13.1 整列集合 順序集合 (X, ≦) は, すべての空でない部分集合が最小元をもつとき, 整列集 合であるといい, そのような順序を整列順序という. 定義から整列集合は必ず全 順序集合であることに注意しよう. 実際, a, b ∈ X に対して集合 {a, b} は X の 空でない部分集合になるから, それは最小元をもつ. 最小元は a または b であ るが, それが a であれば a ≦ b となるし, それが b であれば b ≦ a となる. これは, 任意の a, b ∈ X が比較可能であることを意味し, X は全順序集合である ことがわかる. 定義から空でない整列集合 X それ自身は最小元 min X をもつ.