[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 22:23 / Filesize : 912 KB / Number-of Response : 1120
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 60



608 名前:132人目の素数さん mailto:sage [2021/10/25(月) 00:09:34.16 ID:wB/2IR+g.net]
>>547
つづき

単純階型理論(Simple Theory of Types)
ここでは、Mendelson (1997, 289-293)の体系 ST を解説する。
基盤となる論理は一階述語論理であり、量化変数の範囲は型によって限定される。
最下層の型の個体要素は、ある集合論の原要素(Ur-elements)に対応する。それぞれの型にはより高位の型があり、ペアノの公理の後者関数(successor function)の記法にも似ている。ST では最高位の型があるかどうかは規定していない。超限数個の型があってもなんら不都合は生じない。

https://ja.wikipedia.org/wiki/%E9%AB%98%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86
高階述語論理(こうかいじゅつごろんり、英: Higher-order logic)は、一階述語論理と様々な意味で対比される用語である。

例えば、その違いは量化される変項の種類にも現われている。一階述語論理では、大まかに言えば述語に対する量化ができない。述語を量化できる論理体系については二階述語論理に詳しい。

その他の違いとして、基盤となる型理論で許されている型構築の違いがある。高階述語(higher-order predicate)とは、引数として1つ以上の別の述語をとることができる述語である。一般に n 階の高階述語の引数は1つ以上の (n - 1) 階の述語である(ここで n > 1)。同じことは高階関数(higher-order function)にも言える。

高階述語論理は表現能力が高いが、その特性、特にモデル理論に関わる部分では、多くの応用について性格が良いとは言えない。クルト・ゲーデルの業績により、古典的高階述語論理の任意の標準モデルで真となる命題のみ、そしてそれらの全てを証明できるような(帰納的に公理化された)健全で完全な証明計算は存在しない。一方、モデルの範囲を(非標準的モデルを含む)ヘンキンモデルに拡大すれば、任意のモデルで真となる命題のみ、そしてそれらの全てを証明できるような、健全で完全な証明計算は存在する。

高階述語論理の例として、アロンゾ・チャーチの Simple Theory of Types や Calculus of Constructions (CoC) がある。

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<912KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef