13.1 整列集合 順序集合 (X, ≦) は, すべての空でない部分集合が最小元をもつとき, 整列集 合であるといい, そのような順序を整列順序という. 定義から整列集合は必ず全 順序集合であることに注意しよう. 実際, a, b ∈ X に対して集合 {a, b} は X の 空でない部分集合になるから, それは最小元をもつ. 最小元は a または b であ るが, それが a であれば a ≦ b となるし, それが b であれば b ≦ a となる. これは, 任意の a, b ∈ X が比較可能であることを意味し, X は全順序集合である ことがわかる. 定義から空でない整列集合 X それ自身は最小元 min X をもつ.
一方, 実数 R, 有理数 Q, 整数 Z は通常の大小関係 >=< によって全順序集合で あるが, いずれも整列集合ではない. それらには最小元がないからである. だか らと言って, 実数や有理数を 0 以上のものに限っても整列集合にはならない. た とえば, X = [0, +∞) の部分集合 A = (0, +∞) には最小元が存在しない. ここで, 自然数を並び替えて得られる順序の例をいくつか考えておこう.
例 13.2 自然数 x, y ∈ N に対して, x ≧ y のとき x ≦' y と定義すれば, 全順序 集合 (N, ≦') が得られる (問 12.6). 要は, . . . 4 3 2 1 のように, 自然数を通常とは逆順に並べることに相当する. この配列には min N が存在しないから, (N, ≦') は整列集合ではない.
例 13.4 自然数を偶数と奇数を分けて, 偶数同士, 奇数同士では通常の大小を考 え, 偶数と奇数では奇数の方が小さいとする順序関係 ≦1 を導入する. この順序 に関して自然数を書き並べれば, 1 3 5 . . . 2 4 6 . . . (13.2) のような配列が得られる. こうして得られる全順序集合 (N, ≦1) は整列集合に なる. 実際, 任意の空でない部分集合 A ⊂ N が与えられたとき, A が奇数を含 めば A に含まれる奇数のうち最小のものが min A を与え, A が偶数のみから なるときは, A に属する偶数のうち最小のものが min A を与える. 次に, 整列集合の簡単な
178 名前:性質を述べておく. 定 理 13.5 整列集合の部分順序集合は整列集合である.
p5 13.2 整列集合の基本定理 本節では, 整列集合が 2 つ与えられたとき, どちらか一方は他方を延長したも のであるという基本定理を証明する. そのために切片という概念が重要になる. (X, ≦) を整列集合とする. a ∈ X に対して X?a? = {x ∈ X | x < a} を X の a による切片という.
定 理 13.14 整列集合 X, Y に対して次の 3 つの場合のうち, いずれか 1 つだ けが成り立つ. (i) X と Y は順序同型である. (ii) X と Y の切片が順序同型である. (iii) X の切片と Y が順序同型である.
www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-3_shugo-enzan.pdf GAIRON-book : 2018/6/21(19:23) 第3章 集合の演算 P11 3.3 集合の公理 (S10) 選択公理 ここでも集合の元はまた集合であることを思い出す. X は空 集合を元として含まず, 任意の 2 つの元が互いに素であるとき, すべての x ∈ X に対して x ∩ A が 1 個の元だけからなるような集合 A が存在する. ∀X((Φ not∈ X ∧ ∀x ∈ X∀y ∈ X(x≠ y → x ∩ y = Φ))→ ∃A∀x ∈ X∃t(x ∩ A = {t}))
直感的には, A は X の元であるところの各集合から 1 個ずつ元を取り出してま とめたものであり, それが集合になることを保証している. あるいは, このよう な操作で集合が構成できることを保証している. この A を選択集合と呼ぶ. 選 択公理の述べ方には何通りかあり, さらに同値な命題もいろいろ知られている. 第 11 章で詳しく扱う (第 13.3 節も見よ).
(補足の英文資料) https://en.wikipedia.org/wiki/Choice_function A choice function (selector, selection) is a mathematical function f that is defined on some collection X of nonempty sets and assigns to each set S in that collection some element f(S) of S. In other words, f is a choice function for X if and only if it belongs to the direct product of X.
An example Let X = { {1,4,7}, {9}, {2,7} }. Then the function that assigns 7 to the set {1,4,7}, 9 to {9}, and 2 to {2,7} is a choice function on X.
Choice function of a multivalued map Given two sets X and Y, let F be a multivalued map from X and Y (equivalently, F:→ P(Y) is a function from X to the power set of Y). A function f:→ Y is said to be a selection of F, if: ∀ x∈ X,(f(x)∈ F(x)),. The existence of more regular choice functions, namely continuous or measurable selections is important in the theory of differential inclusions, optimal control, and mathematical economics.[2] See Selection theorem.
Preliminaries Given two sets X and Y, let F be a multivalued map from X and Y. Equivalently, F:→ P(Y) is a function from X to the power set of Y.
A function f:→ Y is said to be a selection of F if ∀ x∈ X:,,,f(x)∈ F(x),. In other words, given an input x for which the original function F returns multiple values, the new function f returns a single value. This is a special case of a choice function.
The axiom of choice implies that a selection function always exists; however, it is often important that the selection have some "nice" properties, such as continuity or measurability. This is where the selection theorems come into action: they guarantee that, if F satisfies certain properties, then it has a selection f that is continuous or has other desirable properties.
(下記の choice function ”∀ X[Φ not∈ X⇒ ∃ f: X→ ∪ X ∀ A∈ X,(f(A)∈ A)]”が一番分かり易いと思う) https://en.wikipedia.org/wiki/Axiom_of_choice Axiom of choice
Statement A choice function is a function f, defined on a collection X of nonempty sets, such that for every set A in X, f(A) is an element of A. With this concept, the axiom can be stated: Axiom ? For any set X of nonempty sets, there exists a choice function f defined on X. Formally, this may be expressed as follows: ∀ X[Φ not∈ X⇒ ∃ f: X→ ∪ X ∀ A∈ X,(f(A)∈ A)],. Thus, the negation of the axiom of choice states that there exists a collection of nonempty sets that has no choice function.
Each choice function on a collection X of nonempty sets is an element of the Cartesian product of the sets in X. This is not the most general situation of a Cartesian product of a family of sets, where a given set can occur more than once as a factor; however, one can focus on elements of such a product that select the same element every time a given set appears as factor, and such elements correspond to an element of the Cartesian product of all distinct sets in the family. The axiom of choice asserts the existence of such elements; it is therefore equivalent to:
Given any family of nonempty sets, their Cartesian product is a nonempty set. (引用終り) 以上
超限帰納法、下記だね (>>163より 東北大 尾畑研) www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-13_WellOrdered.pdf 第13章 整列集合 GAIRON-book : 2018/6/21(19:23) (抜粋) P12 超限帰納法 自然数の配列にもとづく数学的帰納法を整列集合にもとづく証 明法に拡張したものが超限帰納法である. 整列可能定理によってその適用範囲 は極めて広い. 定 理 13.18 (超限帰納法) (X, ≦) を整列集合とし, P(x) を x ∈ X を変数とす る命題関数とする. もしすべての x ∈ X に対して条件「y ≺ x を満たすすべて の y ∈ X に対して P(y) が成り立てば P(x) も成り立つ」が成り立てば, すべ ての x ∈ X に対して P(x) が成り立つ.4)
証 明 A = {x ∈ X | P(x) が偽 } とおいて, A = Φ を示せばよい. そのため に, A ≠ Φ を仮定して矛盾を導けばよい. X は整列集合であるから, a = min A が存在する. そうすると, x ≺ a を満たす任意の x ∈ X は x not∈ A であるから P(x) は成り立ち, 仮定によって P(a) も成り立つ. しかし, a ∈ A であるから, これは矛盾である.
注) 4)ふつうの数学的帰納法であれば, N の最小元である 1 に対応する命題を別に扱って「P(1) が 成り立つ」ことから始める. ここに述べた条件において, x = 1 とすると y ≺ x を満たす y が存在 しないことから「P(1) が成り立つ」ことは既に条件に含まれていることに注意しよう. (引用終り) 以上
https://en.wikipedia.org/wiki/Axiom_of_regularity Axiom of regularity
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads: ∀ x,(x≠ Φ → ∃ y∈ x,(y∪ x=Φ )). However, regularity makes some properties of ordinals easier to prove; and it not only allows induction to be done on well-ordered sets but also on proper classes that are well-founded relational structures such as the lexicographical ordering on {(n,α )| n∈ ω ∧ α is an ordinal }. Given the other axioms of Zermelo–Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction. The axiom of induction tends to be used in place of the axiom of regularity in intuitionistic theories (ones that do not accept the law of the excluded middle), where the two axioms are not equivalent.
See also ・Epsilon-induction
https://en.wikipedia.org/wiki/Epsilon-induction Epsilon-induction In mathematics, ∈-induction (epsilon-induction or set-induction) is a variant of transfinite induction. Considered as an alternative set theory axiom schema, it is called the Axiom (schema) of (set) induction. It can be used in set theory to prove that all sets satisfy a given property P(x). This is a special case of well-founded induction. (引用終り) 以上
Application Every set model of ZF is set-like and extensional. If the model is well-founded, then by the Mostowski collapse lemma it is isomorphic to a transitive model of ZF and such a transitive model is unique.
Saying that the membership relation of some model of ZF is well-founded is stronger than saying that the axiom of regularity is true in the model. There exists a model M (assuming the consistency of ZF) whose domain has a subset A with no R-minimal element, but this set A is not a "set in the model" (A is not in the domain of the model, even though all of its members are). More precisely, for no such set A there exists x in M such that A = R−1[x]. So M satisfies the axiom of regularity (it is "internally" well-founded) but it is not well-founded and the collapse lemma does not apply to it. (引用終り) 以上
つまり,整列すべき集合 A が与えられたら,適当に元をとって次々に並べていく. それをずっと繰り返して,集合 A の元が尽きれば,それでよいが.ちょっと前にみた 偶数が尽きた後,奇数を並べた整列集合を思い起こしてほしい.例えば,自然数の 集合を整列しようとして,元を取っていくとき,偶数だけをとっていってしまうと このプロセスだけで自然数をすべて尽くすことはできない.こうやって無限に 並べていったあと,尽きなければ いままで繰り返したその上に1つ元を置き,そこからまた次々に上に元を置いて いくというプロセスが必要である.これを繰り返すことで,集合 A の上に整列順序を構築する.
ここではすごく直観的に集合 A を整列集合にする方法を述べたが,これは 実は Zorn の補題の状況にすごく似ている.
つまり,A の任意の部分集合 C が A と等しくないときは集合 A - C は空でないので 選択公理から,C に対して A - C の元を一つ選ぶ関数 f が存在する.この f が すでに作ったチェイン C の上の元を A から選ぶ,次の図の人の行為に該当する.
下記 Axiom of regularity で ”and that there is no infinite sequence (an) such that ai+1 is an element of ai for all i” ですよ。分かりますかぁ〜? w
”(an) such that ai+1 is an element of ai for all i” ↓ ” an ∋ ai+1 for all i ” ですよ。分かりますかぁ〜?w(^^;
https://en.wikipedia.org/wiki/Axiom_of_regularity Axiom of regularity
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo?Fraenkel set theory that states that every non-empty set A contains an element that is disjoint from A. In first-order logic, the axiom reads: ∀ x,(x≠ Φ → ∃ y∈ x,(y∩ x=Φ )). The axiom of regularity together with the axiom of pairing implies that no set is an element of itself, and that there is no infinite sequence (an) such that ai+1 is an element of ai for all i. With the axiom of dependent choice (which is a weakened form of the axiom of choice), this result can be reversed: if there are no such infinite sequences, then the axiom of regularity is true. Hence, in this context the axiom of regularity is equivalent to the sentence that there are no downward infinite membership chains.
Contents 2 The axiom of dependent choice and no infinite descending sequence of sets implies regularity Let the non-empty set S be a counter-example to the axiom of regularity; that is, every element of S has a non-empty intersection with S. We define a binary relation R on S by aRb:⇔ b∈ S∩ a, which is entire by assumption. Thus, by the axiom of dependent choice, there is some sequence (an) in S satisfying anRan+1 for all n in N. As this is an infinite descending chain, we arrive at a contradiction and so, no such S exists.
下記proofwikiに、分かり易い証明があるね べき集合を作って、順序数への選択関数を作る (べき集合P(S)で、選択関数用の集合族を作ったってことかな?) 超限帰納法で、どんどん集合の元を取っていって、取りつくせるってw(^^ (ところでproofwikiなんてあるんだ。やっぱ英語情報はいいね) https://proofwiki.org/wiki/Well-Ordering_Theorem Well-Ordering Theorem Contents 1 Theorem 2 Proof 2.1 Basis for the Induction 2.2 Inductive Step 3 Also known as 4 Axiom of Choice
Theorem Every set is well-orderable.
Proof Let S be a set. Let P(S) be the power set of S. By the Axiom of Choice, there is a choice function c defined on P(S)\{Φ}. We will use c and the Principle of Transfinite Induction to define a bijection between S and some ordinal. Intuitively, we start by pairing c(S) with 0, and then keep extending the bijection by pairing c(S\X) with α, where X is the set of elements already dealt with.
Basis for the Induction α=0 Let s0=c(S).
Inductive Step Suppose sβ has been defined for all β<α. If S\{sβ:β<α} is empty, we stop. Otherwise, define: sα:=c(S\{sβ:β<α}) The process eventually stops, else we have defined bijections between subsets of S and arbitrarily large ordinals. (引用終り) 以上
>>214 ところで 下記のWell-ordering theoremに、 ”the well-ordering theorem is equivalent to the axiom of choice, 略 in first order logic . In second order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice” とある これ、面白いね first order logicと second order logicでは、こんなに違うんだ 日本人で知っている人少ないだろうね(^^;
https://en.wikipedia.org/wiki/Well-ordering_theorem Well-ordering theorem Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem.[3] One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique.[3]
History Georg Cantor considered the well-ordering theorem to be a "fundamental principle of thought".[4] However, it is considered difficult or even impossible to visualize a well-ordering of R ; such a visualization would have to incorporate the axiom of choice.[5] In 1904, Gyula K?nig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof.[6] It turned out, though, that the well-ordering theorem is equivalent to the axiom of choice, in the sense that either one together with the Zermelo?Fraenkel axioms is sufficient to prove the other, in first order logic (the same applies to Zorn's Lemma). In second order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.[7]
There is a well-known joke about the three statements, and their relative amenability to intuition: The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?[8] 略 (引用終り) 以上
集積点(英: accumulation point)あるいは極限点(英: limit point)は、位相空間 X の部分集合 S に対して定義される概念。(X の位相に関する x の任意の近傍が x 自身を除く S の点を含むという意味で)S によって「近似」できる X の点 x を S の集積点と呼ぶ。このとき、集積点 x は必ずしも S の点ではない。たとえば実数 R の部分集合 S = { 1/n | n ∈ N } を考えたとき点 0 は S の(唯一の)集積点である。集積点の概念は極限の概念を適切に一般化したもので、閉集合や閉包といった概念を下支えする。実際、集合が閉であることとそれが自身の集積点を全て含むことは同値で、集合に対する閉包作用はもとの集合にその集積点を付け加えることによる拡大操作としても捉えられる。
極限点の種類 ・x を含む任意の開集合が無限に多くの S の点を含むとき、集積点 x を特に S の ω-集積点 (ω-accumulation point) という。
242 名前: ・x を含む任意の開集合が非可算無限個の S の点を含むとき、集積点 x を特に S の凝集点 (condensation point) という。 ・x を含む任意の開集合 U について |U ∩ S| = |S| が満たされるとき、集積点 x を特に S の完全集積点 (complete accumulation point) という。 X の点 x が点列 (xn)n∈N の密集点 (cluster point) であるとは、x の任意の近傍 V に対し xn ∈ V なる自然数nが無限に存在するときにいう。空間が列収束ならば、これは点列 (xn)n∈N の部分列で x を極限とするものがあることと同値である。
>>216>>220 補足 (>>213 引用開始) 鉄道を無限に乗り続けてωに至ることはない かならずどこかで飛行機に乗らないとωにいけない ωから降りるときも同様 かならず最初に飛行機でどこかのnに行かなければならない ωから下にいく鉄道路線はない (引用終り) (>>220 引用開始) (参考) https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9 集積点 集積点(英: accumulation point)あるいは極限点(英: limit point)は、位相空間 X の部分集合 S に対して定義される概念 S によって「近似」できる X の点 x を S の集積点と呼ぶ このとき、集積点 x は必ずしも S の点ではない たとえば実数 R の部分集合 S = { 1/n | n ∈ N } を考えたとき点 0 は S の(唯一の)集積点である 集積点の概念は極限の概念を適切に一般化したもので、閉集合や閉包といった概念を下支えする 実際、集合が閉であることとそれが自身の集積点を全て含むことは同値で、集合に対する閉包作用はもとの集合にその集積点を付け加えることによる拡大操作としても捉えられる (引用終り)
突然ですが、メモ貼る(^^ https://en.wikipedia.org/wiki/Peter_A._Loeb Peter A. Loeb
Peter Albert Loeb is a mathematician at the University of Illinois at Urbana–Champaign. He co-authored a basic reference text on nonstandard analysis (Hurd–Loeb 1985). Reviewer Perry Smith for MathSciNet wrote:
This book is a welcome addition to the literature on nonstandard analysis.[1] The notion of Loeb measure named after him has become a standard tool in the field.[2]
In 2012 he became a fellow of the American Mathematical Society.[3]
See also Influence of nonstandard analysis
https://en.wikipedia.org/wiki/Influence_of_nonstandard_analysis Influence of nonstandard analysis The influence of Abraham Robinson's theory of nonstandard analysis has been felt in a number of fields.
Contents 1 Probability theory 2 Economics 3 Education 4 Authors of books on hyperreals
Probability theory "Radically elementary probability theory" of Edward Nelson combines the discrete and the continuous theory through the infinitesimal approach. The model-theoretical approach of nonstandard analysis together with Loeb measure theory allows one to define Brownian motion as a hyperfinite random walk, obviating the need for cumbersome measure-theoretic developments. Jerome Keisler used this classical approach of nonstandard analysis to characterize general stochastic processes as hyperfinite ones.
(参考:Second-order の無限公理) https://plato.stanford.edu/entries/logic-higher-order/ Stanford Encyclopedia of Philosophy Second-order and Higher-order Logic First published Thu Aug 1, 2019 by Jouko Väänänen
1. Introduction 2. The Syntax of Second-Order Logic 3. The Semantics of Second-Order Logic 3.1 The Ehrenfeucht-Fraïssé game of second-order logic 4. Properties of Second-Order Formulas 5. The Infamous Power of Second-Order Logic 5.1 Putting distance between second- and first- order logic 5.2 The collapse of the Completeness Theorem 5.3 “Set theory in sheep’s clothing” 5.4 Does second-order logic depend on the Axiom of Choice? 6. Non-Absoluteness of Truth in Second-Order Logic 7. Model Theory of Second-Order Logic 7.1 Second-order characterizable structures 7.2 Second-order logic and large cardinals 7.3 The model theory of general and Henkin models 8. Decidability Results 9. Axioms of Second-Order Logic 9.1 General models and Henkin models 9.2 Axioms of infinity 10. Categoricity 11. Logics Between First and Second Order 12. Higher Order Logic vis-à-vis Type Theory 13. Foundations of Mathematics 14. Second-Order Arithmetic 15. Second-Order Set Theory 16. Finite Model Theory
9.2 Axioms of infinity Some are equivalent if the Axiom of Choice is assumed. Let us call a second-order sentence ϕ of the empty vocabulary an Axiom of Infinity if A |-ϕ if and only if A is infinite. An axiom of infinity can say in second-order logic that a proper subset of the domain has the same cardinality as the entire domain (i.e., that the domain is not Dedekind-finite), or that there is a partial order without a maximal element, or that there is a set with a unary function and a constant which constitute a structure isomorphic to (N,s,0), or that the domain is the union of two disjoint sets which have the same cardinality as the domain, and so on. As is the case in set theory without the Axiom of Choice, the different formulations of infiniteness need not be equivalent. In second-order logic the situation is even more diffuse because of the variety of different formulations of the Axiom of Choice. We refer to Asser (1981) for a discussion of the different variants and to Hasenjaeger (1961) for a proof that the various non-equivalent forms of Axioms of Infinity form in a sense a dense set. For a survey of different concepts of finiteness, see de la Cruz (2002). (引用終り) 以上