1 名前:132人目の素数さん [2021/10/02(土) 21:09:16.88 ID:X8Zxjdm/.net] (前“応援”スレが、1000又は1000近くになったので、新スレ立てる) 前スレ: Inter universal geometryとABC予想(応援スレ) (番号抜けだが実は59) https://rio2016.5ch.net/test/read.cgi/math/1628778394/ 詳しいテンプレは、下記旧スレへのリンク先ご参照 (手抜きです。) Inter-universal geometry と ABC予想 (応援スレ) 52 https://rio2016.5ch.net/test/read.cgi/math/1613784152/1-13 (参考) https://twitter.com/math_jin math_jin 出版序文リンク Andrew Putman 2021年3月6日 https://drive.google.com/file/d/1n1XMCNyQxswQGrxPIZnCCMx6wJka0ybh/view 望月Inter-universal Teichmuller theory (abbreviated as IUT) (下記)は、新しい局面に入りました。 査読が終り出版されました。また、“Explicit”版が公開され、査読は完了したようです。 IUTの4回の国際会議は無事終わり、Atsushi Shiho (Univ. Tokyo, Japan)先生が、参加したようです。 IUTが正しいことは、99%確定です。 このスレは、IUT応援スレとします。番号は前スレ43を継いでNo.44からの連番としています。 (なお、このスレは本体IUTスレの43からの分裂スレですが、実は 分裂したNo43スレの中では このスレ立ては最初だったのです!(^^;) つづく (deleted an unsolicited ad)
669 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:31:45.61 ID:cx0PfKK9.net] このスレのトムとジェリーには哀れみを覚えるが、ただこの人の動画についてはあまり正しくないことを権威を笠に着て言ってると思う Talor DupuyやRichard Ewen Borcherdsのように数学そのものを教える動画を上げればいいのに、なぜか海外から日本人に向けて、しかも概念的な動画をずっと上げているというのも違和感
670 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:32:17.11 ID:aPLQfV8M.net] ま、586についていえば 「大学数学で落ちこぼれた高卒ド素人の🐒が 数理論理素人の数学者のロン毛のいうことを真に受けて トンデモな妄想を口走りまくっている」 といったところか 数学は専門化が激しく進んだので ある分野の専門家が他の分野について 全く素人レベルの理解しかない ということは往々にしてある
671 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:36:30.24 ID:aPLQfV8M.net] ちっ、キリ番とられたw >>600 例の動画についていえば、あまりどころか全然正しくないよ いくら大学の准教授とかいったって、他分野だと学生以下だねw 例えば、東大の数学科には数理論理の講義なんかないから 数理論理について基本的なことを全く知らなくても数学者になれちゃう いまどきタブロー法なんか大したことない私大でも教えるけどね (実際簡単だし、あのくらい大学1年で全学生に教えてほしいもんだ)
672 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:40:55.05 ID:aPLQfV8M.net] >>600 >トムとジェリー トムはFn7qGhTO=O7+c++yBで ジェリーは俺か? 「体が大きく短気だが、お調子者でおっちょこちょいで どこか憎めない部分のあるネコ・トムと、 体は小さいがいたずら好きで、狡賢く追い掛けてくるトムを こともなげにさらりとかわすネズミ・ジェリーのドタバタ劇を、 ナンセンスとユーモアたっぷりに描いたアニメ作品」 まったくそのまんまだねw
673 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:41:35.97 ID:Fn7qGhTO.net] >>562 関連 関数の滑らかさ、0,1,2・・,n,・・,∞,ω(下記) ね 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という珍説で躓くサルには理解できないだろうね 数学科修士卒でハナタカのサル。50歳過ぎで、卒業後30年らしい。彼は数学科で一体何を勉強したのだろうか? 疑問だww (参考) https://ja.wikipedia.org/wiki/%E6%BB%91%E3%82%89%E3%81%8B%E3%81%AA%E9%96%A2%E6%95%B0 滑らかな関数 関数の滑らかさ(なめらかさ、英: smoothness)は、その関数に対して微分可能性を考えることで測られる。より高い階数の導関数を持つ関数ほど滑らかさの度合いが強いと考えられる。 滑らかさの分類 関数 f が連続的微分可能(れんぞくてきびぶんかのう、英: continuously differentiable)であるとは、f に導関数 f′ が存在して、なおかつその f′ が連続関数となることをいう。 同様に自然数 k について、f の k 階の導関数が存在して連続であるとき、f は k 階連続的微分可能であるといい、また f は Ck 級の関数であるという。微分可能な関数は連続であることから、Ck (k = 1, 2, ...) は包含関係に関して非増加な列を成している。任意有限階の導関数をもつ関数は無限階(連続的)微分可能であるといい、そのクラスは C∞ で表される。 関数のクラス Ck を、k 階の導関数が存在して連続であり、なおかつ k + 1 階の導関数が存在しないかあるいは存在しても連続でない関数全体が成す類とすることもある。この場合、各クラスは交わりを持たない排他的な分類を与える。 さらに強い滑らかさを表すクラスとして、解析関数つまり各点で冪級数展開可能な関数のクラス Cω がある。また場合により、連続関数のクラス C を 0 階連続的微分可能な関数のクラス C0 として、滑らかな関数の仲間に入れて考えることがある。 滑らかな関数 関数 f は十分滑らかであるともいう。このような語法を用いるとき、n は十分大きければよく、その値が厳密に知られている必要はないし、とくに n は固定して考えないのが通例である。 そのような状況下では多くの場合、「滑らかな関数」のクラスとして
674 名前:無限回微分可能関数のクラス C∞ や解析関数のクラス Cω を考えるのが、議論の便宜からして有用である。 つづく [] [ここ壊れてます]
675 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:43:03.26 ID:Fn7qGhTO.net] >>604 つづき www.math.titech.ac.jp/~kotaro/class/2017/calc-2/index-jp.html 微分積分学第二 (2017年度) 2018年2月8日 山田光太郎 東京工業大学理学院 数学系 www.math.titech.ac.jp/~kotaro/class/2017/calc-2/lecture.pdf II. テイラーの定理の応用 P19 ■ 解析関数 定義 2.12. 点 a を含む区間で C∞-級な関数 f が a を含む開区間 I で (2.14) のような形で表される,すなわちテイラー展開可能であるとき,f は a で解 析的(正確には実解析的)とよばれる 9).とくに f が定義域の各点で実解析 的であるとき f は単に実解析的,または解析関数という.実解析的であるこ とを “Cω-級” ということがある 10). 定義から解析関数は C∞-級であるが,逆は一般に成立しない. 9)(実) 解析的:(real) analytic; 複素変数の関数の解析性は別の形で定義されるので,区別するためは 「実」をつけることが多い. 10)解析関数:an analytic function. Cω-級:of class C-omega. https://www.math.s.chiba-u.ac.jp/~sasaki/ 佐々木浩宣のページ 千葉大学 理学部 数学・情報数理学科 www.math.s.chiba-u.ac.jp/~sasaki/functions.html 関数達 www.math.s.chiba-u.ac.jp/~sasaki/011_C_infinity_not_C_omega.pdf 11 至るところ実解析的ではない無限回微分可能な関数 https://www2.math.kyushu-u.ac.jp/~joe/math/symp/ 福岡複素解析シンポジウム https://www2.math.kyushu-u.ac.jp/~joe/math/symp/ohsawa.pdf 解析接続の問題に現れる解析と幾何 (多分2018年以降と思われるが詳細不明) 大沢健夫 数学はやればやるほど簡単になるはずであり、組み合わせの数は無限であっても、行き詰る はずはないのである。 岡潔 『一葉舟』(角川ソフィア文庫 2016) 写真 https://www2.math.kyushu-u.ac.jp/~joe/math/symp/P1010703.JPG https://ano-ktok.はてなブログ/entry/2017/03/19/222748 2017-03-19 Schwartz超函数と佐藤超函数 ~解の正則性の視点から~ §1 Schwartz超函数 Schwartz超函数は台がコンパクトなC^∞函数の汎函数として定義されました。 (引用終り) 以上
676 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:45:23.29 ID:aPLQfV8M.net] >>600 >なぜか海外から日本人に向けて、しかも概念的な動画をずっと上げている まったくだ ロン毛野郎の数理論理の理解が、そこらの学生以下のド素人並みなのが笑えるw https://www.youtube.com/watch?v=zSvFP2cWIhI
677 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:48:11.47 ID:aPLQfV8M.net] >>604 おいおい、この🐎🦌、∞<ω とかアタオカなこといってんのか?www アタオカとは https://hinative.com/ja/questions/15011876
678 名前:132人目の素数さん mailto:sage [2021/10/27(水) 20:55:49.10 ID:Fn7qGhTO.net] >>600 ID:cx0PfKK9さん、レスありがとうございます。 >このスレのトムとジェリーには哀れみを覚えるが、 それで結構だし、十分のコメントです(おサルとは同じ穴のムジナだと) つまり、サルは私に背乗り(せのり=マウント)して優越感で自己満足したいらしい だが、どっこい、こちらは迷惑だということ 確かに、5ch数学板でも過去2名ほど、 「この人にはかなわない」と、一言二言言葉を交わしただけ分かる人が居た(多分DRより上) けど、サルは全くそれには、該当しない。のみならず、アホですやん、彼はwww >ただこの人の動画についてはあまり正しくないことを権威を笠に着て言ってると思う かなり同意です ただ、スポーツ紙の見出しみたいなもので、大袈裟でね それが面白いから、大袈裟な「吊り」として使わせて貰っていますw
679 名前:132人目の素数さん mailto:sage [2021/10/27(水) 21:05:56.40 ID:Fn7qGhTO.net] >>607 >おいおい、この歷、∞<ω とかアタオカなこといってんのか?www 言っているよ つーか、おれじゃなく、解析屋さんがね まあ、ωのところが厳密じゃない(多分、気分がωなのだろうねw) でもな、関数の滑らかさ、0,1,2・・,n,・・,∞,ω >>604 これ、気分出ていると思うよ? そう、思わないかい? あっ、ワカンネーだろうなw、落ちこぼれには 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という珍説で躓くサルには理解できないだろうねww
680 名前:132人目の素数さん mailto:sage [2021/10/27(水) 21:08:48.28 ID:aPLQfV8M.net] >>608 >「この人にはかなわない」 そんなの大学の数学科にいけばそこら中にいるじゃん 工学部で大学1年の微積と線型代数でおちこぼれたバカども と比べたら雲泥の差よw >サルは全くそれには、該当しない。 こっちは🐒が分かってると思ってる「間違い」を 完全に明晰に示して発狂させるのが目的だから 「この人にはかなわない」なんて思わせたらダメなのよ 常に同レベルとおもわせとくのがコツ 意地悪だねえ俺ってwww >のみならず、アホですやん、彼は いやいやナニワのド阿呆のあんたに比べたら全然大したことない 江戸ではあんたみたいな🐎🦌は即座に焼かれて食われちまうんでwwwwwww
681 名前:132人目の素数さん mailto:sage [2021/10/27(水) 21:12:14.47 ID:aPLQfV8M.net] >>609 >>∞<ω とかアタオカなこといってんのか?www >言っているよ つーか、おれじゃなく、解析屋さんがね ギャハハハハハハ!!! 解析屋は別に順序数の話なんかしてない 単に解析関数は無限回微分可能関数に含まれるけど 集合として等しくはないといってるだけ アタオカ? https://hinative.com/ja/questions/15011876 >まあ、ωのところが厳密じゃない(多分、気分がωなのだろうねw) いや、ただの名前つけだろ おまえ白痴なの?
682 名前:132人目の素数さん mailto:sage [2021/10/27(水) 21:14:09.19 ID:aPLQfV8M.net] >>609 >「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という珍説 いかなる順序数Oについても、Oから0への降下列は有限列 というのは珍説でもなんでもなく定理ですが、何か?w
683 名前:132人目の素数さん mailto:sage [2021/10/27(水) 21:17:24.53 ID:aPLQfV8M.net] >>608 >こちらは迷惑だということ そりゃそうだろ 何も理解せずにコピペだけで他の連中にマウントする作戦を ことごとく邪魔する俺はお🐒にとって迷惑以外の何者でもないだろうwww
684 名前:132人目の素数さん mailto:sage [2021/10/28(木) 07:40:02.59 ID:FZAtgfhD.net] >>610 >>「この人にはかなわない」 >そんなの大学の数学科にいけばそこら中にいるじゃん >工学部で大学1年の微積と線型代数でおちこぼれたバカども >と比べたら雲泥の差よw そうでもないと思うよ 現実を誤魔化している 日本では、高校までで数オリメダルとか出来るやつが、理IIIへ行くことが多いとか 数学科に行く人に二通り、本当に数学が好きな人と、消去法で数学科でも行くかという人と おれらの時代は、東大京大は別として、それ以外の数学科なんか、食えない、一般の就職が困難、せいぜい高校か中学の教師が関の山 それが常識だった時代があるよ おサルは、大して才能もないのに、数学科へ行って落ちこぼれ、一般の就職もできず、高校・中学の教師にもなれず、食いっぱぐれになったんだね そんなやつに、背乗り(せのり=マウント)されるのは、ご迷惑ですわw >>611 >解析屋は別に順序数の話なんかしてない >単に解析関数は無限回微分可能関数に含まれるけど >集合として等しくはないといってるだけ ほぼ同意だが 正確には、 1.”関数の滑らかさ、0,1,2・・,n,・・,∞,ω”として、分かり易く表現しているってこと 2.”0,1,2・・,n,・・,∞”の部分は、順序数そのもの。つまり、∞記号解析では常用されるので、まずそれを使った 3.その後に、別の定義のω級を繋げた。木に竹を接ぐが如しだが、分かり易いよね(落ちこぼれには難しいかもな) 4.”集合”は、解析屋は”クラス”というけどね、用語としては。まあ、集合で合っているけど、試験答案では、”クラス”を使うのが吉 >>612 >>「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」という珍説 >いかなる順序数Oについても、Oから0への降下列は有限列 >というのは珍説でもなんでもなく定理ですが、何か?w まだ、
685 名前:oカを言っているのか? それに、「Oから0への降下列」って何?w 落ちつけよww [] [ここ壊れてます]
686 名前:132人目の素数さん mailto:sage [2021/10/28(木) 11:21:32.37 ID:3sXU0hQW.net] >>614 >数学科に行く人に二通り、本当に数学が好きな人と、消去法で数学科でも行くかという人と 余談だが、望月 拓郎先生、京都大学理学部から、飛び入学で数学修士(RIMSの柏原研?) はっきり書いてないけど、京大理学部は、多分物理と推測します 下記で博士論文「Gromov-Witten class and a perturbation theory in algebraic geometry」、 Witten氏は物理屋で、perturbationは”摂動”で、主には物理の手法だから 飛び入学の動機”「計算で答えを出す高校までの数学からガラッと変わった」[3] と述懐”とあるから、 少なくとも数学科ではないよね 因みに、佐藤幹夫先生も東大数学科のあと、朝永振一郎に学んだ(量子力学かな)という (多分、筑波大になる前の東京教育大の時代の朝永振一郎先生のところで、都内で近かったんだ。ノーベル賞受賞前だろう) 物理の勉強、無駄になっていないよね、拓郎先生も佐藤幹夫先生も、多分ね (参考) https://ja.wikipedia.org/wiki/%E6%9C%9B%E6%9C%88%E6%8B%93%E9%83%8E 望月 拓郎(1972年8月28日 - ) 生い立ち 1972年(昭和47年)生まれ[1][3]、長野県長野市出身[2]。長野県長野高等学校を卒業し、京都大学に進学した[1]。理学部にて学んでいたが[1]、在学中にトポロジーの本を読み[3]、「計算で答えを出す高校までの数学からガラッと変わった」[3] と述懐している。大学院の理学研究科に飛び入学で進学するため、1994年(平成6年)に理学部を中途退学した[1]。1996年(平成8年)、京都大学の大学院における修士課程を修了した[1]。それにともない、修士(理学)の学位を取得した。大学院在学中に「Gromov-Witten class and a perturbation theory in algebraic geometry」[4] と題した博士論文を執筆した。1999年(平成11年)、京都大学の大学院における博士課程を修了した[1][3]。それにともない、博士(理学)の学位を取得した[1][4][5]。 https://upload.wikimedia.org/wikipedia/commons/5/59/Takuro_Mochizuki_cropped_1_Takur%C5%8D_Mochizuki.jpg 研究 代数と解析の観点からツイスターD加群の研究に取り組んだ[3]。柏原正樹が1996年(平成8年)に提唱し「半世紀は解けない」[3] と言われていた「柏原予想」に取り組み[3]、2011年(平成23年)に発表した論文にて柏原予想の証明に成功した[3]。 つづく
687 名前:132人目の素数さん mailto:sage [2021/10/28(木) 11:22:26.31 ID:3sXU0hQW.net] >>615 つづき https://ja.wikipedia.org/wiki/%E6%91%82%E5%8B%95 摂動 https://en.wikipedia.org/wiki/Perturbation_theory Perturbation theory History The gradually increasing accuracy of astronomical observations led to incremental demands in the accuracy of solutions to Newton's gravitational equations, which led several notable 18th and 19th century mathematicians, such as Lagrange and Laplace, to extend and generalize the methods of perturbation theory. https://ejje.weblio.jp/content/perturb perturb 主な意味 かき乱す、ろうばいさせる、(…を)混乱させる、不安にさせる https://ja.wikipedia.org/wiki/%E4%BD%90%E8%97%A4%E5%B9%B9%E5%A4%AB_(%E6%95%B0%E5%AD%A6%E8%80%85) 佐藤幹夫 (数学者)1928年4月18日 - ノーベル物理学賞受賞の物理学者朝永振一郎に学んだこともある。 D加群の創始者。 https://ja.wikipedia.org/wiki/D-%E5%8A%A0%E7%BE%A4 D-加群 D-加群(D-module)は、微分作用素の環 D 上の加群である。そのような D-加群への主要な興味は、線型偏
688 名前:微分方程式の理論へのアプローチとしてである。1970年ころ以来、D-加群の理論は、主要には代数解析上の佐藤幹夫のアイデアのまとめて、佐藤・ベルンシュタイン多項式(英語版)についての佐藤とヨゼフ・ベルンシュタイン(Joseph Bernstein)の仕事へと発展した。 初期の主要な結果は、柏原正樹の柏原の構成定理(英語版)と柏原の指数定理(英語版)である。D-加群論の方法は、常に、層の理論から導かれ、代数幾何学のアレクサンドル・グロタンディークの仕事からに動機を得たテクニックを使った。 テクニックは、グロタンディーク学派の側からゾグマン・メブク (Zoghman Mebkhout) により開発された。彼は、すべての次元でのリーマン・ヒルベルト対応(英語版)の導来圏の一般的なバージョンを得た。 4 応用 4.1 カズダン・ルースティック予想 4.2 リーマン・ヒルベルト対応 カズダン・ルースティック予想は、D-加群を使い証明された。 関連人物 望月拓郎 つづく [] [ここ壊れてます]
689 名前:132人目の素数さん mailto:sage [2021/10/28(木) 11:22:53.84 ID:3sXU0hQW.net] >>616 つづき https://ja.wikipedia.org/wiki/%E3%82%AB%E3%82%B8%E3%83%A5%E3%83%80%E3%83%B3%E2%80%93%E3%83%AB%E3%82%B9%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E5%A4%9A%E9%A0%85%E5%BC%8F カジュダン?ルスティック多項式 カジュダン・ルスティック予想 これらの予想は、Beilinson & Bernstein (1981) と Brylinski & Kashiwara (1981) によって独立に証明された。一連の証明の中で導入された方法は、1980年代、1990年代を通じて、幾何学的表現論と呼ばれる手法の発展を導いた。 (引用終り) 以上
690 名前:132人目の素数さん mailto:sage [2021/10/28(木) 14:21:52.22 ID:LqIF3zbh.net] >>614 >日本では、高校までで数オリメダルとか出来るやつが、理IIIへ行くことが多いとか 所詮高校レベルの数学なので、 そこで数学の能力が完全に評価できるわけではないが そこ理解してる? >”関数の滑らかさ、0,1,2・・,n,・・,∞,ω”として、分かり易く表現しているってこと 無限階微分可能と解析関数は異なる条件であることは理解してる? ∞<ωなんてことは解析学者は誰一人主張してないと理解してる? >木に竹を接ぐが如しだが、分かり易いよね なんか、分かってはいけない間違いを分かったみたいだが、頭悪い? >解析屋は”クラス”というけどね、試験答案では、”クラス”を使うのが吉 言葉尻にしか反応できてないけど、頭おかしい? >「Oから0への降下列」って何?落ちつけよ 降下列の定義知らない? なら君が落ち着いてまっさきに定義を確認しよう それなしには何も始まらない >>615-617 数学と全く無関係の無駄カキコと無駄コピペはやめてくれる? うっとうしいから
691 名前:132人目の素数さん mailto:sage [2021/10/28(木) 18:04:03.66 ID:3sXU0hQW.net] >>618 >>日本では、高校までで数オリメダルとか出来るやつが、理IIIへ行くことが多いとか >所詮高校レベルの数学なので、 >そこで数学の能力が完全に評価できるわけではないが 数オリメダル、下記リストに無いけど、ショルツェ氏が金で、例のPorowsk氏が銅だったよね(他にも、居た気がした) 数オリで才能を見いだされて、数学の道へ(奨学金とかついたり)もあるかも。当然、数オリ成績が全てではないだろうがね 数オリじゃないが、高校までの数学でちょっと数学できるからと、道を間違える人いるかも 小学生で遠山啓先生の数学入門を読んでね、中高ではちょっと出来たんだろうね で、昔は数学科は、文系で言えば文学系みたいところで(昔、女性には人気で)、就職には法学とかが有利なんだけど 数学が好きで趣味でやるなら良いけど、数学でアカデミックポストをゲットして給料を貰うのは大変なのですよねぇ そういうことを、 あなたは良いたいんだ 分かる、分かるw (参考) https://ja.wikipedia.org/wiki/%E5%9B%BD%E9%9A%9B%E6%95%B0%E5%AD%A6%E3%82%AA%E3%83%AA%E3%83%B3%E3%83%94%E3%83%83%E3%82%AF 国際数学オリンピック 国際数学オリンピックに出場したフィールズ賞受賞者 グ
692 名前:レゴリー・マルグリス - 1962年:金 ウラジーミル・ドリンフェルト - 1969年:金 ジャン=クリストフ・ヨッコス - 1973年:銀, 1974年:金 リチャード・ボーチャーズ - 1977年:銀, 1978年:金 ウィリアム・ティモシー・ガワーズ - 1981年:金 グリゴリー・ペレルマン - 1982年:金(ただし本人はフィールズ賞の受賞を辞退) ローラン・ラフォルグ - 1984年:銀, 1985年:銀 スタニスラフ・スミルノフ - 1986年:金, 1987年:金 テレンス・タオ - 1986年:銅, 1987年:銀, 1988年:金 エロン・リンデンシュトラウス - 1988年:銅 ゴ・バオ・チャウ - 1988年:金, 1989年:金 マリアム・ミルザハニ - 1994年:金, 1995年:金 アルトゥル・アビラ - 1995年:金 (引用終り) 以上 [] [ここ壊れてます]
693 名前:132人目の素数さん mailto:sage [2021/10/28(木) 18:14:58.38 ID:3sXU0hQW.net] >>553 追加 これいいね https://encyclopediaofmath.org/wiki/Ordinal_number Encyclopedia of Mathematics Ordinal number transfinite number, ordinal
694 名前:132人目の素数さん mailto:sage [2021/10/28(木) 18:18:08.70 ID:LqIF3zbh.net] >>619 数学はコピペでマウントとるにはもっとも不向きな学問っていい加減気付きなよ >>620 わけもわからず「これいいね」って歯ぎしりしながら書くのやめたら? 歯なくなるよ
695 名前:132人目の素数さん mailto:sage [2021/10/28(木) 18:21:35.79 ID:LqIF3zbh.net] 3sXU0hQWはこの動画でも見て勉強しなよ https://www.youtube.com/watch?v=5iUKoI8dvjI
696 名前:132人目の素数さん mailto:sage [2021/10/28(木) 21:23:47.52 ID:FZAtgfhD.net] >>621 いや、別にマウントとか、関係ないよ >数オリじゃないが、高校までの数学でちょっと数学できるからと、道を間違える人いるかも >小学生で遠山啓先生の数学入門を読んでね、中高ではちょっと出来たんだろうね 気付いてくれた? 貴方のことだってw あなた、以前小学生で遠山啓先生の数学入門を読んだって、自慢していたよねww それと、>>620 は、いいからいいねと言っただけよ >>622 .youtube 「順序数の無限降下列は存在しない」ことの簡単な説明 216 回視聴2018/12/24 千京 チャンネル登録者数 1050人 (引用終り) ふーん、千京さんか どんな人なんだろう? https://www.youtube.com/channel/UClY1Hio2PNFc2YFXATkNdQw/videos?app=desktop 千京 アップロード済み すべて なるほど、レベルは高そうだね ところで、おサルさん、おサルの珍説 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) だったよね? 千京さんは、無限降下列だよね?www
697 名前:132人目の素数さん mailto:sage [2021/10/28(木) 21:52:40.44 ID:LqIF3zbh.net] >>623 0<1<・・・<ω は 降下列でもあるよ はい、君、負けた はい、君、死んだ
698 名前:132人目の素数さん mailto:sage [2021/10/28(木) 23:50:36.58 ID:FZAtgfhD.net] >>624 > 0<1<・・・<ω は 降下列でもあるよ 違うよ 残念だろうが、おサルの負けだよ おれは、別にマウントとか、関係ないよ>>623 あんた、間違いばかりで、水面下か地面の下でさ、 あんた自分のレベルの低さ ちょっとは、自覚したらどうだ?w
699 名前:132人目の素数さん mailto:sage [2021/10/29(金) 00:57:23.76 ID:EoZd8iY6.net] 相変わらず一歩も議論が前に進んでないな 流石に 「自然数の集合はdescending chain condition は満たすがascending chain confition は満たさない 」 くらいのところまでは話進んだんかね?
700 名前:132人目の素数さん mailto:sage [2021/10/29(金) 04:25:38.36 ID:6pT2N+Ne.net] >>625 あんた自分のレベルの低さ ちょっとは、自覚したらどうだ?
701 名前:132人目の素数さん mailto:sage [2021/10/29(金) 04:28:33.85 ID:6pT2N+Ne.net] >>626 定義を確認しない
702 名前:s遜な素人には一生無理だろ 昇鎖条件 https://ja.wikipedia.org/wiki/%E6%98%87%E9%8E%96%E6%9D%A1%E4%BB%B6 [] [ここ壊れてます]
703 名前:132人目の素数さん mailto:sage [2021/10/29(金) 07:07:25.45 ID:PGi3LHk2.net] >>626 レスありがとうございます。 亀おじさん? かな >「自然数の集合はdescending chain condition は満たすがascending chain confition は満たさない 」 良い指摘ですね! うんうん >>627-628 (引用開始) 定義を確認しない不遜な素人には一生無理だろ 昇鎖条件 https://ja.wikipedia.org/wiki/%E6%98%87%E9%8E%96%E6%9D%A1%E4%BB%B6 (引用終り) 投稿時間 04:25:38.36と04:28:33.85か >>626 の指摘から、夜中に 4時間悩んでいたのかもねw で、「定義を確認しない」と言いながら、定義の部分をコピーしてないよね 気付いたのかな? 自分の誤りにww
704 名前:132人目の素数さん mailto:sage [2021/10/29(金) 08:00:32.12 ID:6pT2N+Ne.net] >>629 >定義の部分をコピーしてないよね PGi3LHk2がリンク先をクリックして文章読めばいいんじゃね それで自分の軽率な誤りに気づけばいいんじゃね そしてもう二度と数学板に書きこみしなければこれ以上恥かかずに済むんじゃね 数学は文章も読まず論理的に考えない自分には到底無理って悟ればいいんじゃね
705 名前:132人目の素数さん mailto:sage [2021/10/29(金) 10:01:18.26 ID:1yoczR+k.net] >>630 >>定義の部分をコピーしてないよね >PGi3LHk2がリンク先をクリックして文章読めばいいんじゃね >それで自分の軽率な誤りに気づけばいいんじゃね へへへ、あんた気づいているんだ 定義の部分のコピーが おれは、ヒントは与えないつもりだった >>626 は良いヒントだね 自得しなよ、自分の誤りを >そしてもう二度と数学板に書きこみしなければこれ以上恥かかずに済むんじゃね >数学は文章も読まず論理的に考えない自分には到底無理って悟ればいいんじゃね 必死の取り繕い 負け惜しみ よくわかるな あんたの基準は、自分が背乗り(せのり=マウント)出来るかどうか 数学落ちこぼれのおサルが、必死で他人に背乗りして、自己満足のストレス解消をしたいってことだけね それだけが、判断基準なんだね でも、他の多くのROMさんたちは、別の基準だろうね(多少でも自分にとって価値ある情報かどうか等) で、おれのコピーと典拠のURLは、上記の意味でもあり、自分の備忘録でもある (URLだけでなく、関連キーワードを埋め込んでおけば、記憶を辿って検索するのが容易なんだよ) コピー貼付けは、別に他人にマウントするためじゃない おサルは、レベルが低い(水準以下)、だからコピー貼付されると、自分のレベルの低さが露わになって 嫌なんだ。分かるよ。あんたは、水面下あるいは地面の下の存在、モグラさんみたいなものだもの 数学板で、数学の落ちこぼれが、必死になっているw まあ仕方ないわな (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) 笑えるな アホやw
706 名前:132人目の素数さん mailto:sage [2021/10/29(金) 10:03:43.70 ID:1yoczR+k.net] >>631 補正 定義の部分のコピーが ↓ 定義の部分のコピーが、ヤバイってこと
707 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:00:36.70 ID:6pT2N+Ne.net] >>631 無駄な長文ひどいね なにわけわかんないこといってんだ? >おれは、ヒントは与えないつもりだった 他人に先越されて悔しいらしいがアホらし 誰もPGi3LHk2に全く何の興味もないよ 626の「DCCだがACCでない」も628のwikiも、ヒントでなく完璧な回答 それすら理解できないんじゃ、数学無理だからもう諦めな 数学は他人にマウントするネタじゃない 頭冷やせ 天才気取りのボクちゃん
708 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:04:17.36 ID:1yoczR+k.net] Fesenko氏のホームページがリニューアルされている(下記) 冒頭、IUTのオンパレード 特に、Como Schoolにご注目。>>248 にあるように、”講師陣がすごい Laurent Lafforgue、Alain Connes、Misha Gromov、Maxim Kontsevich、Barry Mazurなど これに混じって、Ivan Fesenko氏 上記の”Anabelian geometry and IUT”を語る Wojciech
709 名前: Porowski氏も、”basic anabelian geometry”で、例のIUTも語るのだろう” そんなん、ショルツェ氏がいうような「IUTはウソ、デタラメ」だったら こんなこと出来ないよね (参考) https://ivanfesenko.org/?page_id=80 News ? Ivan Fesenko ・Explicit estimates in inter-universal Teichmuller theory, by Shinichi Mochizuki, Ivan Fesenko, Yoichiro Hoshi, Arata Minamide, Wojciech Porowski, RIMS preprint in November 2020, updated in June 2021, accepted for publication in September 2021 ・Como School “Unifying themes in Geometry”, September 27-30 2021 ・Higher adelic theory, talk at Como school on Unifying Themes in Geometry, September 2021 ・IUT and modern number theory, talk at RIMS workshop on IUT Summit, September 2021 ・Four RIMS workshops during special RIMS year Expanding Horizons of Inter-universal Teichmuller Theory, April 2021- ・On asymptotic equivalence of elliptic curves over Q ・International online seminar “Promenade in IUT”, 2020-2021 (引用終り) [] [ここ壊れてます]
710 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:17:56.82 ID:1yoczR+k.net] >>633 >他人に先越されて悔しいらしいがアホらし 誰もPGi3LHk2に全く何の興味もないよ > 626の「DCCだがACCでない」も628のwikiも、ヒントでなく完璧な回答 >それすら理解できないんじゃ、数学無理だからもう諦めな 必死で強弁して、取り繕っているのか はたまた、真のバカヤローか? よく分からないが 言えることは、彼は墓穴を大きくしているってこと 今回は、勝利が明白なので、ノーヒント。ヒントを与える反論も、コピぺもしない ただ、突っついて、おサルを躍らせるのみww
711 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:20:16.18 ID:1yoczR+k.net] >>635 追加 おサルさ、時枝も同じだよ (箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/ ) あんたの負けだよ それに気付いていないだけだよww
712 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:34:40.85 ID:EoZd8iY6.net] >>629 誤りwwwwwwww やっぱり無理なんやな accとかdccとか理解できる知能レベルにないな
713 名前:132人目の素数さん mailto:sage [2021/10/29(金) 11:39:42.64 ID:1yoczR+k.net] >>637 >accとかdccとか理解できる知能レベルにないな (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) 最低限のヒント おサルの珍説と その accとかdccとか とを きちんと比べてみなよwww
714 名前:132人目の素数さん mailto:sage [2021/10/29(金) 14:00:37.15 ID:6pT2N+Ne.net] >>635 必死で強弁して、取り繕っているのが丸分かり >>636 箱入り無数目も、君の間違い 残念でした >>637 なんで>>628 のwiki読まないの?
715 名前:132人目の素数さん mailto:sage [2021/10/29(金) 14:05:40.02 ID:1yoczR+k.net] >>638 補足 おサルが、どこまで墓穴(=ぼけつ(下記))を、大きくするのか楽しみだねw まあ、自分の誤りに気付いてい入るが、いまさら、言えないのかもねww >>639 >なんで>>628 のwiki読まないの? 教えてはやらん。ノーヒントwww (参考) https://dictionary.goo.ne.jp/word/%E5%A2%93%E7%A9%B4_%28%E3%81%BC%E3%81%91%E3%81%A4%29/ ぼ‐けつ【墓穴】 の解説 goo 棺や骨壺を埋めるための穴。はかあな。 墓穴 の慣用句・熟語(1) 出典:デジタル大辞泉(小学館) 墓穴を掘る 身を滅ぼす原因を自分から作ることのたとえ。 「策を弄して―・る」 [補説]この句の場合、「墓穴」を「はかあな」とは読まない。
716 名前:132人目の素数さん mailto:sage [2021/10/29(金) 14:16:18.54 ID:6pT2N+Ne.net] >>640 >教えてはやらん。ノーヒント 「教えてはやれん、数式がコピペできないから」だろ? じゃ、こっちがコピペしてあげるよ コピペしてほしいんだろ?
717 名前:ボク ほれっ! [] [ここ壊れてます]
718 名前:132人目の素数さん [2021/10/29(金) 14:17:28.75 ID:6pT2N+Ne.net] 【定義】 半順序集合 P において、 任意の真の上昇列 a1 < a2 < a3 < ... が有限回で止まるときに 昇鎖条件(英: ascending chain condition; ACC)が成り立つと言う。 この条件は次のようにも言い換えられる。任意の列 a_1≦ a_2≦ a_3≦ ・・・ a_1≦ a_2≦ a_3≦ ・・・ に対して、ある自然数 n が存在して、 a_n = a_n+1 = a_n+2 = ・・・ a_n = a_n+1 = a_n+2 = ・・・ が成り立つ。 半順序集合 P において、 任意の真の下降列 a1 > a2 > a3 > ... が有限回で止まるときに 降鎖条件(英: descending chain condition; DCC)が成り立つと言う。 この条件は次のようにも言い換えられる。任意の列 a_1≧ a_2≧ a_3≧ ・・・ a_1≧ a_2≧ a_3≧ ・・・ に対して、ある自然数 n が存在して、 a_n = a_n+1 = a_n+2 = ・・・ a_n = a_n+1 = a_n+2 = ・・・ が成り立つ。
719 名前:132人目の素数さん [2021/10/29(金) 14:18:35.15 ID:6pT2N+Ne.net] 【注釈】 ・降鎖条件を満たすことと、整礎であること、 つまり任意の空でない部分集合が極小元をもつことは同値である。 これは極小条件 (minimal condition) とも呼ばれる。 ・昇鎖条件を満たすことと、逆整礎であること、 つまり任意の空でない部分集合が極大元をもつことは同値である。 これは極大条件 (maximal condition) とも呼ばれる。
720 名前:132人目の素数さん [2021/10/29(金) 14:22:26.37 ID:6pT2N+Ne.net] >>643 の続き 【注釈】 ・降鎖条件を満たす全順序集合は整列集合と呼ばれる。 ーーーーーーーーーーーーーーーーーーーーーーーー つまり、全順序集合というだけでは整列集合にはならない (例:整数全体の集合Z、0≦x≦1となる実数x全体の集合[0,1])
721 名前:132人目の素数さん [2021/10/29(金) 14:24:51.32 ID:6pT2N+Ne.net] >>644 の続き 【注釈】 ・有限半順序集合は昇鎖条件と降鎖条件を満たす。 ーーーーーーーーーーーーーーーーーーーーーーーー つまり、有限全順序集合は、整列集合である さらに、順序を逆転させても、整列集合である
722 名前:132人目の素数さん [2021/10/29(金) 14:28:27.41 ID:6pT2N+Ne.net] >>645 の続き 【注釈】 ・「無限に続く真の上昇/下降列がない」ことと少し異なるそれよりも強い条件として、 「任意に長い真の昇鎖/降鎖列が存在しない」(つまり列の長さの最大値が存在する)というものがある。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 【問題】 「無限に続く真の上昇/下降列がない」が 「任意に長い真の昇鎖/降鎖列が存在する」 (つまり、列の長さの最大値が存在しない) 例を示せ
723 名前:132人目の素数さん [2021/10/29(金) 14:31:38.62 ID:h7mzOLc0.net] スレの8割がIUTと関係ない不毛な言い争い。 別スレでやれ
724 名前:132人目の素数さん mailto:sage [2021/10/29(金) 14:56:01.44 ID:6pT2N+Ne.net] ここ、IUTスレじゃないですよ いわゆる偽スレ 本当のIUTスレは以下ですのでよろしく Inter-universal geometry とABC 予想47 https://rio2016.5ch.net/test/read.cgi/math/1634466824/
725 名前:132人目の素数さん mailto:sage [2021/10/29(金) 15:07:52.99 ID:1yoczR+k.net] >>647 どうも、レスありがとう >スレの8割がIUTと関係ない不毛な言い争い。 1.残り2割のIUT関連は、私の投稿であること 2.アンチのおサルのカキコは、IUTと関係ないこと100%であること 3.アンチのおサルは、「数学における日本とかいう野蛮な島のジコチュウ●チガイの系譜 オカ、シムラ、モチヅキ」>>6 と絶叫しまくる やつなので 4.よって、このスレでの放し飼いが、他のスレの平和に役立つってことです 以上
726 名前:132人目の素数さん mailto:sage [2021/10/29(金) 15:13:19.73 ID:1yoczR+k.net] >>642 その定義と、>>638 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) とを比べてみなよ 一目瞭然でしょうww お前の珍説の破綻が分かるよね? 分からんとしたら、相当重症だね 数学科で何を勉強したのかな?ww
727 名前:132人目の素数さん mailto:sage [2021/10/29(金) 16:01:28.55 ID:6pT2N+Ne.net] >>649 >>スレの8割がIUTと関係ない不毛な言い争い。 > 残り2割のIUT関連は、私の投稿である 2割のうち1割がコピペ 残り1割は中身と無関係の礼賛 意味ないね >>650 「<上昇列 0<1<・・・ω という無限列」は上昇列だけど降下列ではない 「<上昇列 0<1<・・・<ω 」は上昇列かつ降下列、 そして順序数の降下列は有限列 >>644 に書かれてる通り これでも分からんなら数学無理だから諦めな
728 名前:132人目の素数さん mailto:sage [2021/10/29(金) 16:03:21.33 ID:6pT2N+Ne.net] >>649 >>スレの8割がIUTと関係ない不毛な言い争い。 > 残り2割のIUT関連は、私の投稿である 2割のうち1割がコピペ 残り1割は中身と無関係の礼賛 意味ないね >>650 「<上昇列 0<1<・・・ω という無限列」は上昇列だけど降下列ではない 「<上昇列 0<1<・・・<ω 」は上昇列かつ降下列、 そして順序数の降下列は有限列 >>644 に書かれてる通り これでも分からんなら数学無理だから諦めな
729 名前:132人目の素数さん mailto:sage [2021/10/29(金) 17:33:21.62 ID:1yoczR+k.net] >>652 まあ、一月くらい”晒し者”にしてやる せっせと墓穴を掘りな 一月くらいの間に自得するだろうが さもなければ、間違いを教えてやる そのころには、再起不能だろうね ご愁傷様です 簡単なことなのに こんな簡単なことが分からない それじゃ 数学科で落ちこぼれるし、一年の最初、イロハのロみたいなとこじゃん ここで躓いているなら あとは、悲惨だよねw
730 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:06:36.68 ID:6pT2N+Ne.net] >>653 2012/1/31以来約10年アホを晒してる奴が何いってんだ? 現代数学の系譜11 ガロア理論を読む https://uni.5ch.net/test/read.cgi/math/1328016756/ なんか、アホがギャアギャアわめいてるから >>643 の 「降鎖条件を満たすことと、整礎であること、 つまり任意の空でない部分集合が極小元をもつことは同値である。 これは極小条件 (minimal condition) とも呼ばれる。」 の証明でもしようか まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、 集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない そして、もし集合Aが整列集合でないなら、 Aの空でない部分集合Mで最小元を持たないものが存在する このとき、任意のa∈MについてM_a={x∈M|x<a}と定義すると M_aはみな空集合でないから、選択公理により、MからMへの写像φで、 任意のa∈Mに対してφ(a)∈M_aとなるものが存在する そこで、Mの元a_1をとってきて、 φ(a_1)=a_2,φ(a_2)=a_3,…,φ(a_n-1)=a_n,… とすれば、(an)n∈Nは無限長の降鎖となる Q.E.D.
731 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:18:39.58 ID:EoZd8iY6.net] >>654 ではその定理を利用してNはdccを満たすがaccを満たさないの証明を完成して下さい
732 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:24:42.99 ID:6pT2N+Ne.net] >>655 それは 1yoczR+k にいってるのね?
733 名前:132人目の素数さん mailto:sage [2021/10/29(金) 18:42:58.43 ID:b9mmbE1+.net] >>656 いえ、セタにです
734 名前:132人目の素数さん mailto:sage [2021/10/29(金) 19:10:42.67 ID:6pT2N+Ne.net] >>657 なるほど、PGi3LHk2 ってことね おそらく、PGi3LHk2 = 1yoczR+k だと思うけど
735 名前:132人目の素数さん mailto:sage [2021/10/29(金) 19:55:24.82 ID:EoZd8iY6.net] なんだ>>654 はセタじゃないのか えらい成長したなと思ったらそんなわけなかったwww
736 名前:132人目の素数さん mailto:sage [2021/10/29(金) 20:32:08.82 ID:PGi3LHk2.net] >>655-658 ほいよw おまいら、サルの肩を持った時点で、負け組だよ 分からない問題はここに書いてね 470 https://rio2016.5ch.net/test/read.cgi/math/1630008892/
737 名前:132人目の素数さん mailto:sage [2021/10/29(金) 20:33:50.07 ID:PGi3LHk2.net] >>650 再録w その定義と、>>638 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) とを比べてみなよ 一目瞭然でしょうww お前の珍説の破綻が分かるよね? 分からんとしたら、相当重症だね 数学科で何を勉強したのかな?ww
738 名前:132人目の素数さん mailto:sage [2021/10/29(金) 20:47:28.07 ID:PGi3LHk2.net] >>661 追加 (>>354 より 再録) Inter-universal geometry と ABC予想 (応援スレ) 55 https://rio2016.5ch.net/test/read.cgi/math/1623558298/158 158 名前:132人目の素数さん[sage] 投稿日:2021/06/17(木) ID:40Ayiq4a <上昇列 0<・・・<ω が有限列にしかなり得ない ことも分からん「考えなしの素人」に数学はムリ 966 名前:132人目の素数さん[sage] 投稿日:2021/06/27(日) ID:5wbdzBIx (ω論争まとめ <発言抜粋>)(^^ 510 2021/06/20 ID:jA2rtNGF 「<」は二項関係だけど順序を意味する記号でもあるから {0,1,2,...,ω}に全順序関係「<」が定まってるとも普通に読めるよ。 それでω+1が無限列かどうか教えてよ。 561 2021/06/20 ID:jA2rtNGF ω+1={0,1,2,...ω}という記法は普通にあったんだけどさ、言い訳すらできないとかダサすぎやん。 あと結局ω+1は上昇列かどうかは答えられないってことなんだね。 574 2021/06/20 ID:aiCb8/PE >順序数は上昇列じゃないんだ。 >じゃあωも上昇列でないてことでok? ああ、そうだよ そもそもID:jA2rtNGF君は、なんでωが上昇列だと思うんだい? ちゃんと答えてごらん センセイ、怒らないからw 593 2021/06/20 ID:aiCb8/PE >ω={0,1,2,...}が上昇列じゃないって言ったのは何なのさ 0<1
739 名前:<2<・・・が上昇列でない、といつどこで誰がいいました? 幻聴でしょうw いわれているのは以下 「0<1<2…<ωは、無限上昇列ではない」 ニホンゴ、ワカリマスカ?w 968 名前:132人目の素数さん[] 投稿日:2021/06/27(日) ID:2cYyqlhC >>946 >>574 の君「ωは上昇列ではない」 >>593 の君「ωは上昇列である」 あのもう議論としてあなたは詰んでしまってるんで てか一週間経って俺がいなくなってそうな状態を見計らっての、突然の勝利宣言は流石に笑える どんだけ悔しかったんだ (引用終り) 以上 [] [ここ壊れてます]
740 名前:132人目の素数さん mailto:sage [2021/10/29(金) 21:00:22.96 ID:6pT2N+Ne.net] >>659 アハハ、やっぱり勘違いされてましたか なんかそんな気がしたんだよね 実は自分でも何気に書きぶりが似てると感じるときがありましてね・・・ なんか伝染するんですかね? 危険な兆候だな(苦笑) 実は>>654 の証明は 松坂和夫氏の「集合・位相入門」の第3章§3の問2 の解答をほぼそのまま書いてます ついでに>>655 の解答書くと もし、NがDCCでないとすると、無限降下列が存在しますが その場合、 「任意のn∈Nについて、nが無限降下列の項に入ってない」 といえるので矛盾します 「」内を数学的帰納法で示します まず、0は無限降下列に入ってません 0より小さい自然数はないからそこで止まっちゃいますからね で、任意の自然数n>0について、 n未満の自然数が無限降下列に入ってないとすると nも無限降下列には入りません そりゃそうですよね、nから降下する先はn未満の自然数ですから したがって任意の自然数nについて、nが無限降下列に入ってない で、NがACCを満たすのは、ペアノの公理から明らかでしょう いかなる自然数nについても、その後者が存在しますから Q.E.D.
741 名前:132人目の素数さん mailto:sage [2021/10/29(金) 21:07:38.27 ID:6pT2N+Ne.net] >>662 (0<・・・<ωについて) >{0,1,2,...,ω}に全順序関係「<」が定まってるとも普通に読めるよ。 全然読めないなw 「<ω」と書いてしまったが最後、<の左に項が存在しないといけない つまり、ωからその下の項に降下できる列、とそこで規定している そこ見落としたPGi3LHk2が迂闊 もうあきらめな 松坂和夫の「集合・位相入門」すら全然読んだことない奴に 現代数学なんか全然無理だから
742 名前:132人目の素数さん mailto:sage [2021/10/29(金) 23:46:35.28 ID:PGi3LHk2.net] ID:EoZd8iY6さん、やっぱ亀おじさんこと、基礎論廃人か? 夜中の0時、3時、5時と投稿して、朝の11時から投稿再開かい 良い5chでに仕事振りですなw hissi.org/read.php/math/20211029/RW9aZDhpWTY.html 必死チェッカーもどき 数学 > 2021年10月29日 > EoZd8iY6 書き込み順位&時間帯一覧 4 位/73 ID中 Total 9 時間 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 書き 1 0 0 1 0 1 0 0 0 0 0 3 0 1 0 0 0 0 1 1 込み数 132人目の素数さん 書き込んだスレッド一覧 Inter-universal geometry と ABC予想 (応援スレ) 60 分からない問題はここに書いてね 470 (引用終り) >>626 「自然数の集合はdescending chain condition は満たすがascending chain confition は満たさない 」 は、良い指摘と思ったけど >>637 "誤りwwwwwwww やっぱり無理なんやな accとかdccとか理解できる知能レベルにないな" ? おやおや?? 基礎論やってたいうから、多少できるかと思っていたけど、想像通りからっきしやね いやね、基礎論の話題は以前からこのスレでも何度か出たけど、亀おじさんのコメントが皆無だから、「もしや、からっきしか」と思ってはいたけどw あのさ、「自然数の集合はdescending chain condition は満たすがascending chain confition は満たさない 」を使って、下記珍説 、>>661 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) が救えると勘違いしているみたいだが、それって同じ穴のムジナでさ 「基礎論分かってませんでした」って自白しているに等しいよw やっぱりね やれやれだなw 一緒に晒し者だなww [] [ここ壊れてます]
744 名前:132人目の素数さん mailto:sage [2021/10/29(金) 23:48:12.76 ID:PGi3LHk2.net] >>665 タイポ訂正 良い5chでに仕事振りですなw ↓ 良い5chでの仕事振りですなw
745 名前:132人目の素数さん mailto:sage [2021/10/30(土) 00:14:51.09 ID:zgBubH+2.net] >>664 (引用開始) (0<・・・<ωについて) >{0,1,2,...,ω}に全順序関係「<」が定まってるとも普通に読めるよ。 全然読めないなw 「<ω」と書いてしまったが最後、<の左に項が存在しないといけない つまり、ωからその下の項に降下できる列、とそこで規定している そこ見落としたPGi3LHk2が迂闊 (引用終り) またまた、バカ晒しかよ おサルさ、>>662 に再録した スレ55の 510 2021/06/20 ID:jA2rtNGFと 968 名前:132人目の素数さん[] 投稿日:2021/06/27(日) ID:2cYyqlhC と この二つの発言の意味が、全く分かってないんか? やれやれだな >>663 >実は>>654 の証明は >松坂和夫氏の「集合・位相入門」の第3章§3の問2 >の解答をほぼそのまま書いてます そんなことだろうと思った だけど、理解してないよね 本質をw 理解していたら、 松坂和夫と下記の珍説との差が分かるはずだよ >>661 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り)
746 名前:132人目の素数さん mailto:sage [2021/10/30(土) 05:04:50.91 ID:jsIfaBFZ.net] >>667 zgBubH+2はなにをトチ狂ってんだ? まず「<上昇列 0<1<・・・ω という無限列があり得る」の 0<1<・・・ωには、全ての自然数が現れる しかし一方「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」の 0<1<・・・<ωは、当然現れない自然数がある そりゃそうだろ 0<ω 0<1<ω 0<1<2<ω ・・・ 0<1<・・・<n<ω ・・・ という無限個の列のどれも、それぞれ、あるnが存在して n<mとなる自然数は列には現れない なんか、君は 「<上昇列、0<1<・・・<ω」 と書いたら、 「ω未満の全ての順序数(つまり自然数)が現れる」 と勝手に妄想してないか? しかし、誰もそんなこといってないんだがな 要は、君が持ち出した無限<上昇列は <降下列にならない ってただそれだけのことなんだがね どうしても理解したくないかね? マウント🐒君w jA2rtNGF はそもそも降下列についての話を ワカランチンのSET Aが勝手に上昇列にすり替えた という流れを無視してる時点で論外ね 降下列になりえない上昇列なんか持ち出しても意味ないんだよ なんでこんな簡単なことがわからんかね zgBubH+2=SET Aは
747 名前:132人目の素数さん mailto:sage [2021/10/30(土) 05:08:39.34 ID:jsIfaBFZ.net] >>668 は >>646 の【問題】 >「無限に続く真の下降列がない」が >「任意に長い真の降鎖列が存在する」 >(つまり、列の長さの最大値が存在しない) >例を示せ の答えね つまりωがその例だってこと
748 名前:132人目の素数さん mailto:sage [2021/10/30(土) 06:33:21.36 ID:zgBubH+2.net] >>668-669 トチ狂っているのは、あなたです 命題A「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」 の証明に、あるn∈Nを持ってきて 命題B「<上昇列 0<1<・・<n<ω が有限列になる」 という例を作っただけでしょ? それって証明かい?w
749 名前:132人目の素数さん mailto:sage [2021/10/30(土) 07:12:52.84 ID:jsIfaBFZ.net] >>670 >それって証明かい? ええ いかなる順序数の降下列も有限列である、というのは 順序数に関する超現帰納法で証明されますが、その際 「極限順序数λについて α<λとなる任意のαの降下列が有限列なら λの降下列も有限である」 を証明する必要があります 上記の証明は根本的に 「λのいかなる降下列も、必ずλ未満のある順序数αに降下する」 によるものですから #今この瞬間 SET Aの首斬ったな
750 名前:132人目の素数さん mailto:sage [2021/10/30(土) 08:28:14.71 ID:zgBubH+2.net] >>654 >「降鎖条件を満たすことと、整礎であること、 > つまり任意の空でない部分集合が極小元をもつことは同値である。 > これは極小条件 (minimal condition) とも呼ばれる。」 >の証明 >まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、 >集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない "実は>>654 の証明は 松坂和夫氏の「集合・位相入門」の第3章§3の問2 の解答をほぼそのまま書いてます">>663 は良いけど、この証明は かなりずさんじゃね? 1.「降鎖条件を満たすことと、整礎であること」は、半順序に関する命題だが、整列集合は全順序でしょ? いま、自然数の話だから、全順序限定で良いけど、そこは断らないと (下記、英文wikiの”A totally ordered set that is well-founded is a well-ordered set.”を証明したんだよね) 2.同値の証明は、命題A→B と B→Aをいうのが通例だが、上記証明で ”まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、 集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない” がA→Bか B→Aか、どちらの命題を証明しているのか、
751 名前:s明確だね つまり、背理法ともとれるし、対偶を証明しているともとれるし、だからそこも曖昧だし(証明の後段も同じ) (院試なら、採点官がどう受け取るか? 多分、「読みにくい答案だ」と思うだろう) 3.長いので引用しなかったが、証明後段「φ(a_1)=a_2,φ(a_2)=a_3,…,φ(a_n-1)=a_n,… とすれば、(an)n∈Nは無限長の降鎖となる」で、順序関係(つまり、a_2>a_3とか)を示していないよね 選択公理を使ったら順序関係がどうかな? 松坂本では、ここはどうなの? 松坂和夫を参考にしたのは良いが、荒いね記述が だから、名無しさんが、5chに書き散らす証明を読むのは、いやなんだよねw、まるで赤ペンやっているみたいになるからw つづく [] [ここ壊れてます]
752 名前:132人目の素数さん mailto:sage [2021/10/30(土) 08:28:54.65 ID:zgBubH+2.net] >>672 つづき (参考) https://ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88 整列順序付けられた集合または整列集合(英: well-ordered set)とは、整列順序を備えた集合のことをいう。 ここで、集合 S 上の整列順序関係 (well-order) とは、S 上の全順序関係 "≦" であって、S の空でない任意の部分集合が必ず ≦ に関する最小元をもつものをいう。 あるいは同じことだが、整列順序とは整礎な全順序関係のことである。整列集合 (S, ≦) を慣例に従ってしばしば単純に S で表す。 https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82 二項関係が整礎(英: well-founded)であるとは、真の無限降下列をもたないことである。 https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E9%96%A2%E4%BF%82 二項関係(英: binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 A の元からなる順序対のあつまりである。 ysserve.wakasato.jp/Lecture/SetTheory3/settheory03/node16.html 整列可能定理 https://en.wikipedia.org/wiki/Ascending_chain_condition Ascending chain condition Comments A totally ordered set that is well-founded is a well-ordered set. (引用終り) 以上
753 名前:132人目の素数さん mailto:sage [2021/10/30(土) 08:41:09.97 ID:zgBubH+2.net] >>663 (引用開始) もし、NがDCCでないとすると、無限降下列が存在しますが その場合、 「任意のn∈Nについて、nが無限降下列の項に入ってない」 といえるので矛盾します 「」内を数学的帰納法で示します まず、0は無限降下列に入ってません 0より小さい自然数はないからそこで止まっちゃいますからね で、任意の自然数n>0について、 n未満の自然数が無限降下列に入ってないとすると nも無限降下列には入りません そりゃそうですよね、nから降下する先はn未満の自然数ですから したがって任意の自然数nについて、nが無限降下列に入ってない で、NがACCを満たすのは、ペアノの公理から明らかでしょう いかなる自然数nについても、その後者が存在しますから Q.E.D. (引用終り) これって、松坂和夫氏の「集合・位相入門」には、無いでしょ? あなたのオリジナルでしょ? もし、松坂和夫氏の「集合・位相入門」にあるなら、どの箇所か ”第3章§3の問2 の解答”みたく教えて 図書館に確認に行くから そもそも、>>654 の「降鎖条件を満たすことと、整礎であること、 つまり任意の空でない部分集合が極小元をもつことは同値である。 これは極小条件 (minimal condition) とも呼ばれる。」 の証明があるならば 単に「(自然数の集合Nで)任意の空でない部分集合が極小元をもつ」 (自然数だから最小元を示せば可) を言えば良いんじゃね? そっちの方が、簡単でスマートじゃね?w だから、松坂和夫氏の「集合・位相入門」には、あなたの上記証明は無いと思うけど、どう?
754 名前:132人目の素数さん mailto:sage [2021/10/30(土) 09:06:45.09 ID:zgBubH+2.net] >>674 追加 細かいけど>>655 で 「>>654 ではその定理を利用してNはdccを満たすがaccを満たさないの証明を完成して下さい」 だったよね 対して、>>633 の証明は、”その定理を利用して”の誘導を無視してない? それって、院試なら暴走答案でしょ? 合っていれば点はくれるだろうけどねw、まあ、大幅減点かもねw >>671 >順序数に関する超現帰納法で証明されますが、その際 >「極限順序数λについて なんか、知っている言葉を羅列して、ゴマカシているよね 超現帰納法をちゃんと理解していたら 珍説 >>661 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) は、言わないと思うよw
755 名前:132人目の素数さん mailto:sage [2021/10/30(土) 09:18:26.21 ID:zgBubH+2.net] >>659 >なんだ>>654 はセタじゃないのか >えらい成長したなと思ったらそんなわけなかったwww おれは名前の議論はしない。だれか第三者に迷惑を掛ける可能性があるからね で、「えらい成長したな」って、あんた「定義! 定義」! と絶叫するわりに>>654 の問題点スルー? 全く定義無視の証明なのに?(>>672 例 整礎→整列集合 とか、選択関数を使ったときの順序の問題とか) あなた あんまり、
756 名前:ヘが無いように見えるけど? [] [ここ壊れてます]
757 名前:132人目の素数さん mailto:sage [2021/10/30(土) 09:42:42.56 ID:KRIa6Reb.net] >>676 お前に他人の問題点指摘する資格なんなねーよwwwww バーカwwwwwwwwwwww
758 名前:132人目の素数さん mailto:sage [2021/10/30(土) 10:12:09.45 ID:jsIfaBFZ.net] >>672 1.について 松坂和夫氏の「集合・位相入門」の第3章§3の問2は以下の通り 「Aが整列集合であるための必要十分条件は、Aにおいて(無限長の)降鎖が存在しない、であると示せ」 そもそも、ここでは半順序集合について一切議論してないから、実質的に問題ない 2.について ”まず・・・”で始まる2行は 「無限長の降鎖があれば、最小元が存在しない」 と言ってるから 「任意の空でない部分集合が最小元をもつなら、無限長の降鎖は存在しない」の証明 ”そして・・・”で始まる8行は 「ある空でない集合で最小元が存在しないなら、無限長の降鎖が存在する」 と言ってるから 「無限長の降鎖が存在しないなら、任意の空でない集合で最小元が存在する」の証明 対偶も瞬時に分からんようじゃ、証明は読めんわな 3.について φの性質から明らかにa>φ(a)ですから φ(a_n-1)=a_nと定義すれば当然a_n-1>φ(a_n-1)=a_nですが何か? もしかしてφの定義も理解できん? 「任意のa∈Mに対してφ(a)∈M_a={x∈M|x<a}」だよ >荒いね記述が 荒いね読解が そもそも松坂氏の記述を省略した、とは書いてない 「集合・位相入門」を読めばわかるが、実は元のほうが短い 数学科の学生ならこれを「行間が広い証明」とはいわない >>673 全くの無駄コピペ 君が勝手に読んで理解すればいい
759 名前:132人目の素数さん mailto:sage [2021/10/30(土) 10:14:50.38 ID:zgBubH+2.net] >>677 ID:KRIa6Rebさん、基礎論廃人氏ねw >お前に他人の問題点指摘する資格なんなねーよwwwww それは否定はしない ”資格”なんて、貰った記憶がないからね? ところで、”資格”って何? 「定義」は?www で、貴方は”資格”あんの? その証明は? 定義なし、自分の”資格”有無の言及なし、”資格”有無の証明なし あんたの文は、全然ロジカルじゃないよね 確かに、「定義!」と絶叫するだけだもの ”ああ、この人ロジックの力弱いかも”って思ってしまいますwww
760 名前:132人目の素数さん mailto:sage [2021/10/30(土) 10:28:39.03 ID:jsIfaBFZ.net] >>674 >(>>663 )これって、松坂和夫氏の「集合・位相入門」には、無いでしょ? そもそも、>>665 が松坂和夫氏の「集合・位相入門」には、無い問題ですが >単に >「(自然数の集合Nで)任意の空でない部分集合が極小元をもつ」 >(自然数だから最小元を示せば可) >を言えば良いんじゃね? 言いましたが、何か? Nは全順序集合だから極小元を最小元と置き換えてよい >>663 の証明は背理法を使っただけ 「最小元を持たない部分集合が存在するなら、 無限長の降鎖が存在するが、 数学的帰納法により、どの自然数もその降鎖に含まれない といえるから矛盾 したがって、そんな部分集合は存在しません」 君は背理法を使わないほうが「簡単」といいたいようだけど そう思うならやってみてごらん >>675 定理を利用してるので”無視”してると思う君が間違いね
761 名前:132人目の素数さん mailto:sage [2021/10/30(土) 10:33:04.43 ID:jsIfaBFZ.net] >>675 >なんか、知っている言葉を羅列して、ゴマカシているよね >超限帰納法をちゃんと理解していたら >珍説は、言わないと思うよ 逆だな 超限帰納法を理解していたら、 「いかなる順序数の降下列も有限長」 を認める筈だけど 理解できなかった?君
762 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:05:11.85 ID:zgBubH+2.net] >>678 > そもそも、ここでは半順序集合について一切議論してないから、実質的に問題ない 実質的には同意 だが、形式的には問題だろ?w(>>672 の1な) > 2.について 言いたいことは分かった 「降鎖条件を満たすことと、整礎であること、 つまり任意の空でない部分集合が極小元をもつことは同値である。 これは極小条件 (minimal condition) とも呼ばれる。」 の証明で 命題A:降鎖条件を満たす 命題B:整礎であること、つまり任意の空でない部分集合が極小元をもつ で、同値であること 1)A→B 2)B→A を示すのに ”まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、 集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない” は、”¬A→¬B”を言ったという主張ね。つまり、対偶で上記”2)B→A”を示したと ”そして・・・”で始まる8行は 「ある空でない集合で最小元が存在しないなら、無限長の降鎖が存在する」と言ってる だから、”¬B→¬A”を言ったという主張ね。つまり、対偶で上記”1)A→B”を示したと それは分かった が、人に読んで貰う証明の書き方ではないと思うぜ(多分、試験答案としても) つづく
763 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:06:14.87 ID:zgBubH+2.net] >>682 つづき > 3.について > φの性質から明らかにa>φ(a)ですから > φ(a_n-1)=a_nと定義すれば当然a_n-1>φ(a_n-1)=a_nですが何か? > もしかしてφの定義も理解できん? >「任意のa∈Mに対してφ(a)∈M_a={x∈M|x<a}」だよ なるほど、分かったけど、やっぱ記述が荒いね 松坂和夫氏の「集合・位相入門」の文脈では、”
764 名前:ク”が”<”の扱いなんだね それは、ノイマンの正則性公理(下記)の意図でもある でもな、もともとの整礎とか整列集合とかは、一般の順序として二項関係を扱っているよね? だから、「”∈”が”<”の扱い」と一言書かないとね もとの「降鎖条件を満たすことと、整礎であること つまり任意の空でない部分集合が極小元をもつことは同値である。」 に対して、突然”∈”を使った証明を書き下すという流儀ね (せめて、モストフスキくらい(下記)一言 書いたらどうかね?w) これから、試験受ける人は、証明の書き方を考えた方が良いだろうね 最初の命題の証明として採点すると、満点は出せないだろうね (あんたには、もう関係ないけどなw) つづく [] [ここ壊れてます]
765 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:06:40.20 ID:zgBubH+2.net] >>683 つづき (参考) https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理(英: axiom of regularity)は、別名基礎の公理(きそのこうり、英: axiom of foundation) とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。 ・∀xについて、無限下降列である x∈x_{1}∈x_{2}∈・・・ は存在しない。 https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B9%E3%83%88%E3%83%95%E3%82%B9%E3%82%AD%E5%B4%A9%E5%A3%8A%E8%A3%9C%E9%A1%8C モストフスキ崩壊(潰し,収縮とも)補題とは、集合論の命題でアンジェイ・モストフスキの名に因む。 概要 RをクラスX上の二項関係で以下の3条件を満たすものとする。 ・Rは集合状すなわち: R-1[x] = {y : y R x}が必ず集合になる。 ・Rは整礎的である。すなわち: 空でないXの部分集合SはR-極小要素を持つ。(言いかえると、R-1[x] ∩ Sが空となるようなx ∈ Sがあるということ。) ・Rは外延的である。すなわち:Xの異なる二元x,yについて必ず、R-1[x] ≠ R-1[y] モストフスキ崩壊補題はこのようなRに対して、推移的クラス(真のクラスでもよい)M で(M,∈)と(X, R)が同型となるものが一意的に存在し、その同型対応も一意的であるという命題である。その同型対応Gは G(x)={G(y):yRx}で与えられる。この関数をモストフスキ崩壊関数という。(Jech 2003:69). 以上
766 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:19:51.13 ID:jsIfaBFZ.net] >>682 無意味なので全部スルー >>683 >松坂和夫氏の「集合・位相入門」の文脈では、”∈”が”<”の扱いなんだね は?なにわけわかんないこといってんだ? モストフスキ?関係ない 貴様、🐎🦌なのか? >>684 無意味なコピペするな
767 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:22:59.54 ID:zgBubH+2.net] >>680-681 (引用開始) >>663 の証明は背理法を使っただけ 「最小元を持たない部分集合が存在するなら、 無限長の降鎖が存在するが、 数学的帰納法により、どの自然数もその降鎖に含まれない といえるから矛盾 したがって、そんな部分集合は存在しません」 (引用終り) やっぱりね これ(>>674 )って、松坂和夫氏の「集合・位相入門」には、無い あなたのオリジナルね なんかさ、ちょっとロジックが甘いと思ったんだよね 一見、数学的帰納法を使っているけど、単なる形式だけでさ あんまり書くと、ヒントになるから書かないけどww >>674 に引用した証明は、何か変と思ったよw >>>675 定理を利用してるので”無視”してると思う君が間違いね 試験答案のテクニックとしては、もっと明示的に「設問指示の定理を使っています」って分かるように書かないとね 下手すると減点されてさ、しかも院試だと答案返ってこないよ だから、どんな採点されても、文句言えないよ。そこが、答案が返される定期試験と違うところよ 試験受ける人は、気をつけた方がいいね >君は背理法を使わないほうが「簡単」といいたいようだけど >そう思うならやってみてごらん そんな趣味ない あんたが松坂を見たように、探せばどこかに落ちていると思うけどね (暇なときに検索でもしてみるかもだがww) 結論:珍説晒し者継続中 >>661 (おサルの珍説再録) 珍説1(>>354 より) 「<上昇列 0<・・・<ω が有限列にしかなり得ない」 珍説2(>>363 より) 「<上昇列 0<1<・・・ω という無限列があり得る」と 「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」は 両立する (引用終り) 以上
768 名前:132人目の素数さん mailto:sage [2021/10/30(土) 11:32:54.91 ID:X5ZPh+Zz
] [ここ壊れてます]
769 名前:.net mailto: 工学バカ脳が数学出来ないのは相変わらずだが 煽り芸だけは進歩(というか悪化)してるなw [] [ここ壊れてます]