[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 17:53 / Filesize : 682 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)8



176 名前:現代数学の系譜 雑談 mailto:sage [2021/05/19(水) 07:55:02.59 ID:H7LP/xSH.net]
>>162
つづき

(下記は本格的)
www.math.is.tohoku.ac.jp/~obata/student/subject/
東北大学大学院情報科学研究科 システム情報科学専攻 尾畑研究室
www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-13_WellOrdered.pdf
第13章 整列集合 GAIRON-book : 2018/6/21(19:23)

すべての自然数を小さいものから順に一列に並べれば,
1 2 3 4 . . .
のような見慣れた配列が得られる. これは, 自然数に通常の大小による順序関係
を与えて得られる全順序集合 (N, >=<) の一つの簡便な表示である. 一般の全順序
集合に対しても, 任意の 2 元が比較可能であることから, すべての元が一列に並
んでいるとは言えるが, 自然数の配列にはいろいろと特異な点がある. 本章で
は, この自然数の配列の特徴を抽象化した概念である整列順序を導入して, すべ
ての集合に整列順序を定義できること (整列可能定理) を証明する.

13.1 整列集合
順序集合 (X, ≦) は, すべての空でない部分集合が最小元をもつとき, 整列集
合であるといい, そのような順序を整列順序という. 定義から整列集合は必ず全
順序集合であることに注意しよう. 実際, a, b ∈ X に対して集合 {a, b} は X の
空でない部分集合になるから, それは最小元をもつ. 最小元は a または b であ
るが, それが a であれば a ≦ b となるし, それが b であれば b ≦ a となる.
これは, 任意の a, b ∈ X が比較可能であることを意味し, X は全順序集合である
ことがわかる. 定義から空でない整列集合 X それ自身は最小元 min X をもつ.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<682KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef