[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2chのread.cgiへ]
Update time : 01/13 12:33 / Filesize : 331 KB / Number-of Response : 922
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

1=0.999… その13.999…



1 名前:132人目の素数さん [2006/10/26(木) 18:36:06 ]
前スレ:1=0.999… その 9.999… science4.2ch.net/test/read.cgi/math/1118452051/
前スレ:1=0.999… その10.999… science4.2ch.net/test/read.cgi/math/1136133055/
前スレ:1=0.999… その11.999… science4.2ch.net/test/read.cgi/math/1142173277/
前スレ:1=0.999… その12.999… science4.2ch.net/test/read.cgi/math/1154943310/
一応激しい論議の結果、回答テンプレートが作成されました >2-5
今後書き込む際には、できるだけまず回答テンプレートを参照してから、それをふまえて行ってください。
また、回答テンプレートへの意見なども自由に書き込んでください。

792 名前:トンデモ無限説 [2007/01/09(火) 19:52:21 ]
 つまりですねぇw 0.999...99とか、0.000...01とかの間の「...」
は、実は無限なんですw はいw

793 名前:132人目の素数さん mailto:sage [2007/01/09(火) 19:58:00 ]
>>791
>>792
実数には考えているうちに伸びて行くような性質のものは含まれてないし、
無限桁目の数、というのも持ってない。
そういう性質の数を作ることもできるだろうけど、それは実数とは別のものだよ。

794 名前:トンデモ無限説 [2007/01/09(火) 20:01:42 ]
だから、その実数の定義が間違ってるんですよ(笑)
それから、前にもいったけど、無限は予め無いのでありますw

795 名前:トンデモ無限説 [2007/01/09(火) 20:03:10 ]
 要するに、無限の概念が異なっているのであります。

796 名前:132人目の素数さん mailto:sage [2007/01/09(火) 20:07:01 ]
「定義」が「間違い」というのはどういう意味で言ってる?
「こういう構成で数を作った、これに実数という名前をつけよう」
という話にどう「間違い」が入り込むの?
せいぜい名前の付け方が不適切だとかの文句しかつけようがないと思うけど。

797 名前:トンデモ無限説 [2007/01/09(火) 20:09:30 ]
何故って、実数の定義自体、「予め有る無限」で考えられているからであります!
そこが間違いの元であります。

798 名前:トンデモ証明 mailto:sage [2007/01/09(火) 20:15:25 ]
予めある(ない)無限ってなんですか…

799 名前:132人目の素数さん mailto:sage [2007/01/09(火) 20:17:07 ]
>>795
君の頭の中にある概念としての実数と、数学者が構成した実数が異なるなら、
適当に名前を付け替えて主張しなおせば、多分皆反対はしないと思うよ。
「既存の実数とは異なる実数’では1≠0.999...となる」とか。

>>797
「予め有る無限」って何?
無限個ある自然数や有理数を使って構成されていることが問題だと言いたいの?

800 名前:トンデモ無限説 [2007/01/09(火) 20:21:10 ]
498に書いてますので、どうぞ



801 名前:132人目の素数さん mailto:sage [2007/01/09(火) 20:23:29 ]
例示じゃわかんない。ちゃんと定義して。

802 名前:1−0.9dot=0 mailto:sage [2007/01/09(火) 20:24:10 ]
さて、未だにに1−0.9dot=0を認められん人はおるんだろうか?
【∵ 空集合[empty]をφ、無限小[infinitesimal]をεとすると、φ∈0且つε∈0】
まさか…
1−0.9dot≠φというなら分かるが、
更に(1−0.9dot≠φ)&(1−0.9dot≠ε)という人までいたりして…。

803 名前:132人目の素数さん mailto:sage [2007/01/09(火) 20:58:45 ]
>>800の意見は人類が既に過去通ってきた道。
君の言う無限には「可能無限」という名前が付いている。
「新しい考え方をみんな否定してる」って思うかも知れないが、勘違いだ。

804 名前:132人目の素数さん mailto:sage [2007/01/09(火) 20:59:11 ]
2年ほど前に哲学系の掲示板やMLに現れた「トプン」なる人物。
なんと言動がどこかの電波にそっくりw
どうも「循環小数は、有理数ではない」の著者とも思われる。


↓真面目に相手した気の毒な方々の夢の跡

黒木のなんでも掲示板
ttp://www.math.tohoku.ac.jp/~kuroki/keijiban/a0086.html

哲学メーリングリスト(メッセージ#1960〜2060くらい)
ttp://www.freeml.com/archive/philosophers@freeml.com


805 名前:トンデモ無限説 [2007/01/09(火) 22:48:39 ]
>>804

Mr456 ご苦労さん よく見つけてきたねw
君はここの前は、「わかったら神」にもいたよねww

806 名前:トンデモ無限説 [2007/01/09(火) 23:08:24 ]
>>803

 さて、どうかなww 断定するにはよく見て、よく考えてみることだねw

807 名前:132人目の素数さん mailto:sage [2007/01/09(火) 23:10:11 ]
>>804
先人の苦労の空しさが涙を誘うな。
同一人物かどうかはともかく、同じ末路を辿るのは自明。
こりゃ急速無視モード加速とみた。

電波はせめて「形式的にでも一応丁重に扱ってもらえる」
記名掲示板の方が向いてるんじゃないか。
まあもう潰し尽くして2chしかなくなったのかもしれんが。

808 名前:132人目の素数さん mailto:sage [2007/01/09(火) 23:10:41 ]
可能無限かあ…

実無限から、可能無限にしてもゲーデルの不完全性定理の適用を免れ得ないんじゃ
採用するメリットあまり感じないなあ。

でもコンピュータ言語の perl とか一太郎のマクロ(w) って何やら可能無限の考えを
取り入れているような気がするんだけどね…。気のせい?

809 名前:トンデモ無限説 [2007/01/09(火) 23:54:12 ]
「わかかったら神」では、「123」でいましたww でここに来たら、Mr「456」
に追っかけられましたwww これってなんだろうww

810 名前:トンデモ無限説 [2007/01/10(水) 00:01:12 ]
>>807 Mr456君、君はやはりストーカーなの?ww ストーカーは、
確か電磁波だったね?www


 



811 名前:トンデモ無限説 [2007/01/10(水) 00:30:42 ]
  皆さんの殆どは、数学専門を望んでいる方だと思う。
だから、実数が無かったり、今の数学の科学から外れた空想
の産物らしきものが否定されるのは、耐えられないのだと思
う。けれども、可能無限(微妙に違いますが)が、真実を語
るのなら、それは受け入れるべきでしょうね。
 だから、少なくともそれが真実かどうかを判定できるまで
は先入観や自分の立場を超えて懐深く見守っているべきだと
思う。
 何度も言うように、偏見や早とちりはいけない。

812 名前:132人目の素数さん mailto:sage [2007/01/10(水) 00:35:01 ]
さ、店じまい店じまいw

813 名前:132人目の素数さん mailto:sage [2007/01/10(水) 00:50:09 ]
ガイシュツかもしれないけど
ここのスレタイって整数とか有理数とかを超越数で近似しようって理論の話なの?
だとしたらディオファントス近似の逆ってこと?

おせーてエロい使徒

814 名前:132人目の素数さん mailto:sage [2007/01/10(水) 00:58:27 ]
テンプレ嫁

815 名前:456 mailto:sage [2007/01/10(水) 01:05:15 ]
>>805
それは私ではありませんし、「わかったら神」などというスレが
存在することも今初めて知りました。あと、いい加減あなたの
文章には「w」が多すぎて見苦しい。卑俗。

>だから、少なくともそれが真実かどうかを判定できるまで
>は先入観や自分の立場を超えて懐深く見守っているべきだと
>思う。何度も言うように、偏見や早とちりはいけない。
偏見・早とちり:先入観で以って、今現在の数学に「おかしな矛盾が
ある」と言って否定していたのはあなた自身ですね。

それで、あなたは やっぱり例の本の著者なのですか?

816 名前:132人目の素数さん mailto:sage [2007/01/10(水) 01:22:28 ]
トンデモ無限説はトプンに似てる

∵宇宙がどうのこうの言ってるから


∵←これも定義の必要があるのだろうか

817 名前:132人目の素数さん mailto:sage [2007/01/10(水) 01:37:51 ]
>真実かどうかを判定

数学では真偽を判定するけど、真実を受け入れるのは数学ではない。
物理とかでは因果律を受け入れるけど、数学では証明する必要がある。
それは耐える耐えないの問題ではない。
証明もせずにごねるのはよっぽど見苦しいと思うが。

可能無限からなにかnon-trivialな定理を導いて議論してみればどう?
もちろんそのときはその証明の真偽を議論するのであって、
真実云々ではなくね。

818 名前:132人目の素数さん mailto:sage [2007/01/10(水) 01:58:00 ]
>哲学メーリングリスト(メッセージ#1960〜2060くらい)
>ttp://www.freeml.com/archive/philosophers@freeml.com

ここで結論は出てるね。
トンデモ無限説はトンデモ無限説にすぎないと。

自分の頭の中の勝手な公理系で議論しなさい
公用数学での証明や定義はハゲシクガイシュツの本を読むこと。

819 名前:132人目の素数さん mailto:sage [2007/01/10(水) 02:35:52 ]
>>815
>「彼」は0.999…=1を否定している。
>そして、0.999…≠1である数の体系のみを認めている。

あなたの相手をしていた「彼」は、数学的に定義されている、
0.999…≠1の体系を認めていると言えるのかい?

820 名前:132人目の素数さん mailto:sage [2007/01/10(水) 02:43:25 ]
>>819
何で本人に聞かんの?



821 名前:1−0.9dot=0 mailto:sage [2007/01/10(水) 02:49:09 ]
0.999…≠1に他ならないと主張しながら
実無限を否定する「彼」。
どうやら「彼」にとっては1−0.999…=0ではなく、有限小らしい。

822 名前:132人目の素数さん mailto:sage [2007/01/10(水) 03:25:11 ]
>>820
>>456氏は、「彼」の主張する0.999…≠1は、
数学的意味合いを持つ物であると、回答していたんで、
再確認という意味だけだけど。

823 名前:トンデモ無限説 [2007/01/10(水) 03:32:49 ]
 あのMLに書いてあるのは、一部です。もっと決定的に0.999...=1は
おかしいと分かります。つまり、0.999...=1は認めません。
 また、0.999...≠1は、その結論は認めますが、それを導く過程は
不十分であるか、十分な論理的根拠がないと思われるので、なんとも
いえません。
 問題は、二つの公理系があるということです。それで、0.999...=1
となる公理系は認めません。
 私もおおむね、おおむねですが、野矢茂樹の可能無限選択派に属すると
思います。今のところ、正確にではありません。おおむねです。

824 名前:トンデモ無限説 [2007/01/10(水) 03:52:41 ]
>>815

そうでしたか、それは失礼なことでしたね。
あの「w」は、「電波」とかをいう書き手に対して
特につけてますね。卑俗には卑俗というところでし
ょうか。だから、別人なら貴方にではないですので。
了解ください。俺、私、我はあくまでもあの本の読
者です。

 ちなみに日本語って何か面倒だなぁと、今改めて
感じました。(笑)英語だとこうではないでしょうね。
余計なことでした。(謝)

825 名前:456 mailto:sage [2007/01/10(水) 04:10:58 ]
>>819
>あなたの相手をしていた「彼」は、数学的に定義されている、
>0.999…≠1の体系を認めていると言えるのかい?
そう思っていましたが、彼は超実数も(おそらくは超現実数も)ロクに知らないようなので、
彼が認めているのは、彼の頭の中にある「俺数学」における0.999…≠1の体系のようです。

>>823
>問題は、二つの公理系があるということです。それで、0.999...=1となる公理系は認めません。
公理系が2つあっても、何も問題はありません。2つの公理系があることを以って、「0.999…=1」なる
体系を否定することは出来ません。数学的にはね。
あなたの頭の中にある「俺数学」においては、どうだか知りませんけど。

826 名前:トンデモ無限説 [2007/01/10(水) 04:31:12 ]
>>825

 数学的にはでしょw

827 名前:456 mailto:sage [2007/01/10(水) 04:39:11 ]
>>826
「俺数学」において「0.999…=1」なる体系を否定しても、それは「数学」における
「0.999…=1」なる体系の否定にはなりませんから、数学にとっては痛くも痒くも
ありません。あなたは「数学」に傷一つ つけることが出来ていません。かわりに、
あなたの頭の中にある「俺数学」に傷がついていくのみです。

828 名前:トンデモ無限説 [2007/01/10(水) 05:11:42 ]
>>827

今日はこれで終わりますが、結局、真理が知りたいのですよ。
それで貴方からする俺数学が間違っているのなら、それが分
かることを望みます。けれども、今のところまだ到底誤ってい
るとは思えません。それと、現代数学(0.999...=1の公理系を
認める数学)は、この二つの公理系を持つ限り、新たな未来的
公理系に進み得ない障害となるような気がするのです。その程
度は分かりません。第一、全部がおかしいのではありませんか
らね。無限に関わるところだけかな。。。または、それに間接
的に関わるところも。
 それから、さすがに数学に精通されている人は、ゲーデルの
考えに極端に固執してますね。それも問題です。

                      

829 名前:132人目の素数さん mailto:sage [2007/01/10(水) 09:09:42 ]
「絶対自分の考えを変えない電波」を相手にするには人生短すぎるな。
>>804をここでも繰り返すほど暇じゃない。

他で遊んでもらってくれよ、坊や。

830 名前:132人目の素数さん mailto:sage [2007/01/10(水) 12:41:50 ]
>>828
トンデモ無限論氏は何をもって数学的に「真理」って言っているのでしょう?
どんな状況が「真理」なんですか?

まずここが問題のような気がする…。



831 名前:132人目の素数さん mailto:sage [2007/01/10(水) 14:26:46 ]
>>828
ある意味、数学に真理は無いよ。
真理と言えるのは、まず何かしらの定義があってそこから導かれる結果だけ。

> つまりですねぇw 0.999...99とか、0.000...01とかの間の「...」
> は、実は無限なんです

みたいな俺定義を言うんだったら、その先の結果も自分で導くしかない

832 名前:132人目の素数さん [2007/01/10(水) 16:03:56 ]
鉄道総合板の
ソースで食うか醤油で食うか迷うもの
hobby9.2ch.net/test/read.cgi/train/1167296656/l50

から飛んできますたよ。

もちろん数学は素人なんですが、仕事がソフト屋(?)なので
「0.1」がコンピュータでは正しく扱えない話を思いだしました。
小数の桁というもの自体、何進数で数を表現しているかに依存します。
10(=2×5)進数で1÷10を表現するとうまく割り切れて0.1になりますが
コンピュータが使う2進数では1÷1010(10進数で10)はこんな感じです。
1の位:0
0.1の位(10進数で言う2分の1[0.5]の位):0
0.01の位(10進数で言う4分の1[0.25]の位):0
0.001の位(10進数で言う8分の1[0.125]の位):0
0.0001の位(10進数で言う16分の1[0.0625]の位):1
0.00001の位(10進数で言う32分の1[0.03125]の位):1
0.000001の位(10進数で言う64分の1[0.015625]の位):0

つまり0.000110…で割り切れない数です。

1÷3は3進数の数え方では1÷10になり、結果は0.1という表記、
これを10(10進数の3)倍すると1。

そういう「割り算の結果」の数を前提にしているかそうでないかで話が違うのでしょうね。
よくわかりませんが。

833 名前:132人目の素数さん mailto:sage [2007/01/10(水) 16:14:32 ]
>>832
それとはちょっと違う話。

2進法なら
1=0.111・・・?
3進法なら
1=0.222・・・?
ってことになり「n進法なら割り切れる」とかいう話じゃない。

834 名前:トンデモ無限説 [2007/01/10(水) 19:01:18 ]
>>829

そんなに気にいらねえなら、俺を無視して、自分の数学の問題を披露しなよ
。俺に関わるな。さっさと自分の問題でも書き込め。ダニや蛆虫の出るところ
なら、書き込みは遠慮する。

835 名前:1−0.9dot=0 mailto:sage [2007/01/10(水) 21:13:35 ]
>>834
おいおい、
いくら因縁の相手だろうが
これ以上汚く野次るなよ
全くもってスレ汚しだよ

836 名前:1−0.9dot=0 mailto:sage [2007/01/10(水) 21:33:24 ]
>今日はこれで終わりますが、結局、真理が知りたいのですよ。

やはり「真理」夢想者だった。

>それで貴方からする俺数学が間違っているのなら、それが分
かることを望みます。けれども、今のところまだ到底誤ってい
るとは思えません。
仏教の三大原理の諸行無常、盛者必衰、諸法無我
の内の「諸法無我」をぐぐれ。

>それから、さすがに数学に精通されている人は、ゲーデルの
考えに極端に固執してますね。それも問題です。

論理的にだけでは決着しない事は確かだが?

837 名前:1−0.9dot=0 mailto:sage [2007/01/10(水) 21:40:59 ]
実数体では1=0.9dot
更に
より微小な扱いの超現実数体では1=0.9dotとも1≠0.9dotとも定義付けされる
とまで分かったんだからこれ以上ごねるなや。

838 名前:水チップ [2007/01/10(水) 23:30:13 ]
所詮、0.999・・・≠1と言う人は、見た目にとらわれている。
何の根拠もないのに0.999・・・≠1と言うのはやめてほしい。
0.999・・・=1である。

839 名前:132人目の素数さん mailto:sage [2007/01/11(木) 00:10:21 ]
10進数表記において無限桁目の次の桁なんて存在しないだろう。
トンデモ無限説が言ってることは通常の公用数学では全く適用されない。
トンデモ無限説数学(≠公用数学)では適用されるのかもしれないが。

>>823
>あのMLに書いてあるのは、一部です。もっと決定的に0.999...=1は
>おかしいと分かります。つまり、0.999...=1は認めません。

トンデモ無限説が認めようが認めまいが、公用数学では認められている。
0.999・・・・が1に収束することは公用数学の実数論では明らか。
もっとも自分の頭の中にある公理系を他人に押し付けたいのかもしれないが、
思想・信仰の自由が認められている日本では問題はない。
公用数学ではそれは認められないだけ。

だいたいトンデモ無限説数学がもたらす実生活や実務面でのメリットとは何?
何も無いのでは?
もしメリットが認められたらそのときは1≠0.999・・・の数学が論じられても良いのでは。

私は456氏等ではないのであしからず。

840 名前:132人目の素数さん [2007/01/11(木) 00:29:26 ]
いや、トンデモ無限説はどう考えても釣り師だろ

定義定義いうやつは氏ね
いや、定義は必要だけどよ
世界共通で使われている定義に口出しするなんて氏ね

じゃあきこうか
「無限」の定義ってなに?



841 名前:132人目の素数さん [2007/01/11(木) 00:29:57 ]
1=0.999…
だけど
1≠0.999
なら正しい

って主張してるならわかるが。

842 名前:132人目の素数さん mailto:sage [2007/01/11(木) 01:01:18 ]
個人的な意見だけど0.000000.....1が0ということを証明しないと
0.999999999が1とはわからないんじゃないのかな

843 名前:132人目の素数さん [2007/01/11(木) 01:16:58 ]
個人的な意見
1−0.999999・・・=0.000000000・・・・
0.00000000・・・・1となることは永久にない
よって1=0.99999999・・・・


844 名前:132人目の素数さん mailto:sage [2007/01/11(木) 01:25:00 ]
1 + (1/2)^2 + (1/3)^2 + (1/4)^2 + ・・・

これが無理数になることもきっと納得できないんだろうなあ。

845 名前:132人目の素数さん [2007/01/11(木) 01:30:46 ]
無限は全てを覆す能力を持っている気がする

846 名前:132人目の素数さん [2007/01/11(木) 03:39:13 ]
>>843

0.00000000・・・・1となることは永久にない
よって1=0.99999999・・・・

 ならさ 0.9999999・・・も永久に1にはならな
でいんじゃない? 同じ理屈になるな。。。

847 名前:132人目の素数さん [2007/01/11(木) 03:43:42 ]
だから、0.999999・・・=1ってのは自滅してない?

848 名前:132人目の素数さん mailto:sage [2007/01/11(木) 04:36:55 ]
最低限テンプレ読んでから書き込め

849 名前:132人目の素数さん mailto:sage [2007/01/11(木) 05:00:54 ]
>>845
その感覚は正しいと思う
俺は、「無限にとばすと何かブレイクスルーが起こる」ってイメージ

850 名前:132人目の素数さん mailto:sage [2007/01/11(木) 05:11:56 ]
実数の常識が複素数で通用しない感覚



851 名前:132人目の素数さん mailto:sage [2007/01/11(木) 11:41:09 ]
順序構造が失われるからな。
最近のこのスレの流れは、その前提を無視して「虚数単位iは0より小さいか大きいか」で
揉めてる様相に見えなくも無い。

852 名前:132人目の素数さん mailto:sage [2007/01/11(木) 15:38:56 ]
永遠に計算途中で答えは絶対に無い=現代の科学ではわからない。

853 名前:132人目の素数さん mailto:sage [2007/01/11(木) 16:25:46 ]
そんなこと言ってたら、ほとんどすべての数が存在しなくなる。

854 名前:132人目の素数さん [2007/01/11(木) 17:29:43 ]
実数では無限を扱えない、
このことを十分理解しておかねばならないんじゃないか。

855 名前:132人目の素数さん mailto:sage [2007/01/11(木) 17:47:00 ]
1を1.0000000000....と置き換えると無理数になる

856 名前:132人目の素数さん mailto:sage [2007/01/11(木) 17:51:45 ]
1=1/1と書けるから有理数だよ

857 名前:132人目の素数さん mailto:sage [2007/01/11(木) 17:56:44 ]
何も真面目に答えなくても

858 名前:132人目の素数さん mailto:sage [2007/01/11(木) 17:57:41 ]
×答
○応

859 名前:1−0.9dot=0 mailto:sage [2007/01/11(木) 19:58:07 ]
質問。低学歴の為。
0.999…=納n=1〜∞]{9*0.1^n}と考えたとき、
納n=1〜∞]{9*0.1^n}の
壱、ボレル総和法解
弐、解析接続解
を教えて下さい。おながいしますm(_ _)m

860 名前:132人目の素数さん mailto:sage [2007/01/11(木) 20:04:38 ]
>>859
数列anに通常の極限値αがあるならば、ボレル総和法による極限値もαになる。
よって、ボレル総和法では1になる。解析接続は知らん。どうせ1だと思うが。



861 名前:1−0.9dot=0 mailto:sage [2007/01/11(木) 20:13:37 ]
>>839&>>845&>>849
全面的に同意!

862 名前:1−0.9dot=0 mailto:sage [2007/01/11(木) 20:15:41 ]
>>860
やっぱり。本当に有難うございましたm(_ _)m

863 名前:132人目の素数さん mailto:sage [2007/01/12(金) 00:21:26 ]
常駐してた変な奴の正体が(釣りと)知れて、
めっきりまともになったな。結構な話だ。

864 名前:132人目の素数さん mailto:sage [2007/01/12(金) 01:25:24 ]
もっとも釣りにもなっていないがな。
自分の頭の悪さを露呈しただけ。

こういう言いがかりはチョンが得意なような希ガス。
秋山マンセーみたいなwwww

865 名前:132人目の素数さん mailto:sage [2007/01/12(金) 10:47:54 ]
出てこなくなったってことは冬休みが終わったのかな?

866 名前:132人目の素数さん [2007/01/13(土) 16:18:04 ]
2chも終了みたいだから、ここのテンプレもWikiあたりに移動させる必要あるかもなあ。

でも、Wikiには既に「証明」の項目あるし…。

867 名前:132人目の素数さん mailto:sage [2007/01/13(土) 21:57:09 ]
>>866
>>278-281
1≠0.999…となる公理系の参考例示として
Wikiに書き加えて頂戴。

868 名前:866 mailto:sage [2007/01/14(日) 21:43:38 ]
すみません。僕はちょっとできません。
どなたかお願いします。

869 名前:132人目の素数さん [2007/01/16(火) 01:57:45 ]
数学初心者で自分で疑問が解決できないのでここで質問
(0、1)の開区間を考えた時これに属するaに対応してd(a、ε)⊂(0、1)となるεが存在する。
つまり0、999…の9をいくらとってもそれ以上の数が存在することより
0.99…という数はいくらでも存在してそれはまた1とは異なる物にならないか?
おそらくどこかで勘違いしているんだろうけど指摘してくれると嬉しいです

870 名前:132人目の素数さん [2007/01/16(火) 02:05:56 ]
すみません
d(a、ε)じゃなくaの近傍U(a、ε)です(T_T)



871 名前:132人目の素数さん mailto:sage [2007/01/16(火) 02:33:01 ]
> つまり0、999…の9をいくらとってもそれ以上の数が存在することより

小数点以下の桁数を有限で確定すれば、それ以上の数は存在する。

> 0.99…という数はいくらでも存在して

この場合の「0.99…」は何ですか?

872 名前:132人目の素数さん [2007/01/16(火) 08:56:25 ]
>>僕は最初の0.99…を有限として考えています
次に使った0.99…は例えば0.9999の9が何処かで止まっていれば必ずそれ以上の数が存在してその後ろに9を有限個付け足すという生製法を無限回続けたことを考えています
結局この場合無限としての扱いとなるのかな…
概念として無限を理解する事は僕には難しそうです。。

873 名前:132人目の素数さん mailto:sage [2007/01/16(火) 09:00:30 ]
1=0.9999999999・・・・の真偽
を証明したからといって何か役に立つのだろうか


どうでもよくね?んなこと・・・もっと日常生活(というか科学など)で役に立つ数学を研究すればいいのに。
どうでもいいことばっか研究するのはもはや趣味だ。

874 名前:132人目の素数さん mailto:sage [2007/01/16(火) 09:01:17 ]
>>869
つまりはそれは、0.999…が区間(0, 1)の集積点になっているって事だけど、
区間(0, 1)が閉集合でなければ集積点が含まれるとは限らないでしょ。
内点とか集積点といった位相の概念があやふやになってるんだと思うよ。

875 名前:132人目の素数さん mailto:sage [2007/01/16(火) 09:21:16 ]
>>873
「 1=0.999…」は結局アルキメデスの原理と同じ事なのだが、
それはアルキメデスが球の体積や表面積を求めるのに必要とした原理なんだってさ。
体積や面積を正確に求めるってのは、相当に日常生活に役に立ってるんじゃないかい?

876 名前:132人目の素数さん mailto:sage [2007/01/16(火) 10:42:37 ]
>>875
「アルキメデスの原理」には2種類あり、君の言っているアルキメデスの
原理は、0.999…=1におけるアルキメデスの原理とは違う方。

877 名前:132人目の素数さん [2007/01/16(火) 10:46:10 ]
どっちも役に立っているわけだが。

878 名前:132人目の素数さん mailto:sage [2007/01/16(火) 11:00:41 ]
実際1=0.999…の真偽を研究している人はいるのかな

879 名前:132人目の素数さん mailto:sage [2007/01/16(火) 11:28:13 ]
>>873みたいなのはあまり役に立たない人間であるという判断には役立ってる


880 名前:132人目の素数さん mailto:sage [2007/01/16(火) 15:28:48 ]
>>878
数学者にはそういう人はいないと思うよ。自己満足のために日々数学を楽しんでいるアマチュアの中で
日々思索を楽しんでる割にはまっとうな数学をあまり学んだことのない人の中にはいるかも。



881 名前:132人目の素数さん mailto:sage [2007/01/16(火) 17:29:51 ]
conwayはアマチュアではないだろう

882 名前:132人目の素数さん mailto:sage [2007/01/16(火) 17:53:55 ]
1=0.999…の両辺を2乗したらどうなるのでしょう

883 名前:132人目の素数さん mailto:sage [2007/01/16(火) 21:09:36 ]
0.89999999…
0.08999999…
0.00899999…
0.00089999…
0.00008999…
0.00000899…
0.00000089…
0.00000008…
………………
加えると
0.99999999…

よって
1=0.999…

884 名前:132人目の素数さん mailto:sage [2007/01/16(火) 21:14:29 ]
初めて数学板来たけどカオスすぎてわけわからん
中学、高校生がわからない問題出し合ってるくらいかと思ってた
さっさとゲハに戻りますね(´・ω・`)

885 名前:132人目の素数さん [2007/01/16(火) 21:18:57 ]
VIPからきますた

886 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:09:43 ]
>>867

>>866じゃないけど。
サイトで見た超現実数の説明とヤフーで昔見た超現実数の説明をもとに説明してみる。
これを叩き台にでもして書いてくれ。
間違いやオリジナルとの違いとか知ってる人は教えてくれたらうれしい。
以下を見てもらうとわかるように二進法と相性がいいので証明は二進法表示での0.111……≠1を、そのために0.000……≠0を示す形で行う。

まず超現実数αとは二つの「空集合か超現実数の集合aとAのペア」α=(a,A)で、
¬(a≧A)、つまりx∈a,y∈A⇒¬(x≧y)の形をしたものである。(当然x,yの大小が事前に必要になるので、これらが、例えば帰納的に定義されて欲しい。)

超現実数同士の大小は以下のように定義される。
α=(a,A)、β=(b,B)とするとき、

α≦β⇔¬(a≧β)∧¬(α≧B)
ただしa≧β⇔(x∈a⇒x≧β)等

また
α≧β⇔β≦α

887 名前:886 mailto:sage [2007/01/18(木) 03:11:07 ]
超現実数は標準的には以下の順序で帰納的に作られるものである。

第0段階
(φ,φ)これを0と名付ける
(最初の定義がa<Aとかではなく否定形になっているのはこのように空集合さえ用意すれば自動的に成立することを利用するため)

0段階までにある数

(全角がこの段階で生まれた数)

第1段階
(φ,{0})これを-1と名付ける
←とも書くこととする
({0},φ)これを1と名付ける
→とも書くこととする
(なお、これらを以下(φ,0)のように略記する)

1段階までにある数
←,0,→
−1,0,1
(大小の定義より小さい順に並んでいることを確認できる。以下も同様。また、定義より(0,0)は超現実数にならないことに注意)

888 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:11:58 ]
第2段階
(φ,-1)=(φ,←)これを-2と名付ける
←←とも書くこととする
(-1,0)=(←,0)これを-1/2と名付ける
←→とも書くこととする
(0,1)=(0,→)これを1/2と名付ける
→←とも書くこととする
(1,φ)=(→,φ)これを2と名付ける
→→とも書くこととする

2段階までにある数
←←,←,←→,0,→←,→,→→
−2,-1,−1/2,0,1/2,1,2
(({0,1},φ)とかも超現実数ではあるが、大小の定義より、これは明らかに(1,φ)に等しくなる。一般にα=(a,A)のaとAが空でない有限集合の時は、αは(MAX(a),min(A))であることに注意。)

889 名前:132人目の素数さん mailto:sage [2007/01/18(木) 03:12:29 ]
第3段階
(φ,-2)=(φ,←←)これを-3と名付ける
←←←とも書くこととする
(-2,-1)=(←←,←)これを-3/2と名付ける
←←→とも書くこととする
(-1,-1/2)=(←,←→)これを-3/4と名付ける
←→←とも書くこととする
(-1/2,0)=(←→,0)これを-1/4と名付ける
←→→とも書くこととする
(0,1/2)=(0,→←)これを1/4と名付ける
→←←とも書くこととする
(1/2,1)=(→←,→)これを3/4と名付ける
→←→とも書くこととする
(1,2)=(→,→→)これを3/2と名付ける
→→←とも書くこととする
(2,φ)=(→→,φ)これを3と名付ける
→→→とも書くこととする

3段階までにある数
←←←,←←,←←→,←,←→←,←→,←→→,0,→←←,→←,→←→,→,→→←,→→,→→→
−3,-2,−3/2,-1,−3/4,-1/2,−1/4,0,1/4,1/2,3/4,1,3/2,2,3


このように第n段階はn-1段階に生成された数とその段階で隣り合う数のペアか、両端に関してはその側に空集合を置いたペアで作られるものになる。(それらはペアの平均か±1させた数である)

そして、それは「最初と同じ向きに進み続けるときは1だけ変化させ、一度逆向きになったら今度は前回の1/2倍だけ変化させる。←なら引き、→なら加える」という計算によって求まる値になる。例えば→→←←→←は1+1-1/2-1/4+1/8-1/16=1.3125になる。

890 名前:886 mailto:sage [2007/01/18(木) 03:16:01 ]
コテ入れ忘れてた(汗
続き

これを全ての自然数nに対して第n段階の操作を行った結果できた∞段階の後、その次の段階を行ったω段階まで考え、その全体を標準的な超現実数と呼ぼう。
二進法での有限小数は∞段階までで全て現れるはずなので、ω段階は二進法での無限小数を生み出す操作と考えられる。このような無限小数は超現実数が
1個の集合のペアとしては表現できず、例えば1/3=({1/4,5/16,21/64,…},{…,11/32,3/8,1/2,1})のように左は1/3より小さい二進有限小数の集合、右は1/3より大きい
二進有限小数の集合として表現されると考えればよい。πなら({3,25/8,201/64,…},{…,101/32,51/16,13/4,7/2,4})のようにすればよい。直感的にはn段階で2^(n+1)-1個の
超現実数が出来るのでω段階では2^(ω+1)-1=2^ω個、つまり連続体濃度だけの超現実数が出来そうであり、いかにも実数が構成された感じがする。

なおこのようなルールでできたものが標準的な超現実数であるため、例えば(-1,1)や(1,0)は標準的な超現実数にはならない。ただし、==の定義が後にあるような
ものなので、それによって標準的な超現実数と等しい超現実数になる可能性はある(後者は左が右より大きくルール違反になるので超現実数にはならないが)。
実際にはこの==による同値類が超現実数になる。

いわば通常の実数の小数表示が下の方から近似していくのに対して超現実実数はオーバーしたら戻り、また戻り過ぎたら逆向きに進み、という具合に上下から
挟んで近似していくような感じになる。例えば

1/3=0.333……は→(1でオーバー),→←(0.5でまだオーバー),→←←(0.25で小さくなった),→←←→(0.375でオーバー),→←←→←(0.3125で小さくなった),
→←←→←→(0.34375でオーバー)……のようにして表示できる。この場合→←の後ろに←→が無限に繰り返す循環小数表記になる。このような場合は
→←[←→]と表記することにする。分数は有限個の矢印で表記されるか循環小数表記で表される。無理数のこのような表示は循環しない表記になる。
例えばπは→→→→ ←←← → ←← → ←←←←…である。(矢印表記はヤフーで見たものだが、このように集合表記より直感的に見やすいという利点がある)



891 名前:886 mailto:sage [2007/01/18(木) 03:16:50 ]
さて、等号、計算を定義する。
これらも帰納的に定義されていることに注意。

α=(a,A)、β=(b,B)とする。

α==β⇔(α≧β∧α≦β)
α≠β⇔¬(α==β)

加法はα+β=({a+β}∪{α+b} ,{ A+β}∪{α+B})

マイナスは-α=(-A,-a)
ただし-A={-x|x∈A}等

乗法はα*β=({aβ+αb-ab}∪{Aβ+αB-AB },{ aβ+αB-aB}∪{Aβ+αb-Ab})

ただし、計算途中にφが入るときはその計算結果はφとする。

各計算は==による同値類別に対しwell-deffinedである。

とりあえず試してみるとわかるように1+2=3とか3/2*3=9/2とか自然に求まる。
また、α+β=β+αとかα+0=αとか-0=0とか0*α=α*0=0とか1*α=α*1=αとか、期待通りになる。
1/2+1/2だと(1/2,3/2)になるし、3/2*4だと(11/2,13/2)になるが、(1/2,3/2)==(0,φ)=1より1/2+1/2==1だし、(11/2,13/2)==(5,φ)=6より3/2*4==6となる。3*(1/3)==1等も成立する。

一般には(a,A)はa<x<Aを満たす超現実数xのうち、最も早い段階で生ずるものになる(このような超現実数は一意に決まる)。例えば(-1,1)==0,(2,5)==3である。

892 名前:886 mailto:sage [2007/01/18(木) 03:18:09 ]
さて、二進法で0.111…を考えると、これは→←→→→…=→←[→]=({1/2,3/4,7/8,…,((2^n)-1)/(2^n)),…},1)である。また、0.000…は、→←←←…=→[←]=(0,{…,1/(2^(n-1)),…,1/8,1/4,1/2,1})となる。
小数点以下が消しあうので0.111+0.000…=→←+→←=1/2+1/2==1だから0.000…==1-0.111…。よって、もし0.000…≠0が示されれば0.111…≠1が証明される。

ところで、ω段階では実は実数でない次のような超現実数も出来る。
[→]=({1,2,3,…},φ)
これは全ての自然数より大きいので、いわば正の無限大ωである。
このωに0と0.000…をそれぞれかけて結果を比較してみる。
0*ωは積の定義により(φ,φ)=0である。
一方、0.000…*ω=(0,φ)=1になるので、0≠0.000…が、従って、0.111…≠1が証明された。(0.000…=1/ωは正の無限小に相当する。どのような通常の意味での正の実数よりも小さく0より大きい数になる。)


これでこのスレ的には終わりだが、実はω+1段階、ω+2段階、…といくらでも考えることが出来るので、ω+1(=1+ω),ω+2,…,2ω,…(それどころかω-1=({1,2,3,…},ω)やω/2とかも)さらにω^2,…,ω^ω,…と
続けていくことも出来るわけである。もちろん、1/(2ω)とかも作られていく。

以上。

893 名前:132人目の素数さん [2007/01/19(金) 03:28:36 ]
超準解析での1=0.999…の証明と1≠0.999…の証明は?

894 名前:132人目の素数さん mailto:sage [2007/01/19(金) 09:32:24 ]
>>892
0.000…=1/ωというのは正しいの?
おれは0.000…=1/(ω^2,…,ω^ω,…)だと思うが。
そうすると、超現実数上でのε-δ 論法のようなものを使って、
0.000…=0を示すことができるはずだね。

895 名前:132人目の素数さん mailto:sage [2007/01/19(金) 13:18:42 ]
感覚的な話になるけど、超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

896 名前:132人目の素数さん [2007/01/19(金) 17:34:09 ]
1=0.9999999999・・・ です。

897 名前:132人目の素数さん mailto:sage [2007/01/19(金) 17:37:05 ]
>>886

でも大小の定義多分間違ってる
0≦0⇔(φ,φ)≦(φ,φ)⇔¬(φ≧(φ,φ))∧¬((φ,φ)≧φ)⇔¬(x∈φ⇒x≧(φ,φ))∧¬((φ,φ)≧φ)
x∈φ⇒x≧(φ,φ)は真だから0≦0が偽になる?(?)

898 名前:132人目の素数さん mailto:sage [2007/01/19(金) 20:51:22 ]
超現実数では、
(10*10*10*・・・)*(0.1*0.1*0.1*・・・)の答えはどうなるのさ?

899 名前:132人目の素数さん mailto:sage [2007/01/19(金) 20:54:52 ]
10*10*10*・・・ なんて続くのは現実数じゃない。
よって命題偽。

900 名前:1−0.9dot=0 mailto:sage [2007/01/19(金) 22:14:04 ]
ところで、超限実数と超現実数は別々ですか?

>>886-892
乙。
付いて逝けとらんが、メモしますた。



901 名前:886 mailto:sage [2007/01/20(土) 01:09:31 ]
>>894
>0.000…=1/ωというのは正しいの?
正しいです。1/ωを小数表示すれば0.000…だから。
ただし、ここではω段階までを前提にしているから任意有限桁以外扱わないということが影響しています。
その先まで考えれば無限桁を扱うか小数表示を諦めるかになると思いますが超現実数で無限桁の数学的な厳密な定義が出来るとは思えないので、
出来ると思うならまずは示してみてください。話はそれからです。自分は後者、つまり、小数表示はこの先は諦めるべきだと思います。

>>897
確認したら定義は正しかったのですが、確かに書いてある通りな気が。ウムム...
今頭が死んだ状態なのでゆっくり眠ってからよく考え直してみます。

>>898
極限操作を定義するのが先では?

>>900
超限順序数と超現実数なら似てはいますが別です。
例えば前者にはないω-1やω/2が超現実数では定義されます。
また、前者ではω+1≠1+ω=ω,ω2≠2ω=ωですが、
後者ではω+1=1+ω,ω2=2ωです。

902 名前:1−0.9dot=0 mailto:sage [2007/01/20(土) 04:51:19 ]
thx!!
しかし流石は数学、早々と分数表示に絞っている。

903 名前:132人目の素数さん mailto:sage [2007/01/24(水) 22:45:41 ]
誰かここの奴らに説教してやってくれ↓
pya.cc/pyaimg/pimg.php?imgid=37550

904 名前:1−0.9dot=0 mailto:sage [2007/01/25(木) 22:13:28 ]
>>903
携帯房の私には書き込めません!!
ここへの誘導とテンプレの掲示
とConway流の提示(>>278-281)、1≠0.9dotなる超現実数体の公理系の構築(>>886-892)
と更に下の文を掲示したかった。


さて 未だにに1−0.9dot=0を認められん人はおるんだろうか?
【∵ 空集合[empty]をφ、無限小[infinitesimal]をεとすると、φ∈0且つε∈0】
まさか…
1−0.9dot≠φというなら分かるが
更に(1−0.9dot≠φ)&(1−0.9dot≠ε)という人までいたりして…。

905 名前:1−0.9dot=0 mailto:sage [2007/01/26(金) 04:44:30 ]
ありゃ?>>904手落ち、補追。
>>845&>>849
>>904>>886-892>>894-902
と下の文を追加。


>>895
空集合[empty]をφ、無限小[infinitesimal]をεとすると、φ∈0且つε∈0
─の為、1−0.9dot=0でおk!!

906 名前:132人目の素数さん mailto:sage [2007/01/26(金) 08:16:38 ]
ところで1=0.999999999999・・・じゃないって言う人は

(9/10)+(9/100)+(9/1000)+・・・
つまり9/(10^n)の級数の∞の極限は1じゃないって思ってるの?
それともこの極限と0.999999999・・・は違うって主張してるの?

907 名前:132人目の素数さん mailto:sage [2007/01/28(日) 03:21:09 ]
ってかWikiの0.999...の項なんだけど
収束定理で|r|<1ならば0.999..=1とやってるけど、これって矛盾してない?
工学系の人間なんで詳しくないんだけど的外れ?
ttp://ja.wikipedia.org/wiki/0.999...%E3%81%8C1%E3%81%AB%E7%AD%89%E3%81%97%E3%81%84%E3%81%93%E3%81%A8%E3%81%AE%E8%A8%BC%E6%98%8E

908 名前:132人目の素数さん mailto:sage [2007/01/28(日) 04:13:12 ]
>収束定理で|r|<1ならば0.999..=1とやってるけど、
「|r|<1ならば0.999..=1」などと主張している部分はどこにも見当たらない。正確に抜粋してくれ。

909 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 13:33:17 ]
>>907
>>908が慎重に受けているが
極限を思い出すべし
といってみるテスト。
儂が見てみようにも
携帯房なのでそれ、読めんし。

910 名前:132人目の素数さん [2007/01/28(日) 15:37:33 ]
> 超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?

─1*10^(ーω)、無限小

に1*^10(ーω^ω)、更に高位の無限小

> そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

─そんな数は…仮に考えると
桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
つまり1*10^(1/φ)となって
ゲーデル的決定不能性と言うまでもなく
#DIV/0!的不能。

結局、lim[x→φ]xとだけしか言い切れず終いになると思う。

つまり1−0.9dotはφか否かとなると
分かり得ない となるんと違うか。
無限小の逆数を∞となるとする事+更にまた一つ訳が違う事情。



911 名前:05001014289445_me mailto:sage [2007/01/28(日) 15:42:20 ]
>>910

912 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 15:48:34 ]
>>910を書き直し。ちゃんと>>911の節穴さんで消えてますか?

本題へ。
>>895
> 超現実数で得られる無限小は
0.000…01 (ω桁目で止まる)
0.000…00…001 (ω^ω桁で止まる)
みたいな感じになるのでは?

─1*10^(ーω)、無限小

に1*^10(ーω^ω)、更に高位の無限小

> そうすると、
0.000… (止まらない)
という数については やはり0.000…=0が成り立ってしまうとか。

─そんな数は…仮に考えると
桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
つまり1*10^(1/φ)となって
ゲーデル的決定不能性と言うまでもなく
#DIV/0!的不能。

結局、lim[x→φ]xとだけしか言い切れず終いになると思う。

つまり1−0.9dotはφか否かとなると
分かり得ない となるんと違うか。
無限小の逆数を∞となるとする事 + 更にまた一つ訳が違う事情。
…と考えてみるテスト。

913 名前:132人目の素数さん mailto:sage [2007/01/28(日) 16:02:15 ]
0.999・・・=1を収束で証明すると1は収束値となる
すると0.000・・・=0もまた収束値である

よって1/0は±∞

914 名前:132人目の素数さん mailto:sage [2007/01/28(日) 16:30:05 ]
>0.000…01 (ω桁目で止まる)
>0.000…00…001 (ω^ω桁で止まる)
>みたいな感じになるのでは?

みたいなどと感覚で言われても数学にはならないから。
ちゃんと定義してみたら?

915 名前:1−0.9dot=0 mailto:sage [2007/01/28(日) 18:03:21 ]
>>914
だから>>912では>>895氏のレスを意訳した上でレスしたわけだがのう。
儂も素人だからのう。

少数点第ω位以外0で当の桁が1の数と
少数点第ω^ω位以外0で当の桁が1の数。

916 名前:132人目の素数さん mailto:sage [2007/01/28(日) 18:12:07 ]
全然定義になっていない。
具体的な数に対してどう小数展開を求めるの?
ω桁のみが1で他は0の数の10倍はいくつ?
せめてこれぐらいは具体的に答えてくれ。

917 名前:132人目の素数さん mailto:sage [2007/01/28(日) 18:14:00 ]
>桁数は 空集合(以下:=φ)の逆数集合 と(勝手に)考える。
逆数集合って何?厳密な定義ヨロシク

918 名前:PCで1−0.9dot=0 mailto:sage [2007/01/28(日) 20:32:16 ]
ああ!!>>910が消えてない!!あの話は釣りかwww
>>916-917
あ。えーと10ω=ω10=ω…
駄目だこりゃあー。
逆数集合も……

919 名前:132人目の素数さん mailto:sage [2007/01/28(日) 21:36:22 ]
>>918
それで?逆数集合って何?厳密な定義ヨロシク。

920 名前:132人目の素数さん mailto:sage [2007/01/29(月) 10:20:31 ]
>>886
乙。しかしなんか怪しい。

n段階に到達して初めてnという数が定義されている。
もっと具体的に言うと、超現実数ωはω段階にならなければ作ることはできない。

どんなにn回(有限回)繰り返しても超現実数ωという数を作ることはできない
と思うがいかがでしょう?



921 名前:132人目の素数さん mailto:sage [2007/01/29(月) 13:34:54 ]
>>920
帰納法は前提になるだろうね。超限の方の。
実数は連続体濃度なので有限回で出来たら不思議だし。






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<331KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef