[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2chのread.cgiへ]
Update time : 12/19 12:27 / Filesize : 470 KB / Number-of Response : 686
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む



343 名前:現代数学の系譜11 ガロア理論を読む [2012/02/25(土) 09:47:41.21 ]
>>342
ありがとう。君は親切だね

>それでは、>>275からの件はこれで終わりと言うことで。気が向いたらまたコメントするよw


>>上記のような分解ができるということは、元の方程式のガロア群が正規部分群を持っている場合だけ>>268

えーと、ここから始まったんだが。いろいろ誘導ありがとう。おかげですっかり理解できた
((有理式と置換に関する)ラグランジュの定理というのが、ガロア理論の一つの補助線なんだ>>330ということも)

1.>>280のように、ある方程式(例えば3次方程式(以下例えばを略する))の根(α、β、γ)のある有理式を考える( (α-β)^2)
2.倉田>>4のP146のように、この有理式((α-β)^2)の最小定義多項式(=補助方程式と見ることもできる)を考える({ x - (α-β)^2 } { x - (β-γ)^2 } { x - (γ-α)^2 } = 0 )
  この有理式が、根(α、β、γ)の全ての置換で取る異なる値を集めて例にならって多項式をつくる
  そうすると、ラグランジュの定理から作った多項式の係数は、元の体kに属することが分かる
3.そうして、この有理式((α-β)^2)の添加で、ガロア分解方程式(F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*) )がどうなるかを考える
  可約になる場合がある(>>323-327
4.この場合、最小定義多項式の根を全て添加すると、さらに低い次数への分解ができる場合がある(>>338
5.これを群論の言葉でいうと、この有理式を不変にするガロア群Gの部分群Hがあって
  Hの左剰余類によるGの分解
  G=H+s1H+・・・+sk-1H (ここで、s1・・・sk-1は、倉田P146ではシグマに下付の1・・・k-1が添えられたものだが、ギリシャ文字が面倒なので代用)
6.で、3の可約によるガロア分解方程式の因数分解は、上記左剰余類によるGの分解G=H+s1H+・・・+sk-1Hに従う
(つづく)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<470KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef