[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 2ch.scのread.cgiへ]
Update time : 01/19 11:59 / Filesize : 305 KB / Number-of Response : 987
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

マルクス経済学



836 名前:名無しさん@お腹いっぱい。 [2014/08/08(金) 00:42:19.02 ID:5QKqY+aN.net]
>>834
行列式ではなく固有値
トレース(対角成分の和)=固有値の和
でマルコフ行列だから固有値1を持つのはすぐわかるから
.90+.85=1+λが成り立つ
これを解いてλ=.75
マルコフ行列(列を足して1になる非負行列)なら固有値1を持つよ
証明は解りやすいのは例えばこれ
A Markov matrix A always has an eigenvalue 1. All other eigenvalues are in absolute
value smaller or equal to 1.
Proof. For the transpose matrix AT , the sum of the row vectors is equal to 1. The matrix
AT therefore has the eigenvector [111......1]T.
Because A and AT have the same determinant also A . In and AT . In have the same
determinant so that the eigenvalues of A and AT are the same. With AT having an eigenvalue
1 also A has an eigenvalue 1.
Assume now that v is an eigenvector with an eigenvalue || > 1. Then Anv = ||nv has
exponentially growing length for n ! 1. This implies that there is for large n one coefficient
[An]ij which is larger than 1. But An is a stochastic matrix (see homework) and has all entries
1. The assumption of an eigenvalue larger than 1 can not be valid.






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<305KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef