュがヒットして過去ログ結構読めます。

577 名前:モノ増えた博士
・博士は増えても大学のポストは増えなかった
・民間企業も「博士を採用する必要はない」
・不安定な身分で研究を続ける「ポスドク」
3.専門分野によって事情はさまざま…専攻別 博士の進路
・保健…正規職への就職率は最高。大半は医師・歯科医師・薬剤師に
・工学…正規雇用率は56%。技術系への就職が目立つ
・理学…「日本のお家芸」も就職は厳しい。大学教員は狭き門

理学…理系では最低の正規雇用率。大学教員も狭き門

数学、物理、化学、生物などが含まれる理学分野。
日本人ノーベル賞受賞者24人(アメリカ国籍取得者を含む)のうち物理学賞は11人、化学賞は7人を数え、日本のお家芸とされてきた分野ですが、就職という面から見ると厳しい状況にあります。
理学分野の博士課程修了者で正規雇用に就いた人の割合は38.9%と理系では最低。特に大学教員になった人は9.6%と、ほかの専攻分野と比べると突出して低くなっています。

職種としては研究者が52.1%と半数を超え、次に多いのが開発職で13.2%。業界別では研究機関と学校教育がそれぞれ3割程度で、2割が製造業の仕事に就いています。
[]
[ここ壊れてます]

578 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 16:48:07.38 ID:Cfws5qAI.net]
こんなのが

toyokeizai.net/articles/-/38806
東大生があこがれる“伝説の先輩”の考え方
ハーバード、イェール、スタンフォード、若き経済学者のアメリカ
石崎 弘典 :インド進出コンサルタント 2014年06月04日 東洋経済

スタンフォード大学が誇る、経済学界のホープ

小島武仁さんは、東京大学経済学部を卒業後、世界屈指の名門、ハーバード大学経済学部大学院へと進学した。

彼の指導教官であるアルヴィン・ロス教授は、マーケットデザインという新しいゲーム理論の分野を開拓し、その功績により、2012年にノーベル経済学賞を受賞している。

いかにもな王道キャリアだが、インタビューからは、彼の親しみやすい人柄を感じるばかりだった。

数学者志望だったが途中で挫折したこと、世界の天才たちに接すると自信をなくしそうになるということ、海外の厳しい環境から頻繁に日本へ帰りたいと思っていることなどを率直に話してくれた。

もちろん、世界的な研究機関であるスタンフォード大学に、研究者として籍を置くのは、並大抵のことではない。

最先端の研究の現場とは、いったい、どんなところなのだろうか。また、そこで戦い抜くための秘訣とは?

天才経済学者の生の声を、今回はお届けしたい。

579 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 16:55:24.44 ID:Cfws5qAI.net]
こんなのが

https://acaric.jp/modules/static/?content_id=133
2014年08月08日 博士・ポスドク 仮面座談会 Vol.1 「こうして私は博士になった」転職情報サイト「アカリクWEB」:

数学さん 数学系専攻 博士課程

自己紹介をお願いします

数学さん:私は韓国の出身で大学から日本に来て8年になります。
専門は数学で分布や整数論の研究を行っています。既に修論が雑誌に掲載されているので、来月に投稿する二本の論文のうち一本が通れば修了の要件は満たします。
ただ、今はアカデミックよりも就職を考えていて、来年からは就職活動をする予定です。

https://acaric.jp/modules/static/index.php?content_id=132
2014年09月29日 博士・ポスドク 仮面座談会
Vol.5 「これから博士に進む君たちへ」

580 名前:132人目の素数さん mailto:sage [2016/04/23(土) 17:02:38.57 ID:Ib04+SrB.net]
>>509
> 最初の問題設定と、時枝解法(ルーマニア)とでは、数字を箱に入れる方法に差はないよ
だから両方とも(2)の方針を取らざるを得ない
というよりは最初の問題設定で(2)の方針を取らざるを得ないから時枝解法が成立する
というほうが正確だが

(2)の方針では
> 2)世にある全ての数列を、事前にシッポで類別しておく
ことにより類別した各同値類から代表をそれぞれ一つ選びそれら特定の代表元を構成する実数の
有限個の書き換えにより任意の無限数列を実際に構成できる(cf. >>506)
ただし決定番号の大きさに制限があると任意の無限数列は構成できないことに注意
たとえば最初の問題設定で
> もちろんでたらめだって構わない
と書いてあるがこれは決定番号は有限であるが大きさに制限がないことを認めれば
任意の無限数列を実際に構成できることと同じことだし
逆に決定番号の大きさを限定することと無限数列の数字の並びに制限を加えることは同じ

581 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 22:19:10.28 ID:Cfws5qAI.net]
>>521
おっと、
>>519を、おっちゃんのレスと勘違いしていたよ”といったけど
ID:j4D6gsPA さん、>>510で「おっちゃんです。」ってか

なるほどね
まあ、ともかく、せっかくの証明なら、だれかに早く見て貰って
だめなら次へ、修正するなら修正、OKならどこかに投稿と
早く処理した方が良いだろう

もし、同じことの証明をだれかに先に投稿されたら、一番つまらんだろう

582 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 22:25:39.93 ID:Cfws5qAI.net]
>>525
どうも。スレ主です。
レスありがとう、が

>> 最初の問題設定と、時枝解法(ルーマニア)とでは、数字を箱に入れる方法に差はないよ
>だから両方とも(2)の方針を取らざるを得ない
>というよりは最初の問題設定で(2)の方針を取らざるを得ないから時枝解法が成立する
>というほうが正確だが

申し訳ないが、意味が分からないし、時枝記事にはそんなことは書かれていないと思う

そして、前から批判しているが、最初の問題設定を問題Aとして、時枝解法(ルーマニア)で解ける問題を問題Bとすると
問題Aと問題Bとでは、結構異質な問題と考えるべき

1.問題Aは、任意の箱を当てることを問題にしている。対して、問題Bは当てる箱は自分では決められない(任意性がない)。この差は大きい
2.問題Aは、確率を言わない。対して、問題Bは当たる確率が決まっている

583 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 22:57:30.02 ID:Cfws5qAI.net]
>>527
つづき

>と書いてあるがこれは決定番号は有限であるが大きさに制限がないことを認めれば
>任意の無限数列を実際に構成できることと同じことだし

決定番号は有限であるとしても、決定番号は現実離れしたとてつもない大きさになるってことを認識しているのか?
話題のAI囲碁で、10の400乗とか数字があるけど。人間は、囲碁の10の400乗はほぼ無限で、必勝法が分からない

が数学では、10の400乗はまぎれもなく有限で、数学では決定番号は10の400乗の400乗だって、なんだってありだし
そもそもが、「囲碁の10の400乗はほぼ無限で、必勝法が分からない」と言っているいまの人間の能力で、世の中の無限の数列をすべて類別して、代表元を決めておくなど、空想の世界だろ?

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E5%9B%B2%E7%A2%81
コンピュータ囲碁
^ 盤面状態の種類は、オセロで10の28乗、チェスで10の50乗、将棋で10の71乗と見積もられるのに対し、囲碁では10の160乗と見積もられる。
また、ゲーム木の複雑性は、オセロで10の58乗、チェスで10の123乗、将棋で10の226乗と見積もられるのに対し、囲碁では10の400乗と見積もられている。
(引用おわり)

”世の中の無限の数列をすべて類別して、代表元を決めておく”というところが、数学の万能のブラックボックスである選択公理神の出番で
無限の能力を使って、”世の中の無限の数列をすべて類別して、代表元を決めておきました”と。で、こちらの方法こそ、無限を直接扱うってことだろうよ

これが、私の時枝解法に対する批判だよ

584 名前:現代数学の系譜11 ガロア理論を読む [2016/04/23(土) 23:03:48.50 ID:Cfws5qAI.net]
>>528 つづき

まあ、そういうことだから、問題Bが解けたからとて、問題Aが解けたことにはならないし
問題Aが解けたことにはならないとすれば、
>>176の「もうちょっと面白いのは,独立性に関する反省だと思う.
・・・n番目の箱にXnのランダムな値を入れ

585 名前:轤黷ト,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−一他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.」も失当だろう
[]
[ここ壊れてます]



586 名前:132人目の素数さん [2016/04/23(土) 23:28:29.51 ID:G9uMipku.net]
>>528
つまりZFCは捨て去れと?

587 名前:132人目の素数さん mailto:sage [2016/04/24(日) 00:08:01.96 ID:9DXatMU9.net]
>>527

>>2
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.

この文章を、どう読めば、
> 1.問題Aは、任意の箱を当てることを問題にしている。
と解釈できるんだ?

588 名前:132人目の素数さん mailto:sage [2016/04/24(日) 01:58:02.07 ID:Lu6gOtj8.net]
>>527-528
> 箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
> どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
> もちろんでたらめだって構わない.そして箱をみな閉じる.

> 勝つ戦略はあるでしょうか?

> 決定番号は現実離れしたとてつもない大きさになるってことを認識しているのか?
「勝つ戦略はあるでしょうか?」と箱それぞれに実数を入れた人に質問されているわけだが
最初の問題設定に決定番号が現実離れしたとてつもない大きさになる条件が含まれているから
決定番号が非常に大きくなる戦略があると答えることは問いに対する答えとして間違っていない
また戦略の勝率が100%でなくても問いに対する答えとして間違っていない

> こちらの方法こそ、無限を直接扱うってことだろうよ
選択公理による代表元の決定は「無限を直接扱う」ことよりは弱い

589 名前:132人目の素数さん mailto:sage [2016/04/24(日) 05:42:55.05 ID:fICzEvNQ.net]
>>531,>>532
コメントありがとう。しかしスレ主に何を言っても無駄だよ。
というのも、この種の間違いは前スレの448, 550, 658, 659, その他多数で指摘済みだから。
つまり、驚くべきことだが、4ヶ月前から何の進展もないんだよw

590 名前:132人目の素数さん mailto:sage [2016/04/24(日) 07:12:40.63 ID:fICzEvNQ.net]
>>533
> というのも、この種の間違いは前スレの448, 550, 658, 659, その他多数で指摘済みだから。
失礼、448ではなく449でした。

591 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 08:07:25.40 ID:2W9weE19.net]
>>531-533
どうも。スレ主です。
コメントありがとう

1.>>531"問題Aは、任意の箱を当てることを問題にしている。と解釈できるんだ?"

  最初の問題設定は、>>2「一つの箱は開けずに閉じたまま残さねばならぬとしよう.どの箱を閉じたまま残すかはあなたが決めうる.」だ
  だから、最初の問題Aを出発点にして、一つの箱は開けずに閉じたまま残し、他の箱は開けて、100列作ってみて
  そうすると、時枝解法は適用できないだろ? だから、問題Aと問題Bとは、違うってこと。時枝解法は、トリックだよ

2.もし、開ける箱を100列を作る前に決めておかないと、開けた箱の列のシッポを少し並べ変えると、開けるべき箱が変わることになる。自分で決めてないよ

3.それから、時枝解法では、自分の知らない箱が開けられる可能性があるけど、それって”どの箱を閉じたまま残すかはあなたが決めうる.”とは違うよ
  箱は、可算無限個だから、もし現実に100列を並べたら、地球の裏側にも届くだろう。で、地球の裏側の箱を開けることになったと。あなたの知らない見たこともない箱を
  それって、”どの箱を閉じたまま残すかはあなたが決めうる.”とは違う
  (それを可能にするのが、選択公理かも知れないか? まあ、これも時枝解法のトリックなのかも知れないね。選択公理使えば、現実にはできないことが、結構なんでもできる)
(つづく)

592 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 08:08:18.49 ID:2W9weE19.net]
>>535 つづき

4.>>532"「勝つ戦略はあるでしょうか?」と箱それぞれに実数を入れた人に質問されているわけだが
 最初の問題設定に決定番号が現実離れしたとてつもない大きさになる条件が含まれているから
 決定番号が非常に大きくなる戦略があると答えることは問いに対する答えとして間違っていない"

  間違っているよ。>>528に「オセロで10の58乗、チェスで10の123乗、将棋で10の226乗・・囲碁では10の400乗」とあるだろ?
  これで言えば、「囲碁で10の400乗を分類して必勝法を答えよ」に対して、「はい、オセロで10の58乗で可能です」と回答する。が、それ別のゲームだよな
  (でも、選択公理の前では、10の400乗も、10の58乗も同じなんだね。「囲碁の必勝法? はい、選択公理を使えば、それは可能です」と
  しかし、「囲碁の必勝法? はい、選択公理を使えば、それは可能です」に、現実の社会で納得する人はいないだろう。何も言っていないのと同じだから)

5.>>532”選択公理による代表元の決定は「無限を直接扱う」ことよりは弱い”

  これは数学的な陳述なのか? あるいは哲学か? 文学か?
  いや、もちろん、私の”こちらの方法こそ、無限を直接扱うってことだろうよ”の陳述も同様かも知れない
  が、少なくとも、私が無限を扱うとすれば、手慣れた選択公理を使うだろう
  それ以外を知らないから。そして、上記4のように、選択公理は明らかに無限を扱う手段だよ

6.まあ、私の結論は、問題Aに対して、時枝解法は、トリックを使って、うまく問題をすり替えているってこと
  だから、時枝解法が成り立ったとしても、問題Aが解けたことにはならない
  >>176「もうちょっと面白いのは,独立性に関する反省だと思う」は、失当だろう。問題Aは解けてない。問題をすり替えているから

593 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 08:18:34.83 ID:2W9weE19.net]
>>536 選択公理補足

以前も紹介した記憶があるが、選択公理について下記
samidare.halfmoon.jp/mathematics/AxiomOfChoice/index.html
数学界に大論争を呼んだ選択公理(1/2) 2015/01/12
(抜粋)

数学に「選択公理」と言うのがあります。
これはZFC公理体系、すなわち現代数学を支える
大黒柱の一本とされるほどの超超超重要な公理です。
しかしながら
 「・・・・もしかしたら選択公理は矛盾を含むかも(しれない)。危ないからしばらく選択公理の使用は禁止」
との疑惑が勃発し、
 「選択公理は採用するべきだ/しないべきだ」と
過去の数学界を真っ二つにするほどの大論争を呼びました。

「数学的にパラドキシカル(に見える)な結果を含む
研究と言うのは、
まずほとんど選択公理が使わてる」んです。
数学界の問題児。
何かきな臭い、異常に見える事件が起こった時は確実に選択公理が使われてます。

本当にヤバいのはこの後なんですねー
今みたのは氷山の一角。
問題はもっとデカい。

選択公理とは
 「『無限回の選択を行う』と言う行為は、本当に許されるのだろうか?」
レベルの話ではなく、実は
 「選択公理とは『無限回を超える回数の選択を行う』行為」
を許してしまう事だと気づく。
(引用おわり)

594 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 08:30:46.33 ID:2W9weE19.net]
>>537 補足

話が数学から離れるけど、「囲碁10の400乗」。いまの人類の能力では、直接扱えない
が、将来量子コンピュータが出来れば、扱えるかも

数学は、量子コンピュータを待つまでもなく、選択公理を発明した
選択公理を使えば、数学の仮想世界では、”「囲碁10の400乗」は問題なし!”

でもね、時枝みたいに、問題Aと問題Bとで(>>527)、(>>528で書いたように)まったく違う話をくっつけて、「独立性に関する反省だ」>>536だと
それは、数学の話としても違うんじゃない?

https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF
量子コンピュータ (りょうしコンピュータ、英語:quantum computer) は、量子力学的な重ね合わせを用いて並列性を実現するとされるコンピュータ。
従来のコンピュータの論理ゲートに代えて、「量子ゲート」を用いて量子計算を行う原理のものについて研究がさかんであるが、他の方式についても研究・開発は行われている。

量子コンピュータは古典コンピュータでは実現し得ない規模の並列コンピューティングが実現する。
理論上、現在の最速スーパーコンピュータ(並列度が2^{20}以下)で数千年かかっても解けないような計算でも、例えば数十秒といった短い時間でこなすことができる、とされている。

595 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 08:40:50.38 ID:2W9weE19.net]
>>533 蛇足だが

>つまり、驚くべきことだが、4ヶ月前から何の進展もないんだよw

何をいおうと、あなたの勝手だが
客観的に見て、あなたに賛同する人は皆無だと気付いているかな?

もちろん、私に賛同する人が居ないのは気付いているけどね。が、正面切って反論する人も、一人だけだと気付いているよ
>>175"みな、時枝乗りでしょう。その方が、面白い。"  >>240"時枝に数学理論で味



596 名前:方する人はおらんのかね? おもしろくないね"と書いているんだが

そして、最近”数学理論で味方する人”ってところから、外れているような気がする
だから、あなたに賛同する人は皆無なような気がする。数学理論で、説得力ある論旨が組み立てられていないのでは?
[]
[ここ壊れてます]

597 名前:132人目の素数さん mailto:sage [2016/04/24(日) 08:59:04.20 ID:fICzEvNQ.net]
ほらね。言ったでしょう。何の進展もないと。

> 客観的に見て、あなたに賛同する人は皆無だと気付いているかな?

どう客観的に見たらそういう考えに至るんだよ。

598 名前:132人目の素数さん mailto:sage [2016/04/24(日) 09:10:43.21 ID:fICzEvNQ.net]
>>539
俺の論理は前スレから一貫している。見返していただければ分かる。
対してはお前は>>11に書いたとおり支離滅裂。

>>11
>・時枝は問題をすり替えている、とか、
>・(条件付確率を理解できずに)D >= d(s^k)となる確率は1/∞だ、とか
>・日常感覚ではDが大きすぎて役に立たないから間違いだ、とか
>・エントロピーはほとんど変化しないから間違いだ、とか
>・Dが∞になることがあるから間違いだ、とか。

挙句の果てには前スレ549や本スレでも
・論文になっていないようだ
・他でも話題になっていないようだ。
だから間違いだろう、などと言う。まったくお話にならない。
痛すぎる素人さんだ。

599 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 10:02:47.62 ID:2W9weE19.net]
メモ:これ結構斬新で面白かった

www.ouj.ac.jp/hp/kamoku/H28/daigakuin/B/shizen/8960615.html
地球史を読み解く('16)主任講師 丸山 茂徳 (東京工業大学特命教授)

4 システムとシステム応答 −細胞から銀河まで−
この章では、「システム」と「システム応答」の原理を考え、地球生命史が、システム変動の歴史であることを学ぶ。身近な例を挙げて、システムの原理を理解し、細胞、固体地球変動システム、宇宙変動、環境問題などを解説する。

9 原生代:極端な時代、全球凍結と生物大進化
原生代になると地球は2回の全球凍結に見舞われる。また、大陸地殻がよく発達し、超大陸が形成されるようになった時代でもある。これらの要因が地球と生命に与える影響を説明し、システム変動という観点から、原生代を読み解く。

14 生命地球進化のまとめ
これまでの講義を振り返りながら、生命と地球の進化をシステム変動の視点からまとめる。80億年後の未来予測についても紹介する。

www.amazon.co.jp/dp/4595140754
地球史を読み解く (放送大学大学院教材) 単行本 ? 2016/3 丸山 茂徳 (著)

丸山/茂徳
1949年徳島県に生まれる。1980年名古屋大学理学博士。
その後、スタンフォード大学客員教授、東京大学教養学部助教授、東京工業大学大学院理工学研究科教授等を歴任。
現在、東京工業大学特命教授、岡山大学特任教授。受賞歴、米国科学振興協会(AAAS)フェロー(2000年)、紫綬褒章(2006年)、米国地質学会名誉フェロー(2014年)など
(本データはこの書籍が刊行された当時に掲載されていたものです)

600 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 10:03:48.91 ID:2W9weE19.net]
メモ:これも

https://www.nhk-cul.co.jp/programs/program_1096861.html
カルチャーラジオ・科学と人間「生命と地球の46億年史」講師 東京工業大学特命教授 丸山茂徳

2/12(金) @これまでの地球史モデル A太陽系、地球、および生命の誕生
3/11(金) B3段階の生命進化〜生命誕生から後

601 名前:カ動物まで Cカンブリア紀の爆発
3/25(金) D古生代末期の宇宙変動と大量絶滅 E中・新生代の進化〜ほ乳類と霊長類の進化から人類誕生
4/01(金) F茎進化と冠進化 〜生命進化の新理論 G文明の歴史と人類の近未来
4/22(金) H宇宙に生物はいるか I21世紀の人類の課題<1>環境
5/20(金)J21世紀の人類の課題<2>人口 K21世紀の人類の課題<3>グローバル化 L未来をひらく日本の課題

http://www.amazon.co.jp/dp/4149109427
地球と生命の46億年史 (NHKシリーズ NHKカルチャーラジオ・科学と人間) ムック ? 2016/3/25 丸山 茂徳 (著)
[]
[ここ壊れてます]

602 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 10:12:52.93 ID:2W9weE19.net]
>>540-541
どうも。スレ主です。
レスありがとう

>> 客観的に見て、あなたに賛同する人は皆無だと気付いているかな?
>どう客観的に見たらそういう考えに至るんだよ。

もし反論があるなら、具体的にどなたがあなたに賛同しているか、具体的レスで指摘してみください
まあ、もし本当にいるなら、名乗りでるだろうけどね

>俺の論理は前スレから一貫している。見返していただければ分かる。
>対してはお前は>>11に書いたとおり支離滅裂。

まあ、私スレ主の論旨が、一貫してところもあるだろうね。それは認める
が、最終結論を見て下さい
そして、それに対して数学理論での反論をして貰えれば、きっとあなたに賛同する人もでると思う
繰り返す、最近”数学理論で味方する人”ってところから、外れているような気がする

>痛すぎる素人さんだ。

自分がプロだとでも?(^^;
繰り返す、最近”数学理論で味方する人”ってところから、外れているような気がする

結論として、>>535-538に対して、あなたは”数学理論で味方する人”になれないってことで良いかな?
では

603 名前:132人目の素数さん [2016/04/24(日) 10:43:28.34 ID:YURgcHyZ.net]
うわあああ これはイタイ

604 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 10:51:46.81 ID:2W9weE19.net]
>>493 補足 過去スレ引用しておく
uni.2ch.net/test/read.cgi/math/1349469460/303 現代数学の系譜11 ガロア理論を読む7
303 :現代数学の系譜11 ガロア理論を読む:2012/11/23(金)
(抜粋)
>>302
w1.log9.info/~2ch/20123/uni_2ch_net_math/1328016756.html
143 :さて、今日の本題は、「数学史 (数と方程式)」小杉肇 このP118にLagrangeの方程式論が詳しく書かれている
日本語の文献としては、Lagrangeの方程式論がもっとも詳しく書かれていると思う
mail2.nara-edu.ac.jp/~kawaken/zemi_kawaken.html
平成 13 年度は数学史を学生のみんなと一緒に勉強しました。教科書として「数学史 (数と方程式)」小杉肇, 槙書店, をゼミのみんなで輪読しました。
そのあと、各自興味のあるところをつっこんで探求してもらいました。
www.jbook.co.jp/p/p.aspx/1159113/s
数学史(数と方程式) 数学選書 小杉 肇
発行年月:1973年06月 発売元:槙書店
144 :つづき
小杉のLagrangeの方程式論のP120-121(Lagrangeの分解式を用いて、(n-2)!次の方程式の解法にする方法が記されている(これは一般の5次方程式の場合には6次式になるが))
これが、 ”アーベル ガロア 群と代数方程式 (現代数学の系譜 11) ”のP36のラグランジュの分解式>>120とそっくり
違いは、Lagrangeが一般5次方程式は当時まだ解けると思っていたのに対し
ガロアは、解けないと思っていたこと
145 :つづき
結局、ガロアが言っている5次方程式が解ける条件は、Lagrangeの方程式論の言っている(n-2)!次の方程式が解けることと同じ?
いや、実際”アーベル ガロア 群と代数方程式 (現代数学の系譜 11) ”P40には
”この次数1・2・3・・・(n−2)の補助方程式が有理根をもつかもたないかを知れば十分である”などと書いている
そして、ガロアはラグランジュの理論の亜流とは見られたくなかった>>120から、ラグランジュを引用しなかったのだろうと
146 :つづき
繰り返しになるが、Lagrangeは一般5次方程式は当時まだ解けると思っていた>>144
対して、ガロアは群論を編み出し、一般5次方程式は解けないこと
Lagrangeの分解式を用いて、(n-2)!次の方程式の解法が通用して、これが有理根を持つときのみ解けると看破した

605 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 10:53:58.92 ID:2W9weE19.net]
>>545
で? どうぞ、”数学理論で味方する人”になってあげてください
ID:fICzEvNQさん、喜ぶと思うよ



606 名前:132人目の素数さん mailto:sage [2016/04/24(日) 11:06:11.96 ID:fICzEvNQ.net]
>>544
> もし反論があるなら、具体的にどなたがあなたに賛同しているか、具体的レスで指摘してみください

何を言ってんの?ほんの数時間前にレスがついてるだろうがw
>>531は『問題がすり替わっている』と主張するお前に対する反論だ。
>>532は『決定番号がとてつもなく大きいから間違いだ』と主張するお前に対する反論だ。
この種の指摘は4ヶ月前から俺が主張してきたことだ。

ようするに多数決でもお前の負けらしいぞ。
お前の好きな多数決でも納得できないなら、どうすれば納得する?
やはり論文出さないとだめか?wきっと査読付きじゃないとダメだろうねぇw
まったく面倒な奴だ。

607 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 11:26:02.56 ID:2W9weE19.net]
>>546 補足

ラグランジュ分解式
当時は、「数学史(数と方程式) 数学選書 小杉 肇」が詳しいと思っていた
が、いまでは、下記Coxのガロア本や、Jean‐Pierre Tignolが、結構詳しいと思う

Coxのガロア本 Galois Theory (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts) David A. Cox (著)
www.amazon.co.jp/Galois-Theory-Pure-Applied-Mathematics/dp/1118072057
和訳で、ガロワ理論(下) | デイヴィッド・A. コックス, 梶原 健
P427 「ラグランジュの分解多項式」

www.kyoritsu-pub.co.jp/bookdetail/9784320017702
代数方程式のガロアの理論 Jean‐Pierre Tignol 著・新妻 弘訳
第10章 ラグランジュ

608 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 11:54:12.19 ID:2W9weE19.net]
>>548
どうも。スレ主です。
レスありがとう

>>531>>532については、回答したよ。>>535>>536だよ。そこには触れたくないというのだね(^^;

>>535について補足しておく
問題Aが解ければ問題Bは解ける:問題Bで、”いよいよ第k列 の(D+1) 番目から先の箱だけを開ける”(>>4)。当てたい箱は、第k列 の(D) 番目。そこで、この箱だけを残して、他を開けて、問題Aの解法を適用すれば、問題Bは解ける。

問題Bが解けても、問題Aは解けない:>>535に記したように、最初の問題Aを出発点にして、一つの箱は開けずに閉じたまま残し、他の箱は開けて、100列作る。>>4と同じことは、箱が開いていても可能だ。決定番号のうちの最大値Dも決まる。が、(D) 番目の箱と最初に閉じてある箱は、一致しないだろう。
(一つの箱が閉じたままあったとしても、同値類の決定、代表の取り出し、決定番号のうちの最大値Dには影響しない。∵同値類はしっぽで決まるから)

∴問題Aと問題Bとは数学的に同値ではない。もっと言えば、問題Aを解く方が難しい。

>ようするに多数決でもお前の負けらしいぞ。

繰り返す、最近”数学理論で味方する人”ってところから、外れているような気がする

>やはり論文出さないとだめか?wきっと査読付きじゃないとダメだろうねぇw

面白い冗談だ。本気なら、論文の題名だけでも教えてくれ。それで、論文の内容が推察できるから(^^;

609 名前:132人目の素数さん mailto:sage [2016/04/24(日) 12:18:30.01 ID:fICzEvNQ.net]
>>550
これまで数え切れないくらい指摘したが、改めて指摘しよう。

>>535
> 一つの箱は開けずに閉じたまま残し、他の箱は開けて、100列作ってみて

なんなんだよこの操作は。そんなことをしなければならない理由はない。
任意の箱の中身を当てるという問題Aはお前の完全な創作。
記事にそんな話題はない。>>531が指摘している通り。
何度指摘しても分からないんだから、>>531に無駄だと教えてやったんだよ。

>>536に対して何をコメントしろというの?
> 現実の社会で納得する人はいないだろう。
というところか?そんな主張にどう反論しろと?w

-------------------------
スレ主に問う。余計なことを言わずに答えろ。
お前が勝手に作った創作問題Aと、記事にある問題Bがある。
俺は記事に書いてある問題Bの話しかいない。

問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?

上記についてYes/Noで答えろ。

610 名前:132人目の素数さん mailto:sage [2016/04/24(日) 12:20:05.48 ID:fICzEvNQ.net]
>>551
> 俺は記事に書いてある問題Bの話しかいない。
→俺は記事に書いてある問題Bの話しかしない。

611 名前:132人目の素数さん mailto:sage [2016/04/24(日) 12:33:23.31 ID:Lu6gOtj8.net]
>>550
>>535
> どの箱を閉じたまま残すかはあなたが決めうる
「あなた」に対して戦略があるか質問しているわけだから質問の答えである戦略(時枝解法)
で100列並べることを決定しているのも同じ「あなた」
だから100列並べたあとに開ける箱を決めても良い

>>536
> 選択公理は明らかに無限を扱う手段
ただし「直接」扱う手段ではない

> 私が無限を扱うとすれば、手慣れた選択公理を使うだろう
「無限を直接扱う」というのは選択公理を使わない
選択公理を使って無限数列を得たとしてもその無限数列の全ての項の任意性を確認する必要が
あるので結局選択公理を使わないことと変わらない

> 選択公理による代表元の決定は「無限を直接扱う」ことよりは弱い
代表元の決定の場合は全ての項の任意性を確認する必要がない
(これが時枝解法のポイント(cf. >>506))

>「オセロで10の58乗、チェスで10の123乗、将棋で10の226乗・・囲碁では10の400乗」とあるだろ?
それらは時枝の問題設定とは無関係
時枝の問題設定では「どんな実数を入れるかはまったく自由」だから決定番号の値もまったく自由

612 名前:現代数学の系譜11 ガロア理論を読む [2016/04/24(日) 12:35:44.53 ID:2W9weE19.net]
>>551
どうも。スレ主です。
レスありがとう

面白いね、君は
早く論文書いてね(^^;

>なんなんだよこの操作は。そんなことをしなければならない理由はない。

いやいや、そんなことはないだろう
いま、思いついたが、>>550
>>535に記したように、最初の問題Aを出発点にして、一つの箱は開けずに閉じたまま残し、他の箱は開けて、100列作る。>>4と同じことは、箱が開いていても可能だ。決定番号のうちの最大値Dも決まる。が、(D) 番目の箱と最初に閉じてある箱は、一致しないだろう。」
までは同じ。もし、(D) 番目の箱と最初に閉じてある箱が一致しない場合には、(D) 番目の箱と最初に閉じてある箱*)を入れ替えたらどうか?
*)最初に閉じてある箱は、当然>>4の第k列に設定しておくんだ。そうすれば、(D) には影響しない

この操作をしても、同値類の決定、代表の取り出し、決定番号のうちの最大値Dには影響しない。∵同値類はしっぽで決まるから
この操作を許すなら、一つ残した閉じたままの箱は、つねに(D) 番目の位置における

これを是とするか、パラドックスと考えるか・・
まあ、パラドックスかな? 結局、時枝解法の問題Bが胡散臭いって結論かも(^^;

では、論文をまっているよ(^^;

613 名前:132人目の素数さん mailto:sage [2016/04/24(日) 12:57:35.72 ID:fICzEvNQ.net]
>>554
逃げるな。>>551の問いにYes/Noで答えろ。
胡散臭いなどという曖昧な返答は受け付けない。

議論はその後だ。

614 名前:132人目の素数さん mailto:sage [2016/04/24(日) 13:01:15.62 ID:fICzEvNQ.net]
>>551
問題A,Bを整理しておこう。スレ主が逃げられないようにな。

----------------------------
可算無限個の閉じた箱がある。各々の箱には実数が入っている。

問題A:
・すべての箱が閉じている初期状態において、開けない箱を任意に1つ選ぶ(箱Xとする)。
・箱Xを定めたあと、X以外の箱については中を開けて見てよい。
箱Xの中身を当てる戦略があるか?

問題B:
・可算無限個の閉じた箱があり、中を開けて見てよい。ただし1個は開けずに残しておく。
(注意:上記の1個を事前に(他の箱を開ける前に)定めておく必要はない。)
開けずに残した箱の中身を当てられるか。
-----------------

615 名前:132人目の素数さん [2016/04/24(日) 16:37:09.91 ID:YURgcHyZ.net]
>>535
>箱は、可算無限個だから、もし現実に100列を並べたら、地球の裏側にも届くだろう。
現実世界でさえ、光は0.1秒以下で地球の裏側に届くし、量子テレポーテーション通信は0秒で届くよ。
ましてや数学の世界じゃあなたの陳述は何の意味も無いよ。ナンセ〜〜〜〜〜〜〜〜〜〜〜ンス!!



616 名前:現代数学の系譜11 ガロア理論を読む [2016/04/28(木) 23:17:27.66 ID:ZK4UzmS6.net]
>>555-557
どうも。スレ主です。
ご苦労さまです。
なんだ、そこで引っかかって、騙されたのか? 時枝も同じか

ところで、そこまで整理したなら、質問も再度書いてくれ。逃げられないようにとかつぶやきながら
何を聞かれているのか、曖昧だから

617 名前:現代数学の系譜11 ガロア理論を読む [2016/04/28(木) 23:48:56.41 ID:ZK4UzmS6.net]
ところで、時枝はいう。>>176に記したように

「いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)」

「勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」と

そこで、可算無限の箱を、まず、有限から考えてみよう
問題A1:箱が一個
問題A2:箱が二個
問題A3:箱が四個
問題A4:箱が六個
問題A5:箱がN個、N

618 名前:=mxn
問題A6:箱が可算無限個、N=mxnでn→∞

問題A6が、時枝のいう”(2)有限の極限として間接に扱う,”の一つのやり方だ

ところで、
”問題A1:箱が一個”は、当てられないのか? Yes
”問題A2:箱が二個”は、当てられないのか? Yes (ああ、この場合は、開ける箱を選ぶのと残す箱を選ぶのは、双対だね)
・・・
と来て、なんで”問題A6:箱が可算無限個、N=mxnでn→∞”だったら当てられるんだよ?
それ数学か? "(1)無限を直接扱う,"というトリックをやっているのは、ルーマニア解法じゃないのか
[]
[ここ壊れてます]

619 名前:現代数学の系譜11 ガロア理論を読む [2016/04/29(金) 00:09:31.34 ID:9+oibUNZ.net]
>>559 つづき

”問題A5:箱がN個、N=mxn”で、m=100が、時枝(ルーマニア)解法でnが有限の場合だ

そこで、”問題A3:箱が四個”を考えてみよう。m=2,n=2とできる。2列で、列の長さ2。列の長さ2の数列を類別し、代表元を決めておく。
どちらかの列を開けて数列を見る。類別が決まり、代表元が分かる。で、決定番号は確率としては、2だ。なぜなら、箱に入る可能性があるのは非加算無限の実数だから、代表元と数列が一致する可能性は、確率としてはゼロだ
決定番号のうちの最大値D=2。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

”問題A4:箱が六個”を考えてみよう。m=2,n=3とできる。2列で、列の長さ3。列の長さ3の数列を類別し、代表元を決めておく。
上記と同様に、決定番号は確率としては、3だ。なぜなら、2番目の箱に入る可能性があるのは非加算無限の実数だから、代表元と2番目の箱数が一致する可能性は、確率としてはゼロだ
決定番号のうちの最大値D=3。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

同様に考えて、”問題A5:箱がN個、N=mxn”で、決定番号のうちの最大値D=n。>>4にあるように、「いよいよ第k列 の(D+1) 番目から先の箱だけを開ける」と言っても、(D+1) 番目は無い

そして、N=mxnでn→∞の極限を取ったらどうなるか?
再度言う、"(1)無限を直接扱う,"というトリックをやっているのは、ルーマニア解法じゃないのか

620 名前:132人目の素数さん mailto:sage [2016/04/29(金) 06:24:22.43 ID:VsG3hdV5.net]
> 問題B:
> ・可算無限個の閉じた箱があり、中を開けて見てよい。ただし1個は開けずに残しておく。
> (注意:上記の1個を事前に(他の箱を開ける前に)定めておく必要はない。)
> 開けずに残した箱の中身を当てられるか。

> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?
> 上記についてYes/Noで答えろ。

621 名前:132人目の素数さん mailto:sage [2016/04/29(金) 20:13:24.83 ID:p7s/3faH.net]
>>559-560
極限の取りかたは他にもあって
任意の実数をXiと書くことにして
Xiが1個, 0が 99個 : X1, 0, 0, 0, 0, ... , 0
Xiが2個, 0が198個 : X1, X2, 0, 0, 0, ... , 0
Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0
あるいは
全ての項が等しい無限数列を用意する ex. (0, 0, 0, ... )
Xiが1個, 0が可算無限個 : X1, 0, 0, 0, 0, ...
Xiが2個, 0が可算無限個 : X1, X2, 0, 0, 0, ...
Xiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...
(数当ては上の数列の中の0に相当する部分を当てる)

スレ主は最初から数当てが不可能な数列のみを考えている

622 名前:132人目の素数さん mailto:sage [2016/04/30(土) 09:33:38.33 ID:crQcVzwi.net]
スレを盛り上げる肝心要のスレ主のため、楽しく説明しよう。
スレ主がしていることは、非可算濃度cを持つような、
或る実数体Rの点からなる無限列全体の集合A( card(A)=c )の元aに対して、
実数体Rの点からなる有限列全体の集合Bを考えて n→+∞ とすることで、
列aを具体的に求めようとすることに近い。しかし、(+∞)・0=0 で、
このようなことは出来ないことが知られている。
ここでいう、開けずに残した箱の中身を当てる操作は、この箱も含めて、
その箱の中の実数が合計何回現れたかを当てる操作に当たる。
こういうことは、楽しく円周率とかエントロピーでグーグルすると書いてある。
もはや、スレ主は投了するしかない。

623 名前:132人目の素数さん mailto:sage [2016/04/30(土) 11:49:28.16 ID:KTDOXWuL.net]
>>563
このスレをより楽しむために補足する。

スレ主は前スレから一貫して時枝氏は間違っていると主張する(>>108)。
そしてその主張がコロコロと変わることにまず注意されたい(>>11)。

記事に載っているのは問題B(>>556, 原文は>>2)であり、
時枝氏が解説する"不思議な戦略"も当然問題Bに対するものであるが、
最近のスレ主の主張で目立つのは、原文>>2を問題A(>>556)と誤読し、
『時枝氏の記事の前半と後半では問題がすり替わっている』
よって『時枝氏は間違いだ』『戦略はトリックだ』という主張である。
(参照:>>535, 前スレ446, 549)。
(前スレ449ではスレ主に日本語の読み方が

624 名前:激Nチャーされている。併せて楽しまれたい。)

スレ主は時枝の戦略がこの創作問題Aに対して有効かどうかを解説しているが(>>535)、
問題Aなど我々にとってはどうでもよいのである。
なぜなら問題Aに対する無効性は問題Bに対する無効性を意味しないからである。

(続く)
[]
[ここ壊れてます]

625 名前:132人目の素数さん mailto:sage [2016/04/30(土) 11:51:20.81 ID:KTDOXWuL.net]
(>>564の続き)

数学板で上記(>>564)のような詐欺的ロジックを繰り出すスレ主に対して、
記事にある問題Bのみを考えませんか?と主張したのが>>551,>>556だ。

> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?
> 上記についてYes/Noで答えろ。

スレ主がYesと答えることは彼の投了を意味する。
時枝氏の論理が間違っているか否かという4ヶ月にわたる不毛な議論はこれで終わりとなる。
『間違い→指摘→同じ間違い→同じ指摘→・・・』という無限ループからようやく抜け出せる。

スレ主がNoと答えれば、引き続きスレ主のコロコロ変わる主張を聞き続けなければならない。
なぜスレ主は(間違った)主張をし続けるのか、その答えは前スレにある。

(前スレ633)
> ここ数学板で、このスレを17まで引っ張ってきた。数学的ロジックを曲げてまで、迎合する気は無いよ

> この2点は譲る必要はないと思っている
> ここは初心者も来ると思うので、数学的ロジックを曲げる気は無いよ

この強烈な自負のために、スレ主は誰にも止められない暴走車と化す。
ところで残念なことに、上記の譲れない"2点"は中学生でも分かるような間違いなのである。
1点目は事前確率と事後確率を取り違えているのであり、
2点目は上に述べた問題文の取り違い(すなわち国語力不足)に起因している。
そしてそれら間違いは何度となく指摘されているのである。



626 名前:132人目の素数さん [2016/04/30(土) 18:26:12.25 ID:O86vjOdJ.net]
一番馬鹿な奴が一番頑固という悲劇

627 名前:132人目の素数さん mailto:sage [2016/05/01(日) 15:12:30.32 ID:QGfBRlEr.net]
>>490
>正規部分群がなぜ重要なのか

正規部分群で元の群を剰余類のグループで分けたとき、各剰余類の中の置換同士を置換する群を考えると
それが正規部分群と同じになるからだろうね(ガロアの原論文にも書いてある)。

そこで、同じ置換群を持つ量同士は互いに有理的に表すことができる(ラグランジュの定理)ことに注意する。
例えば、ラグランジュの分解式を作ってやると、同じ置換群になる。
特に、剰余類のグループの数が素数個の場合は、ラグランジュの分解式の値を得ることは
2項方程式を解くのことに帰着する。すなわちべき根で解ける。

ラグランジュの分解式の値が得られれば、同じ置換群を持つ任意の量はラグランジュの分解式で
表すことができる(ラグランジュの定理)。

その結果元の群はより小さな群に分解することができる。この小さくなった群に同じことを
繰り返せばよい。

628 名前:132人目の素数さん mailto:sage [2016/05/01(日) 15:42:45.32 ID:uEzE5t6m.net]
>>554
> これを是とするか、パラドックスと考えるか・・
> まあ、パラドックスかな? 結局、時枝解法の問題Bが胡散臭いって結論かも(^^;

100列に分けるのは単に適当に選んだ無限数列に対して決定番号が取る値の具体的なデータが
欲しいということなので前もって決定番号の値のデータがあれば列を分ける必要は無くなる

最初の問題Aでも開けない箱を選ぶ前に解答者が適当な無限数列を複数作ってそれらの
決定番号を求めてそれらの最大値より後ろの箱を開けない箱に選べば良い
問題Bの100列に数を合わせるのなら解答者が箱の中の無限数列とは異なる99個の無限数列から
99個の決定番号を求めてから開けない箱を指定すれば戦略として変わらない

元の箱の中の無限数列は分けずにそのままなので「(D) 番目の箱と最初に閉じてある箱」は
当然一致する

629 名前:132人目の素数さん mailto:sage [2016/05/01(日) 16:30:01.34 ID:oT//FcJn.net]
>>568
貴方は貴方で支離滅裂。

> 最初の問題Aでも開けない箱を選ぶ前に解答者が適当な無限数列を複数作ってそれらの
> 決定番号を求めてそれらの最大値より後ろの箱を開けない箱に選べば良い

その『最大値より後ろの箱を開けない列』の決定番号はどうやって知るわけ?
そしてそもそも、貴方の言う『それらの最大値より後ろの箱を開けない箱に選べば良い 』
という選び方は問題Aのルールに反しているんだが。

630 名前:132人目の素数さん mailto:sage [2016/05/01(日) 16:49:43.92 ID:oT//FcJn.net]
>>569
> その『最大値より後ろの箱を開けない列』の決定番号はどうやって知るわけ?

について、疑問点を補足する。

列の後方すべてを開けないかぎり、その列が属する類を知ることはできないはずだ。
類が分からなければ決定番号は分からないし、類が分からないまま決定番号の
数字だけを確率的に推し量ったところで意味をなさない。

貴方はどうやって後ろの箱の中身を当てようというのか。
どうも新奇な戦略を編み出したように見える。ご説明を。

631 名前:132人目の素数さん mailto:sage [2016/05/01(日) 18:08:49.20 ID:uEzE5t6m.net]
>>569-570
戦略は時枝解法と同じ(ただし閉じた箱を100列に分けることは除く)

可算無限個ある箱に入った実数(無限数列S0とする)がある(すべての箱が閉じている初期状態)
解答者がS0とは無関係な無限数列を(たとえば99個)用意してそれらの決定番号の値から箱Xを定める
箱Xを定めるためにS0が入った箱を開ける必要は無い
箱Xを一つ定めれば
> 箱Xを定めたあと、X以外の箱については中を開けて見てよい。

632 名前:132人目の素数さん mailto:sage [2016/05/01(日) 18:42:34.58 ID:oT//FcJn.net]
>>571
> 解答者がS0とは無関係な無限数列を(たとえば99個)用意してそれらの決定番号の値から箱Xを定める

S0の類が分からなければ、他の無関係な99個の無限列の決定番号が分かったところで無意味だと言っている。

> 箱Xを定めるためにS0が入った箱を開ける必要は無い

S0が入った箱とはどういう意味か?貴方はS0を実数の無限列と定義している。

S0の後方全てを開けなければS0が属する類が決まらない。すなわち同値な代表元を選び出せない。
他の無関係な99個の無限列からS0の決定番号の数字を推し量ったところで意味がない。
S0が属する類の代表元と比較できなければ箱の中身は当てることはできないからだ。

問題Aでは、閉じたまま残す箱Xを、他の箱を開ける前に定めなければならない。
よって>>568にある、問題Aに対する貴方の戦略は成り立たない。
>>568の文章に間違いがあるなら誤解を生まないように訂正するとよい。

633 名前:132人目の素数さん mailto:sage [2016/05/01(日) 19:06:32.66 ID:uEzE5t6m.net]
>>572
> 問題Aでは、閉じたまま残す箱Xを、他の箱を開ける前に定めなければならない。
箱に入っているのはS0の各項であって他の99個の無限列は箱とは無関係

> S0の後方全てを開けなければS0が属する類が決まらない
箱Xを定めてから箱を開けS0が属する類を決定すれば良い

634 名前:132人目の素数さん mailto:sage [2016/05/01(日) 19:24:06.07 ID:oT//FcJn.net]
>>573
> 箱Xを定めてから箱を開けS0が属する類を決定すれば良い

俺には貴方の言いたいことが分かったが、おそらく誤解を生むだけだ。
なぜなら貴方は問題Aを考えていると言いつつ、実質的には問題Bを考えているからだ。

そして>>568
> 決定番号を求めてそれらの最大値より後ろの箱を開けない箱に選べば良い
というのは明確に間違いだと思うが。違うか?

635 名前:132人目の素数さん mailto:sage [2016/05/01(日) 22:14:35.22 ID:uEzE5t6m.net]
>>574
> 問題Aを考えていると言いつつ、実質的には問題Bを考えているからだ
元々がスレ主の
> 最初の問題Aを出発点にして、一つの箱は開けずに閉じたまま残し、他の箱は開けて、100列作ってみて
> そうすると、時枝解法は適用できないだろ?
というようなことに対しての書き込みなので

> 明確に間違い
確かに「(D) 番目の箱と最初に閉じてある箱」を一致させるためには間違ってましたね
(求めた決定番号の最大値)番目の箱を開けない箱に選べば良いに訂正



636 名前:132人目の素数さん mailto:sage [2016/05/01(日) 23:20:41.79 ID:oT//FcJn.net]
>>575
> (求めた決定番号の最大値)番目の箱を開けない箱に選べば良いに訂正

この訂正は分かるが、

> 確かに「(D) 番目の箱と最初に閉じてある箱」を一致させるためには間違ってましたね

この1文はまたしても意味が分からない。

最初に閉じてある箱というのはS0の無限列のことだよな?
そして当てようとしているのは当然S0のどれかだ。
S0の何番目を箱Xに定めようが、箱Xは当然S0のどれかであり、"最初に閉じてある箱"でしょう。
だから上の1文はまったく意味不明。
俺の理解不足だというなら説明を加えてほしい。

637 名前:132人目の素数さん mailto:sage [2016/05/02(月) 01:49:36.28 ID:w0njnG6v.net]
>>576
S0を100列に分けた無限数列をS1, S2, ..., S100としてSi(D)を無限数列Si(i=0, 1, ..., 100)のD番目の
項が入った箱とする
"最初に閉じてある箱"はS0(m)であるとする(開けずに残しておく箱のこと cf. >>554)

S0(m)とSi(D)(i>0)のどれかが必ず一致するとは言えないということをスレ主は問題視しているのでしょう
> 最初の問題Aを出発点にして、一つの箱は開けずに閉じたまま残し、他の箱は開けて、
> 100列作る。>>4と同じことは、箱が開いていても可能だ。決定番号のうちの最大値Dも決まる。
> が、(D) 番目の箱と最初に閉じてある箱は、一致しないだろう。

638 名前:132人目の素数さん mailto:sage [2016/05/02(月) 07:26:09.13 ID:F5Al9nCA.net]
>>577
俺には貴方の言いたいことが分かったが。
気を悪くしたらすまないが、貴方の文章が分かりづらい理由と
不明瞭な部分を指摘させてもらう。

まずスレ主の>>554についてコメントする。
> (D) 番目の箱と最初に閉じてある箱は、一致しないだろう。
これはもちろん一致しない。なぜなら
>>554の『最初に閉じてある(閉じておくと決めた)箱』とは

639 名前:578再投稿 mailto:sage [2016/05/02(月) 07:27:24.82 ID:F5Al9nCA.net]
>>577
俺には貴方の言いたいことが分かったが。
気を悪くしたらすまないが、貴方の文章が分かりづらい理由と
不明瞭な部分を指摘させてもらう。

まずスレ主の>>554についてコメントする。
> (D) 番目の箱と最初に閉じてある箱は、一致しないだろう。
これはもちろん一致しない。なぜなら
>>554の『最初に閉じてある(閉じておくと決めた)箱』とは"可算無限個から任意の選んだ箱"であり、
・Si(D)は99列の決定番号で決まる"ただ1つ"の箱だから。

ようするにスレ主は時枝の戦略を

640 名前:問題Aに適用している。
しかし時枝の戦略は問題Bに対するものである。
よってスレ主の議論はまったくナンセンス。このことは>>564で述べた。

貴方の意味不明な>>576の1文に戻ろう。
> 確かに「(D) 番目の箱と最初に閉じてある箱」を一致させるためには間違ってましたね

スレ主の言う"最初に閉じてある箱"とは、他の箱を開ける前に選び出した箱Xのことだ。
一方で貴方が>>568で述べた方法によると、箱Xを選択する時点において
当初用意されていた無限列S0は全て閉じたままである。
また、箱Xを選択する前はどの箱も"最初に閉じてある箱(=箱X)"ではない(アタリマエ)。
すなわち、S0は"全て閉じている"。しかし"どの箱も最初に閉じてある箱"ではない(ワカリヅライ!)。

貴方は可算無限個の閉じた箱から、D番目を箱Xとして選べば
『(D) 番目の箱と最初に閉じてある箱(=箱X)を一致させる』
ことに成功したと考えているのかもしれないが、
Dという数字が得られてから箱Xを定めたのであって、
箱Xを定めてからDという数字を得たのではない。
Dを得る前に箱Xを定めていないので、両者を"一致させる"という言い方はおかしい。

>>575
> 確かに「(D) 番目の箱と最初に閉じてある箱」を一致させるためには間違ってましたね
そういうわけで、このような貴方の言い訳じみたコメントには首をかしげざるを得ない。
D番目を箱Xに指定しなければ所望の確率が得られないからそうするのだ。
D番目を箱Xに選ぶのがこの時枝の戦略の肝なのだから。
[]
[ここ壊れてます]

641 名前:578再投稿 mailto:sage [2016/05/02(月) 07:30:49.10 ID:F5Al9nCA.net]
(訂正)
>>任意の選んだ箱
任意に選んだ箱

642 名前:名前アレルギー [2016/05/02(月) 12:48:26.04 ID:HPg1kFGT.net]
性的搾取、安楽死、アルコール中毒…
「問題から目をそらさない」北欧映画の魅力

wotopi.jp/archives/34214

643 名前:132人目の素数さん [2016/05/02(月) 18:14:44.32 ID:OnQxwPc/.net]
その昔バイキングなどと称して蛮行の限りを尽くした北欧人が何を偉そうに

644 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 16:27:20.35 ID:vN4s28Oq.net]
どうも。スレ主です。
ご無沙汰です。
旅行に行っていました

なんかいない間に盛り上がっていますね

645 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 16:42:54.34 ID:vN4s28Oq.net]
>>567
どうも。スレ主です。
親切なフォローありがとう

私の>>493は、ガロアの方程式論を離れた群論的視点から見た「正規部分群がなぜ重要なのか」の答えだが
確かに、ガロアの方程式論の中で「正規部分群がなぜ重要なのか」は、お説の通り

補足で商群のリンクを貼っておくので、下記を>>567の補足として読めば良いだろう
hooktail.sub.jp/algebra/QuotientGroup/
商群 [物理のかぎしっぽ]:
(抜粋)
正規部分群と群から,剰余類を集めた集合が群になります.これを商群と呼びます.とても大事な群です.

記号は商集合と同じで G/H のように書きます.
G/H = {H,a1H,a2H,... }

一般の商集合は群にはなりませんが, H が正規部分群ならば G/H が群になるという点が大事です.



646 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 16:56:08.77 ID:vN4s28Oq.net]
>>473
>残念ながら「数V方式 ガロアの理論」は県内の某大学に一冊あるだけで、

遠隔失礼
旅先の紀伊國屋で見たけど、「数V方式 ガロアの理論」矢ヶ部巌、復刻版が出たんだね(下記)
矢ヶ部先生が、復刻版の前書きで書いていたが、80を超えたとか。ご健在でなにより
まあ、質問がある人は、早めに現代数学社に送れば、回答してくれるかも

>どの市町村の図書館にもないことが分った。
>買えば4千円以上するし、さてどうしたものか…。

それは、図書館に依頼して、購入してもらうことだね
私も、町の図書館に、ある本の購入依頼を出したことがある
一週間くらいで、入ったと連絡

647 名前:があった
いま、5月だと、まだ年度予算は始まったばかりだから、結構買って貰えると思うよ

方程式論を、歴史を追って理解しようという人には、是非お勧めだ

http://www.amazon.co.jp/dp/4768704530
数III方式 ガロアの理論 単行本(ソフトカバー) 矢ヶ部巌 (著)出版社: 現代数学社; 新装版 (2016/2/25)
[]
[ここ壊れてます]

648 名前:132人目の素数さん [2016/05/04(水) 17:14:03.52 ID:vLhYqGOV.net]
4000円くらい出せよ
んで一通り読んだら図書館に寄贈するくらいしろよ

649 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 18:22:31.80 ID:vN4s28Oq.net]
いやいや、図書館購入希望がお薦め

>んで一通り読んだら図書館に寄贈するくらいしろよ

今時の図書館は、逆だな
図書館にスペースがないから、新書の置き場を空けるために、古い読まれない本を、無料放出している
残念でしたね
寄贈なんて迷惑がられるだけだろ

650 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 18:28:02.88 ID:vN4s28Oq.net]
余談だが、「数V方式 ガロアの理論」矢ヶ部巌、復刻版が出たことに、多少でもこのスレが貢献しているなら
このスレの存在も意味があるということだろう

651 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 18:35:59.12 ID:vN4s28Oq.net]
倉田本も2011年に復刊か。このスレの1が、2012/01/31(火)からだから、復刊には貢献していないが、売れ行きには影響しているかも
www.amazon.co.jp/dp/4535781583
ガロアを読む―第1論文研究 単行本 ? 1987/7/15 倉田 令二朗 (著)

トップカスタマーレビュー
(抜粋)
5つ星のうち 5.0ガロアの方程式論、特にその第1論文の素晴らしい研究書 投稿者 susumukuni VINE メンバー 投稿日 2012/9/15

ガロア理論はガロアの方程式論を発祥の地とするが、デデキント、シュタイニッツ、アルティン、ヴェイユなどにより明快に理論体系化された「GDSAWのガロア理論」が今日では標準とされている。
この現代的なガロア理論を学び、その典型的な応用例として代数方程式の代数的可解性に関するガロアの理論を学ぶのが通例である。
またガロアの第1論文を現代的なガロア理論の知識を併用して解読するという効率の良いアプローチを採る著書も少なくない。

数学愛好者なら誰もが、ガロア以前の基本的で前提と考えられる数学的事実を把握し、その延長にないガロアの創意による真のブレイクスルーを明確に理解したい、と希望するのは当然だろう。
上記の勉強法は標準的で決して悪いものではないが、それだけで方程式論におけるガロアのブレイクスルー、即ちガロアが知り得たであろう知識のみに基づき何を創造したか、を知るのは至難であろう。

本書はガロアの方程式論、特にその主著である第1論文、を綿密に研究する素晴らしい書である。先ず前提となる基本的事実が三つの基本補題に集約され、それらがラグランジュ、ガウス、アーベルなどの先駆者の研究とどの様に関わっているか明瞭に解説されている。
ここでは代数的可解性の原則、ルフィニの(5次以上での代数的解の)不可能性の証明、アーベル方程式の可解性、などが史実に基づき詳述されておりとても面白い。

長らく入手困難であった本書が2011年に復刊されたのが喜ばしい。ガロアの方程式論をじっくりと解読してみたいという方には絶対に外せない一冊となるだろう。

652 名前:132人目の素数さん [2016/05/04(水) 18:56:52.05 ID:jsnEpGgk.net]
>>587
なら需要ない本を買えってほうが迷惑だろ

653 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 19:51:58.14 ID:vN4s28Oq.net]
一人需要があれば良い
そして、需要は毎年の季節要因だな
「数学愛好者なら誰もが、ガロア以前の基本的で前提と考えられる数学的事実を把握し、その延長にないガロアの創意による真のブレイクスルーを明確に理解したい、と希望するのは当然だろう。」>>589 by 投稿者 susumukuni
毎年大学入学者、あるいは2年、3年進級者が居る
その中の何パーセントか知らないが、”ガロアの創意による真のブレイクスルーを明確に理解したい、と希望する”人がいるだろうということ

図書購入依頼なしに、図書寄贈をするのは迷惑
しかし、図書購入依頼を出して、少なくとも一人希望者が居て、購入した図書を開架式の図書館に展示するのは正規の図書館の仕事

この違い分かりますか?

654 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 20:01:25.25 ID:vN4s28Oq.net]
さて、簡単に雑事を片付けたところで
時枝問題に戻ろうか

さすがに、数学板だな
ID:oT//FcJn さん、乙です

いや、別にID:uEzE5t6mさんも、数学の論理で答えて貰えれば、議論はかみ合う
が、どうも、時枝のネームバリューに幻惑されたのか、数学の論理からはずれがちなんだな

2ちゃんねる数学板、旧猫さんが、焼くといった意味が分からんでも無い
その中でのガロアスレ。焼くべき対象だと言われればそうかもね

が、どういう訳か、旧猫さんはここはスルーなんだよ
それはともかく、スレ主としては、数学の論理の筋だけは通したいと思う今日この頃。たとえ、身分不相応に「なに時枝先生さまにたてついている」と言われようがね(^^;

655 名前:132人目の素数さん [2016/05/04(水) 20:06:57.00 ID:wHCwKoA4.net]
アホの戯言に付き合う図書館もないし意欲ある学生は大学の図書館にいくから関係ないな



656 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 20:32:18.53 ID:vN4s28Oq.net]
>>561&>>565&>>579
ID:VsG3hdV5 & ID:KTDOXWuL & ID:F5Al9nCAさん、乙
そこまで粘着するんだったら、コテでも付けて貰えると、便利なんだがね。「時枝応援団」とか「時枝マンセー」とか
まあ、強制はしない

>>561
>> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?
>> 上記についてYes/Noで答えろ。
>>565
>スレ主がYesと答えることは彼の投了を意味する。
>時枝氏の論理が間違っているか否かという4ヶ月にわたる不毛な議論はこれで終わりとなる。

>この強烈な自負のために、スレ主は誰にも止められない暴走車と化す。
>ところで残念なことに、上記の譲れない"2点"は中学生でも分かるような間違いなのである。
> 1点目は事前確率と事後確率を取り違えているのであり、
> 2点目は上に述べた問題文の取り違い(すなわち国語力不足)に起因している。
> そしてそれら間違いは何度となく指摘されているのである。

あなたの認識に問題があることは、ID:uEzE5t6m(>>569-576) さんがご指摘の通りだろう

が、”よってスレ主の議論はまったくナンセンス。このことは>>564で述べた。”というのは、一理ある

そこで、回答:「問題Bが、時枝のいう戦略により近いことは認める。但し、それ(左記)を認めたからと言って、”時枝の戦略が成り立つ”こととはほど遠いと指摘しておく」

657 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 20:33:24.93 ID:vN4s28Oq.net]
>>593
運営乙
好きにすれば良い

658 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 20:53:39.54 ID:vN4s28Oq.net]
>>594 補足

>>556より
”可算無限個の閉じた箱がある。各々の箱には実数が入っている。

問題A:
・すべての箱が閉じている初期状態において、開けない箱を任意に1つ選ぶ(箱Xとする)。
・箱Xを定めたあと、X以外の箱については中を開けて見てよい。
箱Xの中身を当てる戦略があるか?

問題B:
・可算無限個の閉じた箱があり、中を開けて見てよい。ただし1個は開けずに残しておく。
(注意:上記の1個を事前に(他の箱を開ける前に)定めておく必要はない。)
開けずに残した箱の中身を当てられるか。”

では、新提案として
”問題A0:
・すべての箱から、箱を任意に1つ選ぶ(箱Xとする)。
・選んだ箱以外の箱は、任意の時期に中を開けて見てよい。もちろん、開けなくてもなくても良い。他の箱については、全くの任意とする。
箱Xの中身を当てる戦略があるか?”

こうすれば、問題A0の解法があれば、問題Aも解けるし、問題Bも解けることは明らか。そして、問題A0の解法があれば、ルーマニア解法の列分けした問題も解ける
私は、それほど、他の箱を開ける時期には拘らっていないよ(>>559に書いた通り)

但し、時枝の>>2「今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.」に、「あなた」という当事者の意思を感じ取ったとだけ言っておく

もちろん、開けた箱から、なにかの情報を得られるなら(時枝の記事>>176「他の箱から情報は一切もらえない」の逆)なら、それも本人の意思に入れても良い
が、時枝は「ま

659 名前:るまる無限族として独立なら,当てられっこないではないか−他の箱から情報は一切もらえないのだから」>>176と書いていることにも留意してほしい

要は、>>176「その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立」か否かが論点であって、
開ける時期の問題や、「事前確率と事後確率を取り違えている」は、あなたの独自解釈でしかないよ
[]
[ここ壊れてます]

660 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 20:56:56.60 ID:vN4s28Oq.net]
>>596 訂正補足

”問題A0:
・すべての箱から、箱を任意に1つ選ぶ(箱Xとする)。
・選んだ箱以外の箱は、任意の時期に中を開けて見てよい。もちろん、開けなくてもなくても良い。他の箱については、全くの任意とする。
箱Xの中身を当てる戦略があるか?”
 ↓
”問題A0:
・すべての箱から、箱を任意に1つ選ぶ(箱Xとする)。
・選んだ箱以外の箱は、任意の時期に中を開けて見てよい。もちろん、開けなくてもなくても良い。他の箱については、全くの任意とする。
・箱Xを選ぶ時期も任意とする。
箱Xの中身を当てる戦略があるか?”

こうしておけば、開けた箱の情報を見て、当てたい箱を選ぶことが可能なことが、はっきりするだろう

661 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 21:28:36.46 ID:vN4s28Oq.net]
>>597 補足

問題B:
・可算無限個の閉じた箱があり、中を開けて見てよい。ただし1個は開けずに残しておく。
(注意:上記の1個を事前に(他の箱を開ける前に)定めておく必要はない。)
開けずに残した箱の中身を当てられるか。

例えば、有限の場合、トランプが伏せられているとする
四種1〜13まで、52枚
伏せられたカードを開けていけば、最後の1枚は当てられる

が、もし、無限を考えて、1〜13までなく、任意の実数*)が書かれているとしたら? 当てられるはずがないと思うだろう
そして、「1〜13」→「1〜n」→「1〜∞」とカードの数を増やしたところで、当てられるはずがないと思うだろう
「1〜n」→「1〜∞」が、時枝のいう、”(2)有限の極限として間接に扱う”>>559ってことじゃないのかね?

*)任意の実数を表現するために、数字以外にも、超越関数(sin(1/5),tan(1/5))や記号(πやπ/2,eやe/2など)も可とするものとする。もちろん、10^(1.234)など大学数学の範囲の表記で、理解可能なものは記載可とするものとする。

662 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 21:58:55.99 ID:vN4s28Oq.net]
>>562 批判
どうも。スレ主です。

>極限の取りかたは他にもあって
>スレ主は最初から数当てが不可能な数列のみを考えている

季節は5月。新入生や、大2、3回の進級生もいる
なので、>>562に対し数学的な批判をしておく

お説は、当たっているかもしれないが
極限の取り方が複数あるときに、どれが正統かだ

そこで、”well defined”という概念がある
これは、過去スレでも出てきた。数学のレベルが上がるほど、重視されるという。ここを少し掘り下げてみよう

663 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 22:17:08.72 ID:vN4s28Oq.net]
>>599 ”well defined”続き

>>3"時枝はいう
 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= no → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる."

で、下記
https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82
(抜粋)
同値類
集合 S の上に同値関係 〜 が定義されているときには、ある S の元 a に対して a に同値である元を全て集めた集合を考えることができる。
この S の部分集合を a を代表元(だいひょうげん、英: representative)とする同値類(どうちるい、英: equivalence class)と呼び・・
1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)

商集合
集合S の同値関係〜に関する同値類全体のなす集合を、S を同値関係〜で割った集合、あるいは S の 〜 による商集合(しょうしゅうごう、英: quotient set)と呼び、
S/〜 := {[x] | x ∈ S}
と表す。集合 S の元にそれが属する同値類を対応させることで、商集合への全射
π: S → S/〜; x → [x]
が自然に与えられる。これを同値関係 〜 に付随する標準射影あるいは自然な射影、自然な全射などと呼ぶ。
(引用おわり)

664 名前:132人目の素数さん [2016/05/04(水) 22:23:37.40 ID:DBbckI1O.net]
>>586
それな

665 名前:132人目の素数さん [2016/05/04(水) 22:25:04.76 ID:DBbckI1O.net]
>>588
何だその妄想は、等質か?



666 名前:132人目の素数さん [2016/05/04(水) 22:29:11.62 ID:DBbckI1O.net]
>それはともかく、スレ主としては、数学の論理の筋だけは通したいと思う今日この頃。たとえ、身分不相応に「なに時枝先生さまにたてついている」と言われようがね(^^;
一番のアホが一番の上から目線w

667 名前:132人目の素数さん [2016/05/04(水) 22:32:02.15 ID:DBbckI1O.net]
>一般の商集合は群にはなりませんが, H が正規部分群ならば G/H が群になるという点が大事です.
ここは正規部分群すらわかってないアホが上から目線で教えるスレ

668 名前:132人目の素数さん [2016/05/04(水) 22:35:00.66 ID:DBbckI1O.net]
>問題Bが、時枝のいう戦略により近いことは認める。但し、それ(左記)を認めたからと言って、”時枝の戦略が成り立つ”こととはほど遠いと指摘しておく
ならNOなんか?NOならNOと答えろやボケナス

669 名前:132人目の素数さん [2016/05/04(水) 22:43:09.89 ID:DBbckI1O.net]
>季節は5月。新入生や、大2、3回の進級生もいる
大学2年生は正規部分群わかってるぞ、お前と違って

670 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 22:58:26.78 ID:vN4s28Oq.net]
>>600 ”well defined”続き

同値関係、商集合
”well defined”であるために
1)1 つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である
2)ある元が、異なる二つの同値類に属すことがあってはならない

2)については、当たり前すぎて明記されていないが、すぐ分かるだろう
そこで、>>559に戻ると、箱の数n(=箱の数の長さ)で、n=3を考えると(>>560の列の長さ3に同じ)、
箱の数を先頭から、x1,x2,x3の数列として、同値類はx3のみで決まるべき
(もちろん、X,x2,x3 (Xは任意)というx2,x3という2つの数で決まる同値類も考えられる。が、もしそれを許すと、X,x2,x3は、同値類x3にも属し、従って、二つの同値類に属すことになる。つまり、”well defined”ではなくなる

ここで、n=3を考えたが、nは有限であれば、上記同様常に最後尾の箱で類別されるべきである。もし、最後尾以外の箱を含めた同値類を同時に考えるなら、上記同様二つの同値類に属す数が存在し、”well defined”ではなくなる

そういう目で見ると、同値関係、商集合の”well defined”を、果たして>>568は理解しているのかと、疑問に思う
そして、>>569-576の批判は、同値関係、商集合の”well defined”の理解の程度を批判しているのかも・・

さらに、>>562も、同値関係、商集合の”well defined”という視点から批判すれば、何が言いたいのか、趣旨が分からない
「Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0」と「Xiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...」???
どういう同値関係で、どういう商集合なんだ?

「極限の取りかたは他にもあって」??? あなたのいう「極限の取りかた」は、どういう同値関係で、どういう商集合かを、その定義をはっきりさせてほしい

671 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 23:00:48.19 ID:vN4s28Oq.net]
>>601-606
運営乙

672 名前:現代数学の系譜11 ガロア理論を読む [2016/05/04(水) 23:03:32.72 ID:vN4s28Oq.net]
>>606
>>季節は5月。新入生や、大2、3回の進級生もいる
>大学2年生は正規部分群わかってるぞ、お前と違って

? 一例で良いから、大学2年生5月4日時点で、正規部分群が終わっているというカリキュラムを例示してみ
話はそれからだね

673 名前:132人目の素数さん [2016/05/04(水) 23:22:34.47 ID:vLhYqGOV.net]
自分がわかってることの証明はしないんだな

674 名前:132人目の素数さん mailto:sage [2016/05/05(木) 00:12:20.65 ID:aGwgFNeF.net]
>>594
> あなたの認識に問題があることは、ID:uEzE5t6m(>>569-576) さんがご指摘の通りだろう

読み違い乙w

> そこで、回答:「問題Bが、時枝のいう戦略により近いことは認める。但し、それ(左記)を認めたからと言って、”時枝の戦略が成り立つ”こととはほど遠いと指摘しておく」

『問題Bが戦略に近い』とはなんだ?『問題が戦略に近い』というのは日本語なのか?
お前が

675 名前:611再投稿 mailto:sage [2016/05/05(木) 00:13:15.04 ID:aGwgFNeF.net]
>>594
> あなたの認識に問題があることは、ID:uEzE5t6m(>>569-576) さんがご指摘の通りだろう

読み違い乙w

> そこで、回答:「問題Bが、時枝のいう戦略により近いことは認める。但し、それ(左記)を認めたからと言って、”時枝の戦略が成り立つ”こととはほど遠いと指摘しておく」

『問題Bが戦略に近い』とはなんだ?『問題が戦略に近い』というのは日本語なのか?
お前が"何を認めた"のか、まったくはっきりしない。

お前がどう叫ぼうが喚こうが記事に書かれているのは問題Bだ。
お前の創作問題AやらA0などに興味はない。

もう余計なことを書く必要はない。
書いても書いても堂々巡り。4ヶ月経っても進展なし。
コロコロコロコロ主張が変わり、そのたびにお前の馬鹿が丸出しになるだけ。
今度は同値類が分からなくなったか?(>>607)そして決め台詞はwell-defined!w
おめでたい奴だなまったく。

さあ、記事にある問題Bだけを考え、下記の質問にYes/Noで答えろ。

>> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?



676 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 00:14:23.81 ID:tEqEfy29.net]
>>607 ”well defined”続き

もう少し掘り下げてみよう

>>3で、数列のしっぽでなく、先頭の箱の数字を使って同値関係、商集合を決めるなら、すっきりしている

例えば、先頭の箱の数字を使った同値関係なら、最初の二つの箱を使った同値関係という決め方は可能だ
しかし、最初の二つの箱を使った同値類に、例えば最初の三つの箱を使った同値類を、混在させることはできない
(∵最初の三つの箱を使った同値類は、最初の二つの箱を使ったどれかの同値類にも必ず属することになり、”well defined”ではなくなる)
同じ理由で、「最初の二つの箱を使った同値類」と定義すれば、そこに他の数の箱の同値類の議論を混在させることは御法度だ

そう考えると、先頭の数字を使った同値関係なら、「最初のa個の箱を使った同値類」というように個数aを指定すべきだろう
aの指定が無ければ、任意性を排除するために、a=1と考えるのが自然だ。が、個数aの任意指定を可とすれば、個数a=1に必ずしも数学的必然性はない

ところで、>>607で書いたように、数列の長さnが有限であれば、しっぽによる同値関係も、先頭の数字による同値関係も、数学的扱いに大きな差はない

そこで、上記を踏まえると、数列の長さn→∞として、>>3のような数列のしっぽの同値類分類を考えるというのは、ちょっと怪しい雰囲気だよね
有限の場合なら、「最後のa個の箱を使った同値類」が考えられる。が、数列の長さn→∞の極限でどうなるか。aの指定が無ければ、任意性を排除するために、a=1と考えるのが自然だが
そして、a=1でも、ちょっと怪しい雰囲気だよね

677 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 00:53:13.86 ID:tEqEfy29.net]
>>559-560 補足

>>176数学セミナー201511月号P37 時枝記事引用の前に、次の一文がある

「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」

ルベーグと聞いて思い出したところで、ルベーグ測度論に、零集合がある
https://ja.wikipedia.org/wiki/%E6%B8%AC%E5%BA%A6%E8%AB%96
可測集合 S が μ (S ) = 0 であるとき零集合 (null set ) という。

ディリクレの関数(有理数Qのみで1,それ以外ではゼロを取る関数)で、ルベーグ積分 0
https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%AA%E3%82%AF%E3%83%AC%E3%81%AE%E9%96%A2%E6%95%B0
ディリクレの関数(ディリクレの-かんすう)とは、実数全体の成す集合 R 上で定義される次のような関数のことである。

ディリクレの関数はリーマン積分不可能であることが分かる。
(ルベーグ積分は可能で、その値は 0 である。これは、可算無限集合である Q はルベーグ測度に関して零集合であることによる)
(引用おわり)

で、言いたいことは、>>559-560 での問題A6だ
問題A6:箱が可算無限個、N=mxnでn→∞。とすると 決定番号も→∞になる
いや、もちろん、例外として決定番号が有限になる場合もあるよ。だが、それは零集合 (null set )だ。”実数R全体 vs 有理数Q全体” のごとし。確率で言えばゼロ!

678 名前:132人目の素数さん mailto:sage [2016/05/05(木) 00:54:38.01 ID:aGwgFNeF.net]
スレ主が>>607>>613で"怪しい"とか"well-definedでない"などと
主張している同値関係(推移律)は記事のp.36でハッキリと証明済なのである。
反射律や対称律は自明である。

『記事を読め』以外の言葉が浮かばない。

679 名前:132人目の素数さん [2016/05/05(木) 00:55:48.46 ID:E9bznHwr.net]
数学の記述が読めないんだから察してやれよ

680 名前:132人目の素数さん mailto:sage [2016/05/05(木) 01:00:11.24 ID:aGwgFNeF.net]
>>11
> スレ主は主張してることがコロコロ変わ

681 名前:チてるんだが、そのへん自覚してる?w

いまコレ↓

>>11
> ・Dが∞になることがあるから間違いだ、とか。
[]
[ここ壊れてます]

682 名前:132人目の素数さん mailto:sage [2016/05/05(木) 01:04:24.55 ID:Es+1/vMY.net]
>>584
>確かに、ガロアの方程式論の中で「正規部分群がなぜ重要なのか」は、お説の通り
哀れな素人氏が聞きたかったのはこちらの方ではないのか?
スレ主は読解力が足りないと思う。

683 名前:132人目の素数さん mailto:sage [2016/05/05(木) 01:35:44.81 ID:aGwgFNeF.net]
>>11
> ・Dが∞になることがあるから間違いだ、とか。

再びここに舞い戻ってきたスレ主のために>>137を再掲しよう。
(なお、>>137は3ヶ月前に書かれたコメントである。本当に堂々巡りなのだ。)

>>137
> R^Nが類別できるならば任意のR^Nの元は必ず有限の決定番号をもつ。
> 有限の値でないと仮定すると、その元はどこまでいっても代表元と一致しない、
> すなわちその元はその類の代表元と同値ではないということになる。
> これは矛盾である。よって以下の結論は間違い。
> >>134
> > 決定番号が有限であることは期待できないという結論に至る。

記事の同値関係は成立し、決定番号は必ず有限の値を取る。
この事実は記事のp.36(時枝記事の1ページ目)に書かれている基本事項であって、
これが理解できないようではお話にならないのである。

684 名前:集ストテク犯被害者必見! [2016/05/05(木) 03:32:53.10 ID:JLD1JT+M.net]
[拡散希望!]
参考になりそうなURL送っておきます
電磁波による拷問と性犯罪
denjiha.main.jp/higai/archives/category/%E6%9C%AA%E5%88%86%E9%A1%9E
公共問題市民調査委員会
masaru-kunimoto.com/
この方たちは集団訴訟の会を立ち上げてマスコミに記事にしてもらう事を目的に集団訴訟を被害者でしようという試みを持っている方達です
訴訟は50人集めてしようという事なのですが50人で訴訟をすると記事に書けるそうです
記事には原発問題を取り上げてテク犯被害を受ける様になった大沼安史さんらが取り上げて下さるそうです
大沼安史さんがテク犯に遭っているという記事
ameblo.jp/hilooooooooooooo/entry-11526674165.html
大沼安史の個人新聞
onuma.cocolog-nifty.com/blog1/4/index.html
この方たちは電話相談等も受け付けている様で電話番号を載せている方達は電話かけ放題の契約をしていますのでこちらから電話して本人にかけ直してくれと頼むとかけ直してくれます
音声送信被害等を受けている「電磁波による拷問と性犯罪」の記事の水上さんは年金暮らしなので時間には余裕があるそうで宗教等に付随する集団ストーカー等の被害内容の話も聞いて下さいます
もう一人の電磁波犯罪には遭っていない国本さんという方は電磁波犯罪をしっかり理解されている方で年金暮らしの方なので長電話も大丈夫です
大沼さんはこちらのページからメールを受け付けておられる様です
onuma.cocolog-nifty.com/about.html
電話をかけたい場合は人によってはメールで電話番号を訊くと教えてくれると思います
この文章を見られた方は全文コピーをしてできるだけ多くの知り合いの被害者の方等にメールを送るなり被害者ブログに書き込むなりしていただければ大変有難いです
もし大勢の方に送る事が出来なければまだこの文章に触れていない知り合いの被害者に少しでも全文コピーで送っていただけるとその方が次の何人かの方に繋いで頂ける場合があり結果として大勢の方に見て頂く事が出来るはずです
ご協力よろしくお願い致します 👀
Rock54: Caution(BBR-MD5:f70dfdc711a7c6ae6accccb939f27fbf)


685 名前:132人目の素数さん mailto:sage [2016/05/05(木) 07:55:34.58 ID:WcIK+zFw.net]
スレ主の「定理証明」の無限料理は永遠に続くよ



686 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 08:48:00.70 ID:tEqEfy29.net]
>>619
どうも。スレ主です。
なんだ、そこで騙されていたのか?

>>134は、”期待値”としての決定番号Dを言っている。
なぜなら、時枝記事は、ルーマニア解法として、可算無限長の数列のしっぽによる同値類分類による解法を提示した。
これは、特定の場合に成り立つ解法としてでなく、一般解法としての提示だ。
だから、>>559-560に、数列の長さnの有限モデルから、n→∞として、”期待値”としての決定番号Dが、D→∞を示した。

一方、>>137の背理法の「有限の値でないと仮定すると、その元はどこまでいっても代表元と一致しない」という主張は、確かに一つの特定の元を取ればそうだろう
しかし、その有限の決定番号がdとして、一方類別された集合の元は、可算無限あるから、常にdより大きな元、例えばd<Dとできる元が存在する

再び強調すれば、そのような元(d<Dとできる)は、常に可算無限個存在する
∴”期待値”としての決定番号Dは、D→∞

687 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 08:48:48.41 ID:tEqEfy29.net]
>>622
ところで、>>559-560に示したモデルに対して、あなたは、別のモデルも可能だと>>562を書いた
>>562に対しては、>>569で ID:oT//FcJnさんから、「貴方は貴方で支離滅裂。」と批判されていたね
>>562は、いまでも有効なのか? それとも取り下げたのか?

そして、>>562に書いた「スレ主は最初から数当てが不可能な数列のみを考えている」という>>559-560に対する批判はそれだけか?
「スレ主は最初から数当てが不可能な数列のみを考えている」というのは、随分と文学的だ
数学的批判は、無いのか?
数学のモデルとして、>>559-560に示したモデルと>>562のあなたのとは、並立可能なのか?

688 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 08:49:35.13 ID:tEqEfy29.net]
>>623 補足
>>559で書いたように、時枝のいうルーマニア解法に対する批判は、可算無限長の数列のしっぽによる同値類分類は、「"(1)無限を直接扱う,"というトリックをやっている」と
つまり、あなたが>>615で書いた、時枝は「同値関係(推移律)は記事のp.36でハッキリと証明済」という件は、"(1)無限を直接扱う,"というトリックの上でだ

>>559-560に示したモデルでも、長さ有限の場合に、同値関係(推移律)はきちんと成り立っている。そして、n→∞の極限を考えている
そのモデルの上で、ルーマニア解法が一般解法(特定の場合に限定されない)としてどうかと。期待値としてD→∞を示した。

批判のキモは、「"(1)無限を直接扱う,"というトリックをやっている」のはルーマニア解法だと
そして繰り返す。>>559-560に示したモデルに対して数学的批判(数学的に不成立とか)はないのか? >>562は取り下げたのか?
あなたが成すべきことは、時枝が記事に書いた「(2)有限の極限として間接に扱う」の方針に沿って、ルーマニア解法を有限モデルからの極限として説明すること
もし、それが出来ないなら、「"(1)無限を直接扱う,"というトリックをやっている」のはルーマニア解法だという主張は成立すると思うよ

689 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 08:51:53.71 ID:tEqEfy29.net]
>>612
>>> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?

No
>>622-624

690 名前:132人目の素数さん mailto:sage [2016/05/05(木) 10:30:03.23 ID:aGwgFNeF.net]
>>625
> >>612
>>> 問題Bにおいて時枝の戦略が成り立つことを、お前は認めるのか?
>
> No
> ∵>>622-624

返答ありがとう。
お前が4ヶ月半経っても何にも理解していないことは良く分かった。

お前には酷な話だが、>>30-31>>91-95で例示したように、この記事の戦略は小学生でも分かる簡単な話だ。
記事をろくすっぽ理解せず、『例を出せ!出せるわけがない!』と息巻くお前に(>>25-28, >>81)、
文字通り小学生でもわかるよう、2度にわたって例示してやったのだ(>>30-31>>91-95)。
これで分からなかったお前の頭は幼稚園生レベルであると知れ。

> 再び強調すれば、そのような元(d<Dとできる)は、常に可算無限個存在する
> ∴”期待値”としての決定番号Dは、D→∞

期待値の議論など無意味なのである。
>>614
> 確率で言えばゼロ!
ゼロ!・・それがどうした?と言いたい。
記事の戦略はそのような確率の議論を必要としない。

さあ、もう無意味な応酬は終わりにしよう。
お前の論理が正しいか、時枝氏と俺の論理が正しいか

691 名前:は、
右往左往するお前の一連のコメントをちらと読めば小学生でも判断できる。
お前はもう十分馬鹿をさらした。俺はもうお腹いっぱいだ。
[]
[ここ壊れてます]

692 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 10:32:45.49 ID:tEqEfy29.net]
>>615
どうも。スレ主です。

>スレ主が>>607>>613で"怪しい"とか"well-definedでない"などと
>主張している同値関係(推移律)は記事のp.36でハッキリと証明済なのである。

ここも批判しておこう
季節は5月。新入生や、大2、3回の進級生もいるから

確かに、同値関係の推移律は、p.36で証明済。そして、反射律や対称律は自明である。その話は、https://ja.wikipedia.org/wiki/%E5%90%8C%E5%80%A4%E9%96%A2%E4%BF%82 >>600 にある通り
が、”well defined”は、それだけで満たされるものではない https://ja.wikipedia.org/wiki/Well-defined >>14
つまり、ある集合に対し、同値の取り方は複数考えられる。それについては、>>607で書いた

例えば、複数考えられる同値類のどれを選択するか。それは、解く問題によって変わるべき
分かり易い例で、小学生の身長と体重の調査をしたとする。それを類別するに、
1.男女で分ける
2.学年で分ける
3.生まれ月で分ける

などが考えられるだろう
普通、なにか意味ある調査結果をまとめたいと思うなら、さらに
4.(男女)x(学年別)あるいは、
5.(男女)x(学年別)x(生まれ月)
と細かく類別するだろう

上記1〜5すべて、推移律が成り立ち、数学的にも同値関係として正しい
が、もし3の生まれ月の類別だけで、身長と体重の平均値や分布を見せられたら? 「その意味は?」「学年別には?」「男女で分けてないのか?」とつっこむのが普通だろう
(∵ 男女の比率が1対1でないとか、ある月の生徒に低学年が多いとか、偏りをチェックしておかないとまずいから)
つまり、”複数考えられる同値類のどれを選択するか? それは、解く問題によって変わるべき”だと

そして、問題の可算数列のしっぽによる同値類の分類が、果たして、問題を解く手法として"well-definedか”どうかについては、推移律の証明だけでは不十分だよ
季節は5月。新入生や、大2、3回の進級生もいるので、重ねて強調しておく

693 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 10:38:44.36 ID:tEqEfy29.net]
>>626
批判に答えず、逃げか?

だから、>>622-624について、きちんと数学的に論破して頂けますか?

それが出来ないから、理解してないとかなんとか、批判に答えず、逃げか?

694 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 10:53:15.83 ID:tEqEfy29.net]
>>623で、「数学のモデルとして、>>559-560に示したモデルと>>562のあなたのとは、並立可能なのか?」と問うた

「数学基礎論」の示すところ、無限を扱うとき、公理系の選び方で、「特定の公理系では証明も反証もできない問題が数多く見いだされた」という(例えば下記)
だから、並立可能なのかも知れない。が、反論はあなたの番だよ。
>>559-560に示したモデルを(数学的に)否定するか、>>562を守るか、別の有限モデルからの極限として時枝解法を示すか
数学的には、3択問題と思うがどうよ

https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A4%8E%E8%AB%96
数学基礎論
ヒルベルトは、数学を記号によるゲームとみなして無矛盾性を証明する形式主義によるヒルベルト・プログラムを提唱したが、ゲーデルの不完全性定理によって、その実現の不可能性が示された。
また、数論を展開するのに十分な体系に見えるペアノの公理系では証明できないグッドスタインの定理など、特定の公理系では証明も反証もできない問題が数多く見いだされた。

https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%83%E3%83%89%E3%82%B9%E3%82%BF%E3%82%A4%E3%83%B3%E3%81%AE%E5%AE%9A%E7%90%86
グッドスタインの定理(グッドスタインのていり、Goodstein's theorem)は、数理論理学における自然数に関する命題であり、「全てのグッドスタイン数列は必ず0で終わる」という主張。
ペアノ算術の範囲では証明も否定の証明もできないが、集合論の公理系、特に無限集合の公理を用いると真であることが言える。
たとえばゲーデルの不完全性定理から導かれる決定不能な命題などは、いかにも不自然だったり人工的に見えたりする場合があるのに対し、この定理は「自然な」決定不能命題の例として知られる。
(抜粋引用おわり)

695 名前:132人目の素数さん mailto:sage [2016/05/05(木) 11:05:11.39 ID:aGwgFNeF.net]
>>628
> だから、>>622-624について、きちんと数学的に論破して頂けますか?

>>622について何を論破すべきなのか?
>>623について何を論破すべきなのか?
>>624について何を論破すべきなのか?

お前を論破することなど、とうに興味はないのである。
これまで例を出せと言われれば例を出してやった。
間違いがあれば指摘してやった。
4ヶ月半もお前に付き合ってやったのだ。
ところがお前は何をどう説明されても納得せず、
自分が間違っていると見るや手を変え品を変え、
挙句の果てには問題を作り変えてまで反論してくる。
こんな議論は時間の無駄だ。

小学生でもわかる具体例を理解できない時点で、もうどうしようもない。
分からないから教えてくださいと頼まれれば教えもするが、
お前の身勝手な主張にイチイチ付き合うかどうかはこっちの勝手にさせてもらう。
挑発するもよし、逃げとみなすもよし。好きにやってくれ。

だが、>>627については一言いおう。笑わせてもらった。

時枝氏もまさかお前に
>>627
> 問題を解く手法として"well-definedか”どうか

を証明しろと迫られるとは思わなかっただろう。余計なお世話である。

>>627
> 季節は5月。新入生や、大2、3回の進級生もいるので、重ねて強調しておく

この一文で思わず失笑した新入生諸君へ。
あなた方はスレ主より頭がいいということについては自信をもっていいw



696 名前:132人目の素数さん mailto:sage [2016/05/05(木) 11:13:51.91 ID:PHpcgrUt.net]
well-definedが気に入ってしまい
やたらと意味も無くそれを連発するスレ主
失笑を禁じえないwwwww

697 名前:T mailto:sage [2016/05/05(木) 11:38:35.42 ID:aGwgFNeF.net]
>>629
なにか勘違いしているようだが>>562は俺ではない。
>>562の内容にコメントしたことはないし、コメントするつもりもない。
記事の問題Bをわざわざ別の問題に置き換え、話を分かりづらくするような議論には関与しない。

一方>>568の不明点に質問したID:oT//FcJnは俺である。

>>569-580は単なる質疑応答であり、その結果

>>568
> 最初の問題Aでも開けない箱を選ぶ前に解答者が適当な無限数列を複数作ってそれらの
> 決定番号を求めてそれらの最大値より後ろの箱を開けない箱に選べば良い

に関して、俺の疑問は解決した。それだけの話だ。

発言者が特定できない不便は謝っておく。
必要なときはTと名乗ることにする。

698 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 11:55:15.71 ID:tEqEfy29.net]
さて、計算複雑性の切り口で、時枝問題を見てみよう
「理論上計算可能な問題であっても、実際に解くことができない問題を intractable(手に負えない、処理しにくい) であるという。」というそうだ(下記)

「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」と、ルーマニア解法はいう
この同値類の集合は、非加算無限ある(∵箱が1つとしても、その箱に入るのは任意の実数だから、非加算無限ある)

となれば、「加算無限個の箱に入る実数の数列、それをすべてしっぽで同値類に分類し、代表元を決めておく」という前処理自身が、intractableでは?
前処理自身が、intractableであるとすれば、ルーマニア解法は現実的解法としては、使えない

ただし、「理論上計算可能な問題」か否かは残る。
「理論上計算可能な問題」か否かについては、>>559-560で示した通り、私の意見は否

https://ja.wikipedia.org/wiki/%E8%A8%88%E7%AE%97%E8%A4%87%E9%9B%91%E6%80%A7%E7%90%86%E8%AB%96
計算複雑性理論

理論上計算可能な問題であっても、実際に解くことができない問題を intractable(手に負えない、処理しにくい) であるという。
「実際に」解けるとはどういうことかという問題もあるが、多項式時間の解法がある問題が一般に(小さな入力だけでなく)解けるとされている。
intractable な問題として知られているものとしては、EXPTIME完全な問題がある。

指数関数時間の解法がなぜ実際には使えないかを考えるため、2^n 回の操作を必要とする問題を考える(n は入力のサイズである)。
比較的小さな入力数 n = 100 のときについて、1秒間に 10^10 (10 ギガ)回命令

699 名前:実行できる計算機を想定すると、その問題を解くには約 4*1012 年かかる。
これは現在の宇宙の年齢よりも長い。

https://ja.wikipedia.org/wiki/%E8%A8%88%E7%AE%97%E5%8F%AF%E8%83%BD%E6%80%A7%E7%90%86%E8%AB%96
計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。
[]
[ここ壊れてます]

700 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 12:13:37.07 ID:tEqEfy29.net]
>>630
どうも。スレ主です。
粘着ありがとう

>>629「「数学基礎論」の示すところ、無限を扱うとき、公理系の選び方で、「特定の公理系では証明も反証もできない問題が数多く見いだされた」という(例えば下記)
だから、並立可能なのかも知れない。が、反論はあなたの番だよ。
>>559-560に示したモデルを(数学的に)否定するか、>>562を守るか、別の有限モデルからの極限として時枝解法を示すか
数学的には、3択問題と思うがどうよ」については、投稿のタイミング上、読んで無かったのか?

私の要求は、これだよ

>お前を論破することなど、とうに興味はないのである。

逃げ

>こんな議論は時間の無駄だ。

前にも聞いた台詞だ

>> 問題を解く手法として"well-definedか”どうか
>を証明しろと迫られるとは思わなかっただろう。余計なお世話である。

あんた時枝自身なの? 
数学セミナーという一般紙に、時枝が、記事を書いた
それを、すれの話題として取り上げた。というか、すれの話題として、最初に取り上げたのは、あなたじゃ無かったのか?

そもそもが、どんなトンチンカンな批判にしろ、どこかになにか書かれるのは、雑誌に投稿した以上、時枝は覚悟の上じゃないかい?
で、ここは、一応数学スレだ。"well-definedか”どうか、証明しろとは言わないが、ご自分の考えを数学的に述べたらどうか? どうぞ
それができないなら、おかしいだろうさ

>あなた方はスレ主より頭がいいということについては自信をもっていいw

そうなんかね? >>627について、「問題を解く手法として"well-definedか”どうかについては、推移律の証明だけでは不十分だよ」という主張がおかしいとでも?
なんか、最近、発言が数学からずれてきているよ

701 名前:T mailto:sage [2016/05/05(木) 13:50:10.69 ID:aGwgFNeF.net]
>>634
記事は『"箱が無限個あるならば"中身を当てる戦略がある』と言っているのだ。
お前は>>559-560で、有限個の箱に対して戦略が機能しないことを延々と語っているが、無意味である。

お前の質問に答えよう。
>>634
> >>559-560に示したモデルを(数学的に)否定するか

否定はしないが、俺には有限個のモデルを考えることに意味があるとは思えない。
箱が無限個あるからこそ成り立つ戦略だからだ。
が、お前にとって意味があると思うなら勝手にすればよい。

繰り返すが、決定番号は必ず有限の値を取る。
箱が無限個ある場合、有限個しかない場合とは異なり、『D+1番目以降の箱がない』などということはありえない。
すなわち、お前は可算無限個で戦略が成り立たないことを>>559-560で何一つ示せてはいない。
結果として俺にとっては>>559-560全体が無意味である。

>>559
> ところで、
> ”問題A1:箱が一個”は、当てられないのか? Yes
> ”問題A2:箱が二個”は、当てられないのか? Yes (ああ、この場合は、開ける箱を選ぶのと残す箱を選ぶのは、双対だね)
> ・・・
> と来て、なんで”問題A6:箱が可算無限個、N=mxnでn→∞”だったら当てられるんだよ?

『有限個で当てられないのに、なぜ可算無限個で当てられるんだ?』
という素朴な疑問は大いに結構。時枝の思うツボであり、歓迎すべき読者である。

なお時枝が最終パラグラフでコメントしているのは、
『確率変数の無限族の独立性の扱い方』
についてである。

『確率変数が有限個しかないときでも戦略が成り立つ』
と言っているのではないし、
『無限個の確率変数を考えるときは全体を有限にとってから∞に飛ばさなければいけない』
と言っているのでもない。(それで意味のある議論ができるならご自由に。)
『無限族の独立性は、任意の有限部分族が独立のとき独立と定義される』
と言っているだけ。

お前はおそらくここを勘違いしているために、ミニモデルなどを思いつき、結果的に混乱する。
素直に記事の論理を追えばいいのである。

702 名前:132人目の素数さん [2016/05/05(木) 14:09:49.03 ID:E9bznHwr.net]
>>633のようなレスをしといて数学から離れてるって言うのは自虐かな

703 名前:562 mailto:sage [2016/05/05(木) 14:43:20.37 ID:hte2rADG.net]
>>634
>>607
>「Xiがn個, 0が99n個 : X1, X2, ..., Xn, 0, 0, 0, ... , 0」と

704 名前:uXiがn個, 0が可算無限個 : X1, X2, ..., Xn, 0, 0, 0, ...」

数列をCn=An + Bnと書くとAnのある項から先が全て0になりかつ解答者がBnの値を
知ることができる場合はCm=Bmとなる部分において数当てが可能

時枝解法はある完全代表系には任意のCnに対してAnのある項から先が全て0になるような
Bn(代表元)が必ず存在するから数当ては可能

>>613
ある数列の中にその項の組によって構成されるパターンがあってそのパターンの情報を
解答者が持っていれば数当てが可能
パターンを構成しない項は(確率変数の独立性との類似を考えて)「独立」であるということにする

Cn = 2, 2, 4, 3, 2, 1, 1, 3, 1, 2, 3, 4, 1, 2, 3, 4
An = 1, 0, 1, -1, 1, -1, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0
Bn = 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4
Cn = (2), (2), (4), (3), (2), (1), (1), (3), (1, 2, 3, 4), (1, 2, 3, 4)

C'n = 2, 2, 4, 3, 2, 1, 1, 3, 3, 1, 1, 2, 4, 1, 3, 2
A'n = 1, 0, 1, -1, 1, -1, -2, -1, 2, -1, -2, -2, 3, -1, 0, -2
B'n = 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4
C'n = (2), (2), (4), (3), (2), (1), (1), (3), (3), (1), (1), (2), (4), (1), (3), (2)

1から4の自然数において(1), (2), (3), (4)は独立であるが(1, 2, 3, 4)は独立でない
解答者に公開される情報はCnの場合は(1), (2), (3), (4)およびBn or (1, 2, 3, 4)
Cnの場合はBn or (1, 2, 3, 4)の情報が分かれば数当ては可能
C'nの場合は(1), (2), (3), (4)という情報のみなので数当ては不可能

>>633
代表元を用いた数当て以前に数当てが可能な無限実数列は非可算無限個ある
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 2, 3, 4, 1, 2, 3, 4, ...
少し複雑な例
(1, 2, ..., k), (1, 2, ..., k+1), ..., (1, 2, ..., k+9)の数の組のパターンを適当にならべたもの
1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, ... (前後の数字から数当てが可能)
[]
[ここ壊れてます]

705 名前:T mailto:sage [2016/05/05(木) 15:10:33.45 ID:aGwgFNeF.net]
スレ主以外の方へ。

>>626
> >>30-31>>91-95で例示したように、この記事の戦略は小学生でも分かる簡単な話だ。

この>>30-31>>91-95に分かりづらいところがあれば教えてほしい。
冗談ではなく、本当に小学生でもわかる具体例だと俺は思っているが、
それは俺の思い込みなのかもしれない。

率直な意見を伺いたい。
分からないところがあれば補足する。



706 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 16:04:58.06 ID:tEqEfy29.net]
>>635-638
どうも。スレ主です。
やっと、数学スレらしくなってきたね
ありがとう

私スレ主としては、正直、時枝解法がYesかNoかには、大した意味はない
というか、時枝解法が成り立つなら、その成り立つ数学的背景は何か?
いわば、その成り立つ数学的な原理の方に興味がある

かつ、時枝解法が成り立つとして、その限界はなんなのか? 限界はないかも知れないが・・
>>633は、時枝解法に対する数学的考察だよ

現時点では、直感的には、時枝解法は、投稿記事で自ら時枝コメントしている"(1)無限を直接扱う"というトリックだと思っている
だから、>>559-560で、時枝のいう”(2)有限の極限として間接に扱う”モデルを作ってみた

ところで、「記事の問題Bをわざわざ別の問題に置き換え、話を分かりづらくするような議論には関与しない。」>>632は、私のスタイルとは違う
時枝記事を、鵜呑みにしろとでも? まあ、普通こういう記事は、本来批判的に読むべきもの

そして、自分の既に学んだ数学的知識や理論に当てはめて、自分で考えて行くべきもの
あなたみたいに、時枝解法がYesかNoを問題するスタイルとは違うかもしれないがね

>>559-560は、いま自分の中にある数学的知識や理論を元に、時枝解法を切ってみたってこと
時枝記事の"(1)無限を直接扱う"よりも、”(2)有限の極限として間接に扱う”が、もし可能ならまっとうなやり方だという主張には納得しているし

707 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 16:20:06.40 ID:tEqEfy29.net]
>>637
どうも。スレ主です。
ID:hte2rADGさん、レスありがとう

1.”数列をCn=An + Bnと書くとAnのある項から先が全て0になり・・・Cm=Bmとなる部分において数当てが可能”というのは、一つのモデルとは認めるとしても
  「Anのある項から先が全て0」という仮定が、常に成り立つとは言えない
2.”ある数列の中にその項の組によって構成されるパターン・・・”というのは、あまり理解できないが
   擬似乱数(https://ja.wikipedia.org/wiki/%E6%93%AC%E4%BC%BC%E4%B9%B1%E6%95%B0 )の話に似ている気がする
   「真の乱数列は本来規則性も再現性も無いものであり、その定義から、確定的な計算によって求めることはできない(例:サイコロを振る時、今までに出た目から次に出る目を予測するのは不可能)。
    一方、擬似乱数

708 名前:列は確定的な計算によって作るので、その数列は確定的である。また、生成法と内部状態が既知であれば、予測可能でもある。
    一般のシミュレーション等には十分な性能を持った擬似乱数列生成法であっても、暗号の応用には不適であり、そのまま使用してはならない。
    暗号で使用する擬似乱数列については暗号論的擬似乱数の節および暗号論的擬似乱数生成器の記事を参照。」
3.”代表元を用いた数当て以前に数当てが可能な無限実数列は非可算無限個ある・・・数の組のパターンを適当にならべたもの”については、そこまで行くと、全く元の問題と乖離している気がする

でも、またレスお願いしますよ
[]
[ここ壊れてます]

709 名前:132人目の素数さん mailto:sage [2016/05/05(木) 16:31:06.33 ID:pY2PAdlC.net]
スレ主にピッタリのサイトを挙げよう。正規数
https://ja.wikipedia.org/wiki/%E6%AD%A3%E8%A6%8F%E6%95%B0
の定義のところを見て、
>Σ を r個の文字の集合(アルファベット)とする。Σ∞ で Σ の元からなる無限列全体の集合を、
>Σ* で有限列全体の集合を表すものとする。これらの集合の元は文字列 (string) とみなす。
>自然数(本記事では 1 以上の整数を意味する)n、Σ∞ の元 S、Σ* の元 w に対し、
>N_S(w,n) で「S の最初の n 個の列に w が現れる回数」を表すものとする。
>例えば、S = 01010101... に対して N_S(010,8) = 3 である。
のところを見て、Σ=R、r=card(R)、Σ∞を無限実数列の空間、Σ*を有限実数列の空間
としたときに、lim_{n→+∞}N_S(w,n) がどうなるか考えてみ。
Σ=R、r=card(R)、Σ∞が無限実数列の空間、Σ*が有限の実数列の空間
のときは、N_S(w,n) は「無限実数列S の最初の n 個の列に 有限実数列w が現れる回数」となる。
n→+∞ のときは、lim_{n→+∞}N_S(w,n) が、無限実数列Sの最初の無限個の箱にwが入っている回数となる。
有限実数列wはどのように取っても構わない。勿論、wは唯1つの実数としてもよい。
だが、lim_{n→+∞}N_S(w,n)=0 なので、n→+∞ とすると、最初の無限個の箱に入っていた実数が消えて、
パラドックスが生じる。スレ主はこのような場合を考えていて、スレ主の考えに則って確率を0とすることは不可能。

710 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 17:43:23.01 ID:tEqEfy29.net]
>>635 に戻る
>記事は『"箱が無限個あるならば"中身を当てる戦略がある』と言っているのだ
>お前は>>559-560で、有限個の箱に対して戦略が機能しないことを延々と語っているが、無意味である

1.再度書くと、>>639「時枝記事の"(1)無限を直接扱う"よりも、”(2)有限の極限として間接に扱う”」を実行した
  そして、このモデルでは、有限の極限も示したよ。だから、時枝の方針通り

2.また>>627に書いたように、同値関係とそれによる商集合の取り方は、複数可能だ

3.いみじくも、時枝が記事のP36に書いたように、「念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は20日番目から先一致する」と
  そして、「2015番目から先一致する」という同値関係とそれによる商集合の取り方は、可能だ。が、2015番目に固定することはできない(していない)!
  かつ、2016番目,2017番目,2018番目・・・といくらでも、大きな数が採用できる。
  しかし、2015番目による商集合と例えば2016番目による商集合とを混在させることはできない!

4.では、一体何番目の数を採用して商集合を作るのか?
  再度強調しておくが、数学的には”「2015番目から先一致する」という同値関係とそれによる商集合の取り方は、可能”だよ
  だが、時枝解法に対して、一体何番目の商集合を採用するのが適切なのか?
  そこを、掘り下げたのが、>>559-560

5.そして、時枝記事P36では「実数列の集合R^Nを考える.s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈ R^Nは,ある番号から先のしっぽが一致するヨn0:n >= n0 → sn=sn' とき 同値s 〜 s'と定義しよう(いわばコーシーのべったり版)」だと
  この記事の書きぶりでは、n0は有限の整数だろう。だが、時枝記事のn0は(数学として)いくらだ?
  上記4に記したように、いったい時枝は「n0は有限値のいくらに設定するのか?」と批判しているのだ

6.そこをぼやかして、時枝は”記事の書きぶりでは、n0は有限の整数”→”実は、n0は無限大”というのか? これがトリックだろう

7.また、上記6の通りならば、時枝も、n0→∞としていることになる(有限からの極限)

711 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 17:45:30.94 ID:tEqEfy29.net]
>>641
どうも。スレ主です。
面白いね GJ!
考えてみるよ(^^

712 名前:T mailto:sage [2016/05/05(木) 17:55:00.39 ID:aGwgFNeF.net]
>>642
> そして、「2015番目から先一致する」という同値関係とそれによる商集合の取り方は、可能だ。が、2015番目に固定することはできない(していない)!
> かつ、2016番目,2017番目,2018番目・・・といくらでも、大きな数が採用できる。

お前が記事の同値関係について全く理解していないことがよく分かった。
言い逃れはできない。上の文章がその証拠である。

>>639
> かつ、時枝解法が成り立つとして、その限界はなんなのか? 限界はないかも知れないが・・

そんな深遠なことを考えるのは100年はやい。

713 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 17:57:53.01 ID:tEqEfy29.net]
>>641
どうも。スレ主です。
考えてみた

が、「数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。」とあるよね
また、「正規数であることが判明している具体的な数は非常に限られている。例えば、2の平方根、円周率、ネイピア数はそれぞれ正規数だと信じられているが、その通りか否かは未だ謎である。」とも

一方、時枝記事P36冒頭では、「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.」とある

だから、時枝記事では「どんな実数を入れるかはまったく自由」であって、正規数の「無限小数表示において数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質」は、保証できないと思うけど、どうよ

714 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 18:00:58.42 ID:tEqEfy29.net]
>>644

ごたくは良いから、あんたの同値関係の理解を書けよ

>>639が深遠? 意味不明

715 名前:T mailto:sage [2016/05/05(木) 18:08:11.38 ID:aGwgFNeF.net]
>>642
> この記事の書きぶりでは、n0は有限の整数だろう。だが、時枝記事のn0は(数学として)いくらだ?
> 上記4に記したように、いったい時枝は「n0は有限値のいくらに設定するのか?」と批判しているのだ
>
> 6.そこをぼやかして、時枝は”記事の書きぶりでは、n0は有限の整数”→”実は、n0は無限大”というのか? これがトリックだろう

まったく筋違いである。
すべてはお前が同値関係を理解していないことが原因だ。

つまりスレ主は
> ヨn0:n >= n0 → sn=sn' とき 同値s 〜 s'と定義
を読み間違えているのである。

この間違いは一目瞭然。言い逃れはできない。



716 名前:T mailto:sage [2016/05/05(木) 18:28:36.69 ID:aGwgFNeF.net]
>>646
> ごたくは良いから、あんたの同値関係の理解を書けよ

は?

> ある番号から先のしっぽが一致するヨn0:n >= n0 → sn=sn' とき 同値s 〜 s'と定義

って書いてあるじゃん。そのまんまだろうよw

>>642
> いったい時枝は「n0は有限値のいくらに設定するのか?」と批判しているのだ

>>642、特に上の1文などは個人的にとても感慨深い。
4ヶ月半もたって、こんな基本的な、スタート地点の基本事項すら、分かっていなかったのかと。
議論が噛み合わないはずであるw

なぜこうも議論が噛み合わないか、>>642によってすべてが腑に落ちた。
スレ主との議論は満足満腹、これ以上の議論は俺にとって不要である。

717 名前:132人目の素数さん [2016/05/05(木) 18:37:40.10 ID:E9bznHwr.net]
これだとεδもわからないレベルだろ

718 名前:132人目の素数さん [2016/05/05(木) 18:52:05.96 ID:uBR/xJ3i.net]
いや、実際スレ主は基礎科目すらちゃんと勉強してないよ
何となく興味を持ったとこだけつまみ食い
だから知識がスカスカ
上から目線で教えたがるけどね

719 名前:現代数学の系譜11 ガロア理論を読む [2016/05/05(木) 21:44:25.08 ID:tEqEfy29.net]
同値類ね〜

>>560に戻ろうか
”問題A4:箱が六個”を考えてみよう。m=2,n=3とできる。2列で、列の長さ3。列の長さ3の数列を類別し、代表元を決めておく。

s = (s1,s2,s3 ),s'=(s'1, s'2, s'3 )∈ R^3

この場合、
1)先頭から3番目、つまりs3をしっぽと見て、同値類を考えることができる。
  つまり、s = (s1,s2,s3 ),s'=(s'1, s'2, s3 ) のとき、s 〜 s' (∵ s3 が一致)
  時枝にならって、推移律を見よう。s' 〜 s''のとき、s''=(s''1, s''2, s3 ) となるから(∵ s3 が一致)
  s 〜 s''となり、推移律成立。この場合 n0=3
2)同様に、先頭から2番目、つまりs2,s3をしっぽと見て、同値類を考えることができる。
  つまり、s = (s1,s2,s3 ),s'=(s'1, s2, s3 ) のとき、s 〜 s' (∵ s2,s3 が一致)
  時枝にならって、推移律を見よう。s' 〜 s''のとき、s''=(s''1, s2, s3 ) となるから(∵ s2,s3 が一致)
  s 〜 s''となり、推移律成立。この場合 n0=2
3)つまり、列の長さ3の数列を類別するとき、上記のように、n0=3と、n0=2の二つの類別が考えられる
4)しかし、n0=3とn0=2の二つの類別を混在させることはできない。
  ∵例えば、s = (s1,s2,s3 )は、二つの同値類( x, y, s3 )にも、( x,s2, s3 )にも属するから(但し、x, y,

720 名前:は任意の数を表す)

さて、
A)列の長さnの数列を類別するとき、同様に、n0=2 〜 n とする類別が考えられる
  推移律が成り立つことは、上記同様に示せる。また、上記同様に、二つ以上の類別を混在させることはできない。
  ∵一つの集合の元が、複数の同値類に属することになり、同値類別が一意にならない
B)列の長さnにつき、極限として、n→∞(可算)を考えることができる
  この場合、n0を任意の整数に選ぶことができるだろう。しかし、A)と同様に、二つ以上の類別を混在させることはできない。

おかしいですか?
[]
[ここ壊れてます]

721 名前:T mailto:sage [2016/05/05(木) 22:46:42.71 ID:aGwgFNeF.net]
>>651
> おかしいですか?

なるべく噛み砕いて説明するが、分からなければ質問してほしい。

(1)R^3, R^Nの類別について:

> この場合、n0を任意の整数に選ぶことができるだろう。

スレ主が考えている同値類は、ある自然数n0を固定し、
『n0以降が一致するn >= n0 → sn=sn' とき 同値s 〜 s'と定義』
というものだ。自然数n0を固定しているのが特徴。

そのような同値類を考えることはスレ主の自由だが、
しかし記事の同値類の定義はそうではないのである。

> ある番号から先のしっぽが一致するヨn0:n >= n0 → sn=sn' とき 同値s 〜 s'と定義

つまり、自然数n0は固定しないのである。
n >= n0 → sn=sn'が成り立つn0∈Nが存在するとき同値、という定義である。
なおこの同値関係はR^3でもR^Nでも成立する。

(2)類別の混在について:

> 二つの類別を混在させることはできない。

混在させたければさせてもよい。

たとえば剰余に絡んだ問題があるとして、
自然数をmod2とmod5で考えたいなら、両方を考えてよい。
いま考えている合同式がmod2なのかmod5なのかを混同しなければよい。
そのような問題を解いた経験が一度や二度はあるのではないか。

だが、時枝の問題では別の異なる同値類を持ち出す必要はまったくない。

722 名前:132人目の素数さん [2016/05/06(金) 00:34:10.54 ID:qujJ4ROL.net]
マジ?そこからわかってなかったの?これは酷い

723 名前:132人目の素数さん mailto:sage [2016/05/06(金) 04:44:51.53 ID:GuJKcL8E.net]
>>645
>が、「数学における正規数(せいきすう、normal number)とは、無限小数表示において数字が
>一様に分布しており、数字の列が現れる頻度に偏りがないという性質を持つ実数である。」とあるよね
そのあとに、
>より正確な定義については「定義」の節を参照のこと。
と書いてあるだろう。そこで、>>641を書いた。具体的な例の1つとして、10進小数で表された実数を
文字と見なし、実数体Rを非可算無限個の10進小数で表された実数全体の集合と見なすことで、
可算無限個の実数を並べるようなことがある。尚、card(R)=c なので、実数体Rを非可算無限個の
10進小数で表された実数全体の集合と見なすことは出来る。そのようにして>641で挙げた具体例が、
>「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかは
>まったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.」
の場合に当たる。具体例を挙げただけである。そのようにしてスレ主の方針に倣い n→+∞ とすると、
lim_{n→+∞}N_S(w,n)=(+∞)・0=0 となり、最初から可算無限個の箱の中の実数はすべて消える。このように、
スレ主の方針で考えようとすると、仮定に反して矛盾が生じるので、スレ主の方針では n→+∞ とすることは出来ない。
>時枝記事では「どんな実数を入れるかはまったく自由」であって、正規数の「無限小数表示において
>数字が一様に分布しており、数字の列が現れる頻度に偏りがないという性質」は、保証できないと思うけど、どうよ
可算無限個ある箱に実数を入れて出来るような実数列(モドキ)が正規かどうか
を考えるときは、このような実数列(モドキ)が正規かどうかを定める必要がある。
有理数のように或る小数点以下の桁の数字の列が循環するような10進正規数を考えることもあれば、
無理数のように小数点以下の桁の数字の列が循環しないような10進正規数を考えることもある。

724 名前:132人目の素数さん mailto:sage [2016/05/06(金) 05:19:01.24 ID:GuJKcL8E.net]
>>645
>>654の一番下に近い
>有理数のように或る小数点以下の桁の数字の列が循環するような10進正規数を考えることもあれば、
>無理数のように小数点以下の桁の数字の列が循環しないような10進正規数を考えることもある。
の部分の2つの「10進正規数」は、どっちも「10進小数で表された実数」に訂正。

725 名前:132人目の素数さん [2016/05/06(金) 09:57:20.89 ID:Pq4YNc6m.net]
>数III方式 ガロアの理論 単行本(ソフトカバー) 矢ヶ部巌 (著)出版社: 現代数学社; 新装版 (2016/2/25)
最初に読む本としてはおすすめしない
ガロア理論がある程度どういう理論であるかがわかってから読むと得るものがある
代数方程式に関する計算(特にチルンハウス変換)、群論の議論など
自分で再構成整理できるぐらいの力がないと最後まで読んでも肝心のガロア理論
が分からないまま終わる



726 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 19:22:47.14 ID:Ngl6jvon.net]
>>6

727 名前:52
どうも。スレ主です。
だんだん数学スレらしくなってきたね。ありがとう

では、質問しよう

Q1.n0は、有限と考えるのか? それとも、n0→∞(可算)を考えることができるのか?

Q2.自然数n0は固定しないのは、結構だが、時枝記事>>4「問題に戻り,閉じた箱を100列に並べる.」という。
  では、100列それぞれのn0は、どうやって決めるのか? 恣意的に決めるのか? それとも、数列から自然に決まるのか?
[]
[ここ壊れてます]

728 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 19:55:10.48 ID:Ngl6jvon.net]
>>654-655
どうも。スレ主です。
レスありがとう
だんだん数学スレらしくなってきたね

正確な定義ね・・・
その定義で、「Σ を r 個の文字の集合(アルファベット)とする。」とあるよね https://ja.wikipedia.org/wiki/%E6%AD%A3%E8%A6%8F%E6%95%B0

そして、「Σ^∞ で Σ の元からなる無限列全体の集合を、Σ* で有限列全体の集合を表すものとする。
これらの集合の元は文字列 (string) とみなす。
自然数(本記事では 1 以上の整数を意味する)n、Σ∞ の元 S、Σ* の元 w に対し、NS ( w, n ) で「S の最初の n 個の列に w が現れる回数」を表すものとする。」とも

だから、正規数は、r 個の文字による文字列 (string)に関することなんだよね?
r は、有限。もし無限を考えるとしても、せいぜい可算無限。

一方、時枝問題に入れることのできる数は、「どんな実数を入れるかはまったく自由」>>2。だから、非加算無限の数が使えるってこと。
時枝問題の可算無限の箱により成す数列に対して、正規数の概念を当てはめるのは、ちょっと不味いだろう

ということで、よろしいですか?
でも、正規数は、知らなかったので、面白い話だよね

729 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 20:01:52.10 ID:Ngl6jvon.net]
>>656
どうも。スレ主です。

>最初に読む本としてはおすすめしない
>ガロア理論がある程度どういう理論であるかがわかってから読むと得るものがある

その意見には、かなり賛成
加えて、彌永か守屋のガロア原論文を併読することをお薦めする

「数III方式 ガロアの理論」は、ガロア原論文を読んでも分からないところが、おそらく結構出てくると思うが
それに対して参考になることが書いてあるし、歴史の流れが分かるから、ガロア先生こんなことを考えていたのかも・・と思えるところもあるよ

730 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 20:19:40.89 ID:Ngl6jvon.net]
>>618
どうも。スレ主です。
遠隔レス失礼

>>確かに、ガロアの方程式論の中で「正規部分群がなぜ重要なのか」は、お説の通り
>哀れな素人氏が聞きたかったのはこちらの方ではないのか?
>スレ主は読解力が足りないと思う。

確かにね。が、哀れな素人氏に分かる回答をするというのが、難しいんだよね
つい、自分に対する一般質問と思って、深く考えてしまったよ(^^
その点、>>567は、良い回答だよね

731 名前:132人目の素数さん [2016/05/06(金) 20:22:50.28 ID:qujJ4ROL.net]
線型、解析からやり直せ

732 名前:132人目の素数さん mailto:sage [2016/05/06(金) 20:38:27.79 ID:80EO5Gb/.net]
>>657
(同値な)実数列の組(s,s')ごとに、n0が違っていていいんだよ
n0が固定されていないというのは、そういう意味

733 名前:132人目の素数さん [2016/05/06(金) 23:12:11.83 ID:aVMj5OSD.net]
これは帰納法をn→∞でも成り立つとか考えちゃうタイプか

734 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 23:43:03.03 ID:Ngl6jvon.net]
数学の伝統的勉強法とは違うけど・・、メモしておく
www.amazon.co.jp/dp/4478067503
ずるい暗記術―――偏差値30から司法試験に一発合格できた勉強法 単行本(ソフトカバー) ? 2015/9/18 佐藤 大和 (著)

偏差値30の落ちこぼれ。
模試の成績も学年でダントツのビリ。
二浪の末、ギリギリで地方の国立大学に。
――そんな私がこの勉強法を編み出したのは、
最初に法科大学院の試験を受けるわずか2か月前のことです。
その後、約8倍の倍率のなか合格。
2年後には、司法試験になんと一発合格!

資格試験、英語、大学受験、入社試験ほか、
「答え」が存在する試験なら、効率的に結果が出る勉強法が、
この「ずるい暗記術」です。

■今までの勉強法を捨てた瞬間から人生は変わる!
■すべての順序を逆転させるだけでいい!

一般的な勉強法は、
「参考書

735 名前:読む→問題を解く→答えを確認する」
ですが、正しくは、
「答えを見る→問題を見る→参考書を読む」
です。

答えを知ることから始めると、驚くほど吸収力が変わります。
過去問を使ってから、参考書を読むとその差が分かるはずです。

理解しようとする必要もありません。
なぜなら、問題を解こうとすると、できない壁にぶちあたり、そして、勉強をやめるからです。
そうならないために、この勉強法は、最初に理解することを放棄しています。
でも、安心してください。答えが、「ウォーリー」の役割をしてくれるので、
おのずと理解している自分がいることに、後に気づきます。

本書では「ウォーリーをさがせ! 」でたとえていますが、
「ウォーリー」を知らないと、いくら誌面を見ても探せません。
ただの時間のムダです。
だから、「ウォーリー(=答え)」を知ることが大事なのです。
[]
[ここ壊れてます]



736 名前:現代数学の系譜11 ガロア理論を読む [2016/05/06(金) 23:45:59.38 ID:Ngl6jvon.net]
>>661-663
いいねー、君たち
頑張ってね。Tさんを応援して上げてね
でも、あれ? ミスリードしてないかな?(^^

737 名前:現代数学の系譜11 ガロア理論を読む [2016/05/07(土) 00:09:28.37 ID:7RaU0W0K.net]
これもついでにメモ
igakubu.info/
東大理三・東大医学部が話題のニュースをぶった斬る、超高学歴の「裏の常識」暴露サークル
会長: ゴッドフィンガー山岸

非公認サークル「東大学歴研究会」会長のゴッドフィンガー山岸です。軽く自己紹介を。
高三まで全教科赤点の馬鹿学生だったが、受験直前に覚醒し、半年間の独学で校内トップになった。
短期間で成績が上がりすぎて女子にキモがられるも、無視して直前の模試で偏差値90over、センター試験で9割7分を獲得し、合格最低点を80点以上上回り東京大学理科三類に現役合格。
大学に入学してからも家庭教師・塾講師として複数の受験生を国公立・私立医学部に合格させた実績を持つ自称「受験のスペシャリスト」。

738 名前:現代数学の系譜11 ガロア理論を読む [2016/05/07(土) 00:14:43.85 ID:7RaU0W0K.net]
ついでのついで
igakubu.info/2016todaihoteisikisp/
医学部4年 清水元喜さんにインタビュー! 2016/03/31

数学研究部は何をする?

一番のメインは数学書をゼミ形式で読もうというもの。

数学書は、僕も難しい本は読んでなかったんですけど、大学1〜3年生向けの本

(清水元喜さんは数学オリンピックでも銀メダルを獲得するほどの実力者だった。参考:数学オリンピック対策「王道」勉強法。参考書・問題集・塾など)

igakubu.info/matholympiad/
2016/04/04

科学オリンピック(物理オリンピック・化学オリンピック・生物オリンピック・地学オリンピック)の中でも圧倒的難易度と知名度を誇るといわれる数学オリンピックだが、猛者たちは具体的にどのように勉強しているのだろうか。

そこで今回は、IMO日本代表選手たちなどへの取材や調査から得られた、数学オリンピック対策「王道」の勉強法をまとめてみたいと思う。

■目次
?数学オリンピックとは?
?日本数学オリンピック予選の勉強法
?日本数学オリンピック本選の勉強法
?日本数学オリンピック春合宿の勉強法
?国際数学オリンピック(IMO)の勉強法
?その他の教材
?塾には行くべき?現代数学はやる必要がある?
?数オリ経験者は数学者になる人が多い?

739 名前:132人目の素数さん [2016/05/07(土) 00:23:28.57 ID:mGNLYvtR.net]
ついに逃げたか

740 名前:T mailto:sage [2016/05/07(土) 00:41:20.35 ID:jZuZyhNT.net]
>>665
そのような態度を取ることはありえない。
お前が同値類の定義を読み間違えたことは明らか。
同値類の定義の理解は記事を語る上で基本中の基本。
これが理解できなければ決定番号は理解できない。
同値類が分からない状態で時枝の記事の戦略など理解できるわけがない。
>>642>>651はお前が理解していなかった証拠である。

お前はいままで4ヶ月半に渡って、記事の序盤の基本事項すら理解せず、
議論のスタート地点にも立っていない状態で、
数学セミナーの記事を否定し、時枝氏を否定し、
議論相手である俺やその他の人間を馬鹿にしてきたのだ。
まずは自分が間違っていたことを認め、謝罪しろ。
>>665のようなふざけた態度を取ることは許さない。
ここは数学板であり、>>662はお前の質問(>>657)に対して誠実に回答した。
そのような人間に対して>>665のような態度を取るなどありえない。

>>665
> いいねー、君たち
> 頑張ってね。Tさんを応援して上げてね
> でも、あれ? ミスリードしてないかな?(^^

741 名前:132人目の素数さん [2016/05/07(土) 00:46:37.53 ID:mGNLYvtR.net]
真面目すぎワロタ

742 名前:132人目の素数さん mailto:sage [2016/05/07(土) 04:35:08.95 ID:Q1jCqyVd.net]
スレッドを立ててお山の大将気分を味わいたいという子供のスレだからな。
親切な大人が調子を合わせてあげているだけなのだろうし。
数学への大いなる愛を思い出して許してあげたらよいのではないか。

743 名前:132人目の素数さん [2016/05/07(土) 08:05:52.00 ID:S8wgyRwB.net]
自分にあった勉強法を確立できず、他人の勉強法をつまみ食い
肝心のガロア理論は身につきましたか?
群論、体論、線型代数どれも中途半端なままここまできた
このまま一生を終えていくのか もったいない

744 名前:132人目の素数さん [2016/05/07(土) 11:19:19.83 ID:11SBDfue.net]
>>663
それは駄目だとこの前教えといた
理解したかは知らん、多分駄目だろ

>>672
だから>>661をアドバイスしたんだが、恐らく聞かんだろうなあ

745 名前:現代数学の系譜11 ガロア理論を読む [2016/05/07(土) 11:20:31.94 ID:7RaU0W0K.net]
どうも。スレ主です。
余白が少なくなったので、新スレ立てた。あとは、新スレで

現代数学の系譜11 ガロア理論を読む19
wc2014.2ch.net/test/read.cgi/math/1462577773/

>>669
Tさん、どうも。スレ主です。
ミスリードされちゃった?

確かに、>>662の「(同値な)実数列の組(s,s')ごとに、n0が違っていていいんだよ n0が固定されていないというのは、そういう意味」
というのは、一見正しいし、初期は、私もそれで考えていた

が、なんかしっくりこない。それで、>>240辺りから、反省した
時枝先生のいう、>>176「(2)有限の極限として間接に扱う」を、しっかりやるべしと

確かに迷走している部分も多いだろう
が、>>639に書いたように、時枝解法がYesかNoかには、大した意味はないと思っている

むしろ、時枝解法が成り立つなら、その成り立つ数学的背景は何か? いわば、その成り立つ数学的な原理の方に興味がある
それについては、新スレの方に書いたので、読んで貰えれば幸いだ

>>651と数学的本質は変わっていないが、記号による混乱が生じたので、そこは変えた
記号を変えたので、>>657の質問は取り下げる。多分、同じような質問は、またすることになるだろうが

重ねていうが、確かに迷走して混乱させたかも知れないが、それが私のスタイル(普通こういう記事は、本来批判的に読むべきもの & 自分の既に学んだ数学的知識や理論に当てはめて、自分で考えて行くべきもの)
なお、「時枝解法が成り立つとして、その限界はなんなのか?」>>644を考えるのは、深遠でもなんでもないだろうさ。数学を考える普通の態度だと思うよ



746 名前:132人目の素数さん mailto:sage [2016/05/07(土) 12:30:47.46 ID:Q1jCqyVd.net]
数学は、前提に欠けや矛盾があるといくら論理的に考えても正しい結論に達さないから、
そこは気をつけてくださいね。

747 名前:132人目の素数さん mailto:sage [2016/05/07(土) 13:23:15.28 ID:Q1jCqyVd.net]
直観的に、すべての前提を正しくつかんでいて正しい結論に達する人はま

748 名前:黷ノいますけどね。
「今は証明という方法があって(数学は)やりやすくなった」とか
「厳密さは時代の関数」だとか言った数学者が歴史上にいない訳ではないんですけど、
効率という事を考えると、ね。
[]
[ここ壊れてます]

749 名前:132人目の素数さん mailto:sage [2016/05/07(土) 14:03:43.89 ID:Q1jCqyVd.net]
数学全体が代数化しているそうだが、思えば高校の教科書に
三角関数の加法定理の証明が幾何的証明しか載っていなかったのが
今となっては残念だったなぁ。今はネットがあるから環境が
ぜんぜん違うが。まあこれは仕方がない。

750 名前:132人目の素数さん [2016/05/07(土) 14:05:52.22 ID:ZAlSzzJz.net]
解析的証明は工房には無理だろ

751 名前:132人目の素数さん [2016/05/07(土) 14:07:57.91 ID:ZAlSzzJz.net]
もちろん、きちんと分かる工房だってちゃんといる
教科書に載せるレベルとして、の意味な

752 名前:132人目の素数さん mailto:sage [2016/05/15(日) 11:18:28.80 ID:ZnGNc9Q+.net]
【AV騒動】
紅白出場 ラブライブ! 新田恵海

【 新田恵海 】出演したと疑惑のセクシーポーズビデオの新作第2弾を配信 全編が未公開…完全蔵出し映像
hayabusa8.2ch.net/test/read.cgi/mnewsplus/1463272674/

5/12配信開始
www.mgstage.com/product/product_detail/SIRO-2719/

検証まとめ
i.imgur.com/7wdzBD4.jpg
i.imgur.com/UxORv2b.jpg
i.imgur.com/5a9Td6Q.jpg
i.imgur.com/rMKzVN1.jpg
i.imgur.com/XbQrE4v.gif
i.imgur.com/KOKw4uo.gif

再販
i.imgur.com/88G853v.jpg
https://pbs.twimg.com/media/CfSBLqpUMAAEXa8.jpg
i.imgur.com/JQ14P86.jpg
https://pbs.twimg.com/media/Cf-WvNuWQAA1ast.jpg
i.imgur.com/70QcWCc.jpg
pbs.twimg.com/media/CgFCja_UUAAjutB.jpg


ラブライブ! 板
karma.2ch.net/lovelive/

声優個人 板
hanabi.2ch.net/voiceactor/

753 名前:132人目の素数さん mailto:sage [2016/06/07(火) 20:17:55.83 ID:/HJlUCjO.net]
ガロア理論かっこいいからガロア理論勉強しようという考え方は
数学ではドツボだお

754 名前:132人目の素数さん mailto:sage [2016/06/10(金) 21:25:45.36 ID:zxNvKdIQ.net]
複雑な代数方程式を見ただけで、頭の中に鮮明なイメージとして描くことが出来る人間は、どのくらいいるだろうか?
将棋の中原名人は、将棋の読みのイメージがぼんやりとしか見えなくなったことが引退を決意した理由だと言っている。
天才とはそういう人のことなのだ。
天性の素質を持ったものが、血みどろの努力をすることで、より鮮明なイメージを描くことができるようになるが、素質のない人間には無駄な努力になる。

755 名前:132人目の素数さん mailto:sage [2016/06/10(金) 21:36:29.59 ID:4HBwvHio.net]
>>682
将棋みたいなもんに例えて数学語るやつ…
それはトウシロウか数学的無能力者



756 名前:132人目の素数さん mailto:sage [2016/06/10(金) 21:41:58.73 ID:zxNvKdIQ.net]
或いは、アーベルのような男だろう。

757 名前:132人目の素数さん mailto:sage [2016/06/18(土) 14:27:56.73 ID:hWZwlACr.net]
スレ主脂肪

758 名前:132人目の素数さん [2016/06/24(金) 10:22:44.52 ID:mTHeQwSk.net]
     【核武装】      日本会議  >>>  日本国民      【被爆死】



市川海老蔵さん一家は寿司三昧 これは危ない! 一家全員倒れてしまうかも
岩手の震災瓦礫で作られた津波バイオリンの奏者(53)、下顎歯肉癌で死去

三菱商事の核ミサイル担

759 名前:当重役は安倍晋三の実兄、安倍寛信。これがフクイチで核弾頭ミサイルを製造していた疑惑がある。書けばツイッターで速攻削除されている。
https://twitter.com/toka iamada/status/664017453324726272



りうなちゃんは去年の暮れ、脳腫瘍のために亡くなった。2歳を過ぎたころ「放射能があるから砂は触れない」「葉っぱは触っちゃだめ」
https://twitter.com/Tom oyaMorishita/status/648628684748816384

UFOや核エネルギーの放出を見ることはエーテル視力を持つ子供たちがどんどん生まれてくるにつれて次第に生じるでしょう。

マイト レーヤは原発の閉鎖を助言されます。
マイト レーヤによれば、放射能は自然界の要素を妨害し、飛行機など原子のパターンが妨害されると墜落します。
マイト レーヤの唇からますます厳しい警告と重みが発せられることを覚悟しなさい。彼はいかなる人間よりもその危険をよくご存じです。

福島県民は発電所が閉鎖されれば1年か2年で戻って来られるでしょう。
日本の福島では多くの子どもたちが癌をもたらす量の放射能を内部被ばくしています。健康上のリスクは福島に近づくほど、高まります。
日本の近海から採れた食料を食べることは、それほど安全ではありません。汚染されたかもしれない食料品は廃棄すべきです。
日本もさらに多くの原子力発電所を作ろうとしています。多くの人々が核の汚染の影響で死んでいるのに、彼らは幻想の中に生きています。
問題は、日本政府が、日本の原子力産業と連携して、日本の原子力産業を終わらせるおそれのあることを何も認めようとしないことです。

呼吸そのものが脅かされています。
汚染による死者の数は、他のいかなる原因よりも多いです。河川の汚染は社会に対する犯罪と見られなければなりません。
免疫システムの崩壊の結果がアレルギーです。人々は肺炎やインフルエンザやHIV/エイズなどに抵抗できなくなっています。
[]
[ここ壊れてます]

760 名前:132人目の素数さん mailto:sage [2016/06/24(金) 22:19:26.38 ID:WMeXmjZh.net]
最近、肺がんが流行っているよな。

761 名前:◆2VB8wsVUoo mailto:sage [2016/06/25(土) 11:16:35.91 ID:zD6+8g8V.net]
最近、馬鹿板が過疎っているよな。



762 名前:132人目の素数さん [2016/06/26(日) 09:18:39.04 ID:F+x3RVtD.net]
そうだよ哲也
過疎っている
哲也とわたしの多年にわたる努力の成果だよw

763 名前:132人目の素数さん [2016/08/18(木) 03:42:08.14 ID:vBvKPzg4.net]
1(9)テリヤキバーガー味
2(8)やさいサラダ味
3(6)たこ焼き味
4(3)チキンカレー味
5(5)牛タン塩味 
6(7)コーンポタージュ味
7(4)エビマヨネーズ味 
8(2)めんたい味
9(1)シュガーラスク味

764 名前:132人目の素数さん [2017/05/17(水) 12:11:52.61 ID:UXSwhEY7.net]
漏れら極悪非道のageブラザーズ!
今日もネタもないのにageてやるからな!
 ̄ ̄∨ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
  ∧_∧   ∧_∧    age
 (・∀・∩)(∩・∀・)    age
 (つ  

765 名前:ヲ (   ⊂) age
  ( ヽノ   ヽ/  )   age
  し(_)   (_)J
[]
[ここ壊れてます]



766 名前: mailto:sage [2017/05/17(水) 14:55:10.88 ID:a+M0ej/B.net]


767 名前: mailto:sage [2017/05/17(水) 14:55:32.08 ID:a+M0ej/B.net]


768 名前: mailto:sage [2017/05/17(水) 14:55:55.39 ID:a+M0ej/B.net]


769 名前: mailto:sage [2017/05/17(水) 14:56:18.84 ID:a+M0ej/B.net]


770 名前: mailto:sage [2017/05/17(水) 14:56:40.20 ID:a+M0ej/B.net]


771 名前: mailto:sage [2017/05/17(水) 14:57:02.61 ID:a+M0ej/B.net]


772 名前: mailto:sage [2017/05/17(水) 14:57:24.01 ID:a+M0ej/B.net]


773 名前: mailto:sage [2017/05/17(水) 14:57:54.34 ID:a+M0ej/B.net]


774 名前: mailto:sage [2017/05/17(水) 14:58:17.02 ID:a+M0ej/B.net]


775 名前: mailto:sage [2017/05/17(水) 14:58:40.67 ID:a+M0ej/B.net]




776 名前:132人目の素数さん [2017/06/26(月) 00:06:53.11 ID:ipZ9T/tT.net]


777 名前:132人目の素数さん [2017/07/21(金) 10:17:39.74 ID:hHnI1U1h.net]
なんで乱立しているんだ?
18,22,23,24,26,28

778 名前: mailto:sage [2017/07/21(金) 10:26:56.41 ID:9Y4dp9MH.net]


779 名前:132人目の素数さん [2017/07/21(金) 22:21:10.60 ID:m0+e1Vzn.net]
ネトラレ男ってホント?

780 名前: mailto:sage [2017/07/22(土) 01:44:51.24 ID:UuLyqCEB.net]
〒〒〒馬鹿板は悪い習慣であり、この行為は脳を悪くする。そやし足を洗いなさい。〒〒〒



781 名前: mailto:sage [2017/07/22(土) 02:48:45.24 ID:UuLyqCEB.net]


782 名前: mailto:sage [2017/07/22(土) 02:49:05.13 ID:UuLyqCEB.net]


783 名前: mailto:sage [2017/07/22(土) 02:49:22.58 ID:UuLyqCEB.net]


784 名前: mailto:sage [2017/07/22(土) 02:49:39.22 ID:UuLyqCEB.net]


785 名前: mailto:sage [2017/07/22(土) 02:49:55.15 ID:UuLyqCEB.net]




786 名前: mailto:sage [2017/07/22(土) 02:50:10.83 ID:UuLyqCEB.net]


787 名前: mailto:sage [2017/07/22(土) 02:50:26.91 ID:UuLyqCEB.net]


788 名前: mailto:sage [2017/07/22(土) 02:50:41.80 ID:UuLyqCEB.net]


789 名前: mailto:sage [2017/07/22(土) 02:51:02.04 ID:UuLyqCEB.net]


790 名前: mailto:sage [2017/07/22(土) 02:51:19.62 ID:UuLyqCEB.net]


791 名前: mailto:sage [2017/07/22(土) 10:33:59.52 ID:Nq6AS9M4.net]
$

792 名前: mailto:sage [2017/07/22(土) 11:22:06.15 ID:UuLyqCEB.net]


793 名前:過去ログ ★ [[過去ログ]]
■ このスレッドは過去ログ倉庫に格納されています






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<507KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef