[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 02:01 / Filesize : 718 KB / Number-of Response : 1095
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む77



1 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/09/09(月) 19:52:11.23 ID:w2gV7wtr.net]
この伝統あるガロアすれは、皆さまのご尽力で、
過去、数学板での勢いランキングで、常に上位です。

このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで宜しければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。

スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。
興味のある方は、過去ログを(^^

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」。知能が低下してサルになっています)
(参考)blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(なお、サイコの発言集「実際に人を真っ二つに斬れたら 爽快極まりないだろう」、「狂犬」、「イヌコロ」、「君子豹変」については後述(^^; )
High level people (知能の低い者が、サルと呼ばれるようになり、残りました。w(^^; )
低脳幼稚園児のAAお絵かき
上記は、お断り!!
小学生がいますので、18金(禁)よろしくね!(^^

(旧スレが1000オーバー(又は間近)で、新スレを立てた)

458 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 07:07:59.24 ID:dCfcIyTY.net]
>>418
つづき

https://ja.wikipedia.org/wiki/%E6%95%B4%E6%95%B0%E3%81%AE%E5%90%88%E5%90%8C
整数の合同
(抜粋)
合同類環 Z/nZ
加法: 二つの剰余類 a, b に対して剰余類 a + b modulo n を割り当てる
理論的には整数の加法と異なる和であるから別の記号で表すべきであるかもしれないが、簡便さを保つために整数の和と同じ記号 "+" をそのまま使うことも多い。
(引用終り)
以上

459 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 07:26:02.98 ID:dCfcIyTY.net]
>>419 さらに追加
(>>371より引用開始)
Z/nZ = {{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
 ↓全射(内側の{}を外すだけ)
Z   ={・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
(引用終り)

ここで、↓の上の集合で、外側の{}を外してみよう
{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
 ↓全射
{・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}

要するに、
↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
↓の下側は、Zそのもの
つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する
そこで、外側の{}を復活させて、同値類の集合{0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}とすれば

{{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}}
 ↓全射
{・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・}
要するに、Zの部分集合、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ達からのZに対する写像が、そのまま保存されていると考えればいいだけのことだ(^^

(参考)
math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
ある l ∈ Z が存在して
a - b = nl となるとき a ≡ b (mod n) と書くことにする。
このときこの関係は同値関係である。その a を含む同値類は
a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z}
であった。異なる同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。
(引用終り)

460 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 07:37:05.32 ID:dCfcIyTY.net]
>>418
(引用開始)
したがって、Z/4Z \ 0 は乗法について閉じていない。
このことから、代数系 (Z/4Z, +, ×) は(4 を法とする剰余類環として)可換環を成すのみで、零因子が乗法逆元を持たないため体にはならない(位数 4 の有限体 F4 は存在するにも関わらず、である)。
(引用終り)

位数 4 の有限体 F4について(^^
「要は1の原始3乗根を添加した体がF4である」か
複素数まで考えないといけないんだ(^^;
br-h2gk.hatenablog.com/entry/finite_field_02
数学とその他の日々
有限体F_2,F_4,F_8,F_16の構造決定 2015-12-17
(抜粋)
F4について
3つのアプローチがある。
1つ目としては、x^4?x=x(x?1)(x^2+x+1)の最小分解体だから、
x^2+x+1のF2上の分解体になり、
その根 ω∈F ̄2、
要は1の原始3乗根を添加した体がF4である。

したがって、F4={0,1,ω,ω2}となる。
ωの演算についてはQ上のそれとは異なるが、
考え方は一緒で、ほとんど符号を無視するだけなので省略する。
もしくは、商をとる順番を換える典型的な方法によって
F2[x]/(x^2+x+1)=~ Z[x]/(2,x^2+x+1)=~ Z[ω]/(2)
と捉えてもよい。
ここでいう右端のωは通常のω∈Cの意味である。

このx^2+x+1という既約多項式を見つけるには
他に2つの考え方があり、
1つはフェルマーの小定理からF2の元は常にx^2+x=0なので、
x^2+x+1はF2上の根を持たず、既約であるというもの。

もう1つは、標数2の体上の2次拡大だから、アルティン=シュライヤー拡大で、
x^2?x?aの形で根を添加すればよい、ということだが、
a=0は明らかに駄目だからx^2?x?1=x^2+x+1が求まる。
(引用終り)
以上

461 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 07:40:10.09 ID:dCfcIyTY.net]
>>421 文字化け

1つ目としては、x^4?x=x(x?1)(x^2+x+1)の最小分解体だから、
 ↓
1つ目としては、x^4-x=x(x-1)(x^2+x+1)の最小分解体だから、

などね。wikipediaからのコピペでもよくおきるが
?の部分が-なんだ
まあ、原文見てください(^^

462 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 07:48:02.13 ID:dCfcIyTY.net]
>>421 参考追加

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%86%E3%82%A3%E3%83%B3%E3%83%BB%E3%82%B7%E3%83%A5%E3%83%A9%E3%82%A4%E3%82%A2%E3%83%BC%E7%90%86%E8%AB%96
アルティン・シュライアー理論
(抜粋)
数学において、アルティン・シュライアー理論 (Artin?Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。

目次
1 アルティン・シュライアー拡大
2 アルティン・シュライアー理論
3 歴史的コメント

アルティン・シュライアー拡大
K を標数 p の体とし、a をこの体のある元とする。多項式 X^p - X + a の分解体への K の拡大をアルティン・シュライアー拡大と呼ぶ。
b がこの多項式の 1 つの根であれば、0 から p - 1 までの i に対して b + i がその多項式の全ての根であり(cf. フロベニウス準同型)、それらは相異なる。すると 2 つの場合があり得る。


アルティン・シュライアー理論
アルティン・シュライアー理論は上の事実の逆をいうものである。


歴史的コメント
アルティン・シュライアー型の多項式は1866年に出版された Joseph-Alfred Serret(フランス語版) の Cours d'algebre superieure の第三版の有限体についての章において既に見つかる[2]。
セレは整数 g が素数 p で割れなければ多項式 X^p - X + a は mod p で既約であること、現代的な言葉で言えば、すべての g ∈ Fp* に対して X^p - X - g は既約であること、を証明している[3]。
(注:このセレは1866年の人な(^^)
この結果は上のことから標数 p の体を Fp として証明できる。

463 名前:哀れな素人 [2019/09/22(日) 07:55:53.08 ID:CY/F9h+Q.net]
>>404
依然として無限が分っていない中二のおっさん乙(笑

スレ主よ、サル石が、IDがばれるのを恐れて、
日付変更後と早朝の投稿をしなくなった(笑

IDが分ってしまうと、僕のスレに投稿できなくなるからだ(笑

464 名前:132人目の素数さん mailto:sage [2019/09/22(日) 07:58:58.49 ID:adVjb7k7.net]
>>417
>>> 0,1,2,3,4,5,…使うよね?
>>> 同値類の集合でw(^^;
>>使わない
>単なる同値類の集合Z/nZで終わるなら、”使わない”だろうが
>剰余類環として、和・積の演算を考えるときに使うよ

使わない

剰余類同士の和、積は、剰余類であるから
剰余類の中の

465 名前:v素を考える必要がない



奇数+奇数=偶数
奇数+偶数=奇数
偶数+奇数=奇数
偶数+偶数=偶数

奇数×奇数=奇数
奇数×偶数=偶数
偶数×奇数=偶数
偶数×偶数=偶数

ほら、具体的な自然数なんて1つも出てこないw
[]
[ここ壊れてます]

466 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:04:10.61 ID:adVjb7k7.net]
>>418
剰余類の加法、乗法の定義が
”きちんと定義されている”(well-defined)
という証明に、剰余類の要素が出てくるというのは、
剰余類の加法、情報の定義から当たり前である

そのことが
「剰余類の要素は、剰余類の集合の要素でもある」
ことの根拠になる、と思うのは只の馬鹿w



467 名前:132人目の素数さん [2019/09/22(日) 08:10:46.93 ID:CY/F9h+Q.net]
ID:adVjb7k7

これはサル石(笑

こいつはいつもこういう数学用語の意味とか概念の話ばかり(笑

まるで大学一年生そのまま(笑

468 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:13:24.71 ID:adVjb7k7.net]
>>420
>ここで、↓の上の集合で、外側の{}を外してみよう
>{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
> ↓全射
>・・,-2n,-n,0,n,2n,・・ ,  ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・
>要するに、
>↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
>↓の下側は、Zの元たち
>つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する

写像は存在しないw

例えば
{・・,-2n,-n,0,n,2n,・・}
から
・・,-2n,-n,0,n,2n,・・
への対応は1つの集合から無数の数への「1対多対応」
したがって写像ではない

wikipediaより
「写像とは、二つの集合が与えられたときに、
 一方の集合の各元に対し、他方の集合の”ただひとつの”元を指定して
 結びつける対応のことである。」

”ただひとつの”とはっきり書いてある。これ常識。知らん奴はバカ。

>要するに、Zの部分集合、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ達からのZに対する写像が、
>そのまま保存されていると考えればいいだけのことだ(^^

写像でないので無意味

469 名前:132人目の素数さん [2019/09/22(日) 08:13:44.12 ID:CY/F9h+Q.net]
サル石よ、これを解いてみ(笑
以前このスレでやった問題だから解けるだろう(笑

100枚の宝くじを売り出すとし、
そのうち1枚だけが当たりくじだとする。

但し、そのうち99枚をAの売り場で売り出すとし、
残りの1枚をBの売り場で売り出すとする。

1 Aの売り場に宝くじが入っている確率と、
Bの売り場に宝くじが入っている確率は、それぞれいくらか。
2 AとBのどちらで買った方が当たる確率が高いか。

ちゃんと理由を述べて解いてみ(笑

470 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:17:56.92 ID:adVjb7k7.net]
>>421-423
1は集合論から話をそらそうと必死wwwwwww

F4はZ/4Zとは加法、乗法が異なる

加法、乗法の表を書いてごらん 

馬鹿でもわからざるを得ないからwww

アルティン・シュライヤーとかほざくのはそれからだ

471 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:19:57.59 ID:adVjb7k7.net]
>>427
私は君の居るスレには書かないから安心して蟄居したまえ

>>429
つまらんので黙殺 さっさと自分の巣に帰れ アホウw

472 名前:132人目の素数さん [2019/09/22(日) 08:24:08.19 ID:CY/F9h+Q.net]
そら見ろ、お前は具体的な問題は何一つ解けない(笑

手元に数学の本や辞典を置いて、
それを見ながらスレ主に噛みついているだけ(笑

お前は知性も精神年齢も中高生のままのアホ(笑

473 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:44:29.26 ID:adVjb7k7.net]
>>432
>>429の問は、1に答えてもらえw
ここで俺様にイジメられて凹んでるからな
貴様の巣で暴れさせてやってくれ
もうここには返さなくていいからw

474 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 08:45:15.53 ID:dCfcIyTY.net]
>>427
哀れな素人さん、どうも。スレ主です。

>こいつはいつもこういう数学用語の意味とか概念の話ばかり(笑
>まるで大学一年生そのまま(笑

同意
そして、大学一年生の4月から5月そのまま(笑
まるで高校数学レベル

475 名前:132人目の素数さん [2019/09/22(日) 08:46:44.08 ID:CY/F9h+Q.net]
逃げずに>>429に答えてみろ(笑

中学生レベルの問題なのに、解けないのか(笑

476 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:48:53.43 ID:adVjb7k7.net]
>>434
集合論の初歩の初歩である∈と⊂の意味すら誤解する1には数学は無理w

いい加減
・∈は、一般的に推移的関係でないこと
・任意の集合A,Bで、A∈B⇒A⊂Bは成立しないこと
の2点を受け入れて、死ねw



477 名前:132人目の素数さん mailto:sage [2019/09/22(日) 08:51:22.10 ID:adVjb7k7.net]
>>435
1に答えてもらえw

ついでにいっとくが、その問題も回答も
モンティ・ホール問題の反駁にはならないぞ

理由?貴様の巣に集う連中に教えてもらえw
まあ、ここのアホの1には無理だろうなw

478 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 09:01:51.87 ID:dCfcIyTY.net]
ほんと、コケコッコー(おれ)もレベル低いけど、おサルも低レベルだな〜w(^^
(つーか、いまふと思ったが、彼のサイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)が出ているなー(>>2ご参照)。すげー、低レベルの屁理屈反論w(^^; )

>>425
>剰余類同士の和、積は、剰余類であるから
>剰余類の中の要素を考える必要がない

おサルには、大学レベルの高等数学が理解できないらしいw
まず、整数環Zの中の元に、和と積ありき
それを、集合概念をつかって、偶数の集合と奇数の集合に類別する
その剰余類の集合に、整数環Zの中の元の和と積とを使って、集合に対する和と積を定義する
この順番が、正統(canonical)。おサルは理解できないらしいなw

>>428
(引用開始)
例えば
{・・,-2n,-n,0,n,2n,・・}
から
・・,-2n,-n,0,n,2n,・・
への対応は1つの集合から無数の数への「1対多対応」
したがって写像ではない
(引用終り)

あのさ自分勝手に、
”{・・,-2n,-n,0,n,2n,・・}
から
・・,-2n,-n,0,n,2n,・・
への対応”
とか、反論になってないわな
「Aを満たす全ての対象は、Bである」に対しては、一つ反例を示せば良い
だが
「あるAを満たす対象が、Bである」に対しては、A以外の例を出しても、反例にならんぜ
(論理めためただな)

あと、写像の概念をちょっと拡張して、拡張された写像概念を考えればいいだけのこと
集合論の写像なんて、要するに「対応」ってことだけなんだからw(^^;

479 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:06:35.32 ID:adVjb7k7.net]
>>438
>まず、整数環Zの中の元に、和と積ありき
>それを、集合概念をつかって、偶数の集合と奇数の集合に類別する
>その剰余類の集合に、整数環Zの中の元の和と積とを使って、
>集合に対する和と積を定義する
>この順番が、正統(canonical)。

で、その定義がwell-definedだと証明できるから
結局、結果としての剰余類同士の和と積は剰余類であって
剰余類の要素がナマで出てくることは一切ない

1こそ大学数学が全然わかってないな
だから貴様は大学1年の4月の実数の定義で挫折して
5月から5月病で引き籠りの上休学する
みっともない羽目に陥るんだよ 

どうだ?図星だろw

480 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:10:22.22 ID:adVjb7k7.net]
>>428
>あのさ自分勝手に、
>”{・・,-2n,-n,0,n,2n,・・}
>から
>・・,-2n,-n,0,n,2n,・・
>への対応”
>とか、反論になってないわな

では、{・・,-2n,-n,0,n,2n,・・}からどの自然数への対応か、示してごらんw

カッコを外すしか能がないテツガクシャの1には逆立ちしても無理だろw

>写像の概念をちょっと拡張して、拡張された写像概念を考えればいいだけのこと

貴様は「拡張」を「口先三寸の屁理屈」と認識してるようだが
そういういい加減な処世が、貴様のクソ会社出向の転落人生を
招いたことに気づけw

481 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:13:51.67 ID:adVjb7k7.net]
>>440
誤 >>428
正 >>438

ああ、そうそう 1よ ここで俺様に負かされ続けるのも苦痛だろう

どうだ?哀れな安達のスレで>>429のクソ質問の回答でも書いてやればw

482 名前:132人目の素数さん [2019/09/22(日) 09:19:57.18 ID:CY/F9h+Q.net]
>>437
まぬけなサル(笑

その問題も回答も
モンティ・ホール問題の反駁になるのである(笑

何にも分っていない池沼(笑

483 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:27:11.49 ID:adVjb7k7.net]
>>442
>その問題も回答もモンティ・ホール問題の反駁になるのである

それ間違い

理由?知りたいなら教えてやらんでもないが・・・条件がある

ここの馬鹿の1に

1.「任意の集合A,B,CについてA∈B、B∈C⇒A∈C」とはいえないこと
2.「任意の集合A,BについてA∈B⇒A⊂B」とはいえないこと

の2点を認めさせろw

貴様が1に上記2点を認めさせたなら、俺様が貴様の巣に出向いてやって
貴様の>>429の答えと、なぜそれがモンティ・ホール問題の
反駁にならないか、ウンザリするほど丁寧に書き尽くしてやる

どうだ?やるか?

484 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:45:13.09 ID:adVjb7k7.net]
今日の蛇足

某スレでブームwの爆発原理だが
「空集合は、任意の集合の部分集合」
に対応するものである

485 名前:132人目の素数さん mailto:sage [2019/09/22(日) 09:54:35.41 ID:adVjb7k7.net]
蛇足の蛇足w

50代でBABYMETALの大ファンなのは
ID:hhKuRv+Mではなく、俺だw

https://www.youtube.com/watch?v=5hmZdS0-g8k

486 名前:132人目の素数さん [2019/09/22(日) 09:58:32.35 ID:CY/F9h+Q.net]
>ウンザリするほど丁寧に書き尽くしてやる

ではやってくれ(笑

但し「現代数学はインチキだらけ」のスレで(笑

そうすればお前のアホさがスレ民に知れ渡る(笑



487 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:02:17.46 ID:adVjb7k7.net]
>>446
じゃ、ここの馬鹿の1に

1.「任意の集合A,B,CについてA∈B、B∈C⇒A∈C」とはいえないこと
2.「任意の集合A,BについてA∈B⇒A⊂B」とはいえないこと

の2点を認めさせろw

そしたらお望み通り「現代数学はインチキだらけ」に書いてやろう

で・き・る・か?

488 名前:132人目の素数さん [2019/09/22(日) 10:06:09.65 ID:CY/F9h+Q.net]
>>447
そんなことはどうでもいい(笑

早く「現代数学はインチキだらけ」で

ウンザリするほど丁寧に書き尽くしてくれ(笑

お前が来ることをあらかじめスレ民に知らせてやろうか?(笑

489 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:12:13.92 ID:adVjb7k7.net]
>>448
>そんなことはどうでもいい

貴様に選択の権利はない

>>447で提示した条件を達成すること

それが貴様に課せられた任務

さっさとやれw

490 名前:132人目の素数さん [2019/09/22(日) 10:13:51.10 ID:g+51A3D4.net]
キチガイ老人大暴れw

491 名前:132人目の素数さん [2019/09/22(日) 10:21:03.83 ID:CY/F9h+Q.net]
そんなことはどうでもいい(笑

早く「現代数学はインチキだらけ」で

ウンザリするほど丁寧に書き尽くしてくれ(笑

お前が来ることをあらかじめスレ民に知らせてやろうか?(笑

逃げ回ることしかできないアホなおっさん(笑

492 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:21:35.73 ID:adVjb7k7.net]
>>450
哀れな安達翁は、自分に反対する人は皆同一人物だと妄想する悪癖がありますな

今調べましたが
ID:hhKuRv+M は 「0.99999……は1ではない」スレにしか書いてませんね

一方、私こと
ID:adVjb7k7 は このスレと「数学はいらない」スレにしか書いてません

「現代数学はインチキだらけ」スレに書いてるのは
ID:jPNqfDPl とかですね

ま、全部別人ですよ 少なくとも3人はいますね

493 名前:132人目の素数さん [2019/09/22(日) 10:22:50.94 ID:g+51A3D4.net]
>>442
>その問題も回答も
>モンティ・ホール問題の反駁になるのである(笑
これは酷い

494 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:23:08.66 ID:adVjb7k7.net]
>>451
条件を満たさないのなら書かない

ID:jPNqfDPl に 土下座して教えてもらえ 乞食w

495 名前:132人目の素数さん [2019/09/22(日) 10:32:05.29 ID:CY/F9h+Q.net]
また逃げた(笑

お前のことは「現代数学はインチキだらけ」で
宣伝しておいた(笑

早く来てウンザリするほど丁寧に書き尽くしてくれ(笑

496 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:35:56.34 ID:adVjb7k7.net]
>>453
>これは酷い
まったくwww

モンティ・ホール問題の「ドアを開ける」に対応するものが
宝くじ売り場の問題には欠如してるから 反駁にはならない

たったこれだけのこと 実にくだらん



497 名前:132人目の素数さん [2019/09/22(日) 10:36:42.41 ID:g+51A3D4.net]
>>455
ていうかもう答え教えてやったも同然だよw
おまえが理解できないだけw
おまえ頭悪過ぎるから数学板から出て行った方がいい

498 名前:132人目の素数さん [2019/09/22(日) 10:38:16.99 ID:g+51A3D4.net]
>>456
>モンティ・ホール問題の「ドアを開ける」に対応するものが
>宝くじ売り場の問題には欠如してるから 反駁にはならない
ですね
それ、確率の基本中の基本なんですけどねw

499 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:38:17.84 ID:adVjb7k7.net]
>>455
逃げてるのは安達 貴様だw

0.999…=1から逃げ
モンティ・ホールからもに逃げ
ここの集合論の∈と⊂の問題からも逃げた

三度も逃げた安達は正真正銘のチキン
丸焼きにされて食われちまえ!w

500 名前:132人目の素数さん [2019/09/22(日) 10:43:22.99 ID:CY/F9h+Q.net]
また逃げた(笑

お前のことは「現代数学はインチキだらけ」で
宣伝しておいた(笑

早く来てウンザリするほど丁寧に書き尽くしてくれ(笑

ちなみにID:g+51A3D4が僕のスレに出てきたが、
たぶんお前だろう(笑

501 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:45:54.87 ID:adVjb7k7.net]
>>460
ID:g+51A3D4も別人

認知症か?安達w

502 名前:132人目の素数さん mailto:sage [2019/09/22(日) 10:49:59.52 ID:adVjb7k7.net]
もし数学板に
「安達弘志 徹底研究スレ」
が立ったら、奇数の完全数スレ並の
人気(w)スレになるだろう

503 名前:132人目の素数さん [2019/09/22(日) 11:03:28.12 ID:CY/F9h+Q.net]
「現代数学はインチキだらけ」で、
答えられずに立ち往生しているアホなおっさん乙(笑

そのうちスレ主が僕のスレで
お前がどういう男であるか、書き込んでくれるだろう(笑

504 名前:132人目の素数さん mailto:sage [2019/09/22(日) 11:35:23.51 ID:adVjb7k7.net]
>>463
そういえば安達は1には数学の質問、絶対しないな

それって
「1は数学のスの字も分からん白痴」
だとおもってるからだろ?w

国文馬鹿の安達にも舐められる1 wwwwwww

505 名前:132人目の素数さん mailto:sage [2019/09/22(日) 16:32:53.53 ID:adVjb7k7.net]
「1」の集合の元の認識が間違ってる決定的証拠w

www.math.is.tohoku.ac.jp/~obata/student/subject/file/2018-2_shugo.pdf
p26 2.1. 集合と元
「■集合族 集合をいくつか集めれば, それも集合になる. たとえば,
 {{1, 2, 3}, {3, 4, 5, 7}, ∅}
 は 3 個の元からなる集合である. 」

「1」が大学一年の4月の数学の講義で躓き、
5月病で落ちこぼれたのは確実w

506 名前:132人目の素数さん mailto:sage [2019/09/22(日) 16:43:32.18 ID:adVjb7k7.net]
「1」の集合の元の認識が間違ってるさらなる決定的証拠w

proofcafe.org/k27c8/math/math/set_theory/page/number_of_element/


「集合の要素数
 Aを集合とします。
 このとき、集合Aの元の数を|A|あるいは#Aのように表します。

 もしA={1,2,3,4}ならば、#A=4ですし、

 A={{1,2,3},{4,5},{6,7,8,9}}ならば、#A=3となります。」



507 名前:132人目の素数さん [2019/09/22(日) 17:13:57.56 ID:g+51A3D4.net]
           ____
       /::::::::::::::::\
      /::::::─三三─\
    /:::::::: ( ○)三(○)\   {{1, 2, 3}, {3, 4, 5, 7}, ∅}は 3 個の元からなる集合である
    |::::::::::::::::::::(__人__)::::  |  ________
     \:::::::::   |r┬-|   ,/ .| |          |
    ノ::::::::::::  `ー'´   \ | |          |  
  /:::::::::::::::::::::             | |          |  
 |::::::::::::::::: l               | |          |

508 名前:132人目の素数さん [2019/09/22(日) 17:14:31.12 ID:g+51A3D4.net]
           ____
       /::::::::::::::::\
      /::::::─三三─\
    /:::::::: ( ○)三(○)\   A={{1,2,3},{4,5},{6,7,8,9}}ならば、#A=3となります
    |::::::::::::::::::::(__人__)::::  |  ________
     \:::::::::   |r┬-|   ,/ .| |          |
    ノ::::::::::::  `ー'´   \ | |          |  
  /:::::::::::::::::::::             | |          |  
 |::::::::::::::::: l               | |          |

509 名前:132人目の素数さん mailto:sage [2019/09/22(日) 17:19:52.95 ID:adVjb7k7.net]
「1」に捧げる

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::。:::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::。::::::...... ...   --─-  :::::::::::::::::::: ..::::: . ..::::::::
:::::::::::::::::...... ....:::::::゜::::::::::..   (___ )(___ ) ::::。::::::::::::::::: ゜.::::::::::::
:. .:::::。:::........ . .::::::::::::::::: _ i/ = =ヽi :::::::::::::。::::::::::: . . . ..::::
:::: :::::::::.....:☆彡::::   //[||    」  ||]  ::::::::::゜:::::::::: ...:: :::::
 :::::::::::::::::: . . . ..: :::: / ヘ | |  ____,ヽ | | :::::::::::.... .... .. .::::::::::::::
::::::...゜ . .:::::::::  /ヽ ノ    ヽ__/  ....... . .::::::::::::........ ..::::
:.... .... .. .     く  /     三三三∠⌒>:.... .... .. .:.... .... ..
:.... .... ..:.... .... ..... .... .. .:.... .... .. ..... .... .. ..... ............. .. . ........ ......
:.... . ∧∧   ∧∧  ∧∧   ∧∧ .... .... .. .:.... .... ..... .... .. .
... ..:(   )ゝ (   )ゝ(   )ゝ(   )ゝ無茶しやがって… ..........
....  i⌒ /   i⌒ /  i⌒ /   i⌒ / .. ..... ................... .. . ...
..   三  |   三  |   三  |   三 |  ... ............. ........... . .....
...  ∪ ∪   ∪ ∪   ∪ ∪  ∪ ∪ ............. ............. .. ........ ...
  三三  三三  三三   三三
 三三  三三  三三   三三

510 名前:132人目の素数さん mailto:sage [2019/09/22(日) 17:21:39.58 ID:adVjb7k7.net]
「1」に捧げる

https://www.youtube.com/watch?v=PfBebI2oFp4

511 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 18:12:53.77 ID:dCfcIyTY.net]
>>465-470
ほんと、コケコッコー(おれ)もレベル低いけど、おサルも低レベルだな〜w(^^
(つーか、いまふと思ったが、彼のサイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)が出ているなー(>>2ご参照)。すげー、低レベルの屁理屈反論w(^^; )
笑える

じゃw
>>411より)
整数環Zに合同(≡又はmod)を定義して、あるnによる同値類でn個の同値類が出来る
単に、Zを均等にn個に分けただけ
各0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちは、無限集合だ
そのn個を集めて、集合を作る
Z/nZと書くのが普通だそうだが、集合の元はたったのn個だから、Z/nZは有限集合だと?
(引用終り)

「Z/nZは有限集合」と書いてある文献探して、提示してくれ
そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ
>>466は、だめだよ)
はい、どうぞ〜!ww(^^;

(参考)
math.shinshu-u.ac.jp/~hanaki/edu/intro/intro2013.pdf
代数学入門 花木 章秀 信州大 2013
(抜粋)
P29
3.2 整数の合同によって定義される環
ある l ∈ Z が存在して
a - b = nl となるとき a ≡ b (mod n) と書くことにする。
このときこの関係は同値関係である。その a を含む同値類は
a + nZ = {b ∈ Z | a ≡ b (mod n)} = {a + nl | l ∈ Z}
であった。異なる同値類全体の集合は
Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}である。
(引用終り)

512 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 18:33:34.89 ID:dCfcIyTY.net]
>>464
>そういえば安達は1には数学の質問、絶対しないな
>それって
>「1は数学のスの字も分からん白痴」
>だとおもってるからだろ?w
>国文馬鹿の安達にも舐められる1 wwwwwww

哀れな素人さんの認識は下記ですよ
質問の回答に、コピペついてが戻ってくることが分かっているのですw(^^
スレ74 https://rio2016.5ch.net/test/read.cgi/math/1564659345/298-
(抜粋)
298 名前:哀れな素人[] 投稿日:2019/08/08(木)
参加者の多くがこのスレを去ったのは、スレ主のアホさと、
コピペを貼りまくるスレ主に嫌気がさしたからだ。
サル石だけは、何とかスレ主に自分のアホさを知らしめてやろうと
このスレに滞在しているが、どんなにがんばっても無理だ(笑
スレ主は自分のアホさが分るような男ではない(笑

299 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/08/08(木)
哀れな素人さん、どうもスレ主です。
>>298
>参加者の多くがこのスレを去ったのは、スレ主のアホさと、
>コピペを貼りまくるスレ主に嫌気がさしたからだ。
それでよろしいんじゃないですか
私もいま定期巡回しているのは、IUTスレのみです
他は、わけのわからない「名無し」さんどうしの議論

昔何かに書かれていたが、2chの名無しさん、大人と思っていたら小学生だったこともあったという
まさにまさにですよーw(^^;
わけわからん「名無し」さんどうしの議論など、時間と余白の無駄

>サル石だけは、何とかスレ主に自分のアホさを知らしめてやろうと
>このスレに滞在しているが、どんなにがんばっても無理だ(笑

ええ、あいつ(サル石)は、このスレに止めて、他のスレを徘徊しないようにすること
それも、このスレの役目でしょうw(^^

>>297
> 2chはコピペを貼る場所ではないのである。

なにを仰るウサギさん(^^
2chは、天下の落書き帳ですよ
(参考)
https://ja.wikipedia.org/wiki/2%E3%81%A1%E3%82%83%E3%82%93%E3%81%AD%E3%82%8B
2ちゃんねる
(抜粋)
否定的・批判的評価
5ちゃんねるは「便所の落書き」と言われることが多々ある[56]。
(引用終り)

513 名前:132人目の素数さん mailto:sage [2019/09/22(日) 18:38:31.81 ID:adVjb7k7.net]
>>471
>「Z/nZは有限集合」と書いてある文献探して、提示してくれ
>そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
>おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ

https://ja.wikipedia.org/wiki/%E5%95%86%E7%BE%A4

「商群 Z/2Z は”2つの元を持つ巡回群”である。」

2つは有限、巡回群は集合、つまり有限集合

さ、この板から即、去ってくれ 
日本語すら理解できない白痴の「1」!

514 名前:132人目の素数さん mailto:sage [2019/09/22(日) 18:43:47.37 ID:oqWKgEJS.net]
この「サル石」とやらは何年も朝から晩まで粘着しているようですが、どのように生計を立てているのでしょうか
レスを見たところとても数学で食える頭はしていませんし
幼稚な人間性を見ても社会人の憂さ晴らしという感じでもないですよね
いわゆる高齢ニートってやつですかね
自分の事を棚に上げて他者に粘着
滑稽な人生ですねw

515 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 18:46:51.41 ID:dCfcIyTY.net]
>>472
>質問の回答に、コピペがついて戻ってくることが分かっているのですw(^^

まあ、下記引用ですよ
以前は、テンプレで貼っていたけど、いまは省略しているが、これはまだ生きています
かつ、自分は、5CHに書かれたことは、裏付けのないものは、信用しません

自分がどうするかというと、信用できそうなものについて、裏付けを確認します
皆様にも、これをお薦めします

私が、コピペ(と出典)を付けるのは、
自分の正しさの確認と、皆様の確認の便のためです(^^;

(参考)
スレ71 https://rio2016.5ch.net/test/read.cgi/math/1561208978/12-
12 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/22
rio2016.2ch.net/test/read.cgi/math/1484442695/338
338 現代数学の系譜11 ガロア理論を読む 2017/04/09
スレ主は、皆さんの言う通り、馬鹿であほですから、基本的に信用しないようにお願いします
大体、私は、自分では、数学的な内容は、筆を起こさない主義です

じゃ、どうするかと言えば、出典明示とそこからの(抜粋)コピペです
まあ、自分なりに、正しそうと思ったものを、(抜粋)コピペしてます

が、それも基本、信用しないように
数学という学問は特に、自分以外は信用しないというのが基本ですし

”証明”とかいうらしいですね、数学では
その”証明”がしばしば、間違っていることがあるとか、うんぬんとか

有名な話で、有限単純群の分類
”出来た!”と宣言した大先生が居て、みんな信用していたら、何年も後になって、”実は証明に大穴が空いていた”とか

おいおい、競馬じゃないんだよ(^^;

https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4
単純群
1981年にモンスター群が構成されてからすぐに、群論の研究者たちがすべての有限単純群を分類したという、合計10,000ページにも及ぶ証明が作られ、1983年にダニエル・ゴレンスタインが勝利を宣言した。
これは時期尚早だった、というのはいくつかのギャップが、特に準薄群(英語版)の分類野中で発見されたからである。このギャップは2004年に1300ページに及ぶ準薄群の分類によって埋められており、これは現在は完璧であると一般に受け入れられている。

516 名前:132人目の素数さん mailto:sage [2019/09/22(日) 18:57:24.08 ID:oqWKgEJS.net]
サル石さん
あんたこの粘着の先に何があるの?
自分の人生から逃げてるだけじゃないの?



517 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 18:57:58.16 ID:dCfcIyTY.net]
>>474
ID:oqWKgEJSさん、どうも。スレ主です。
どなたか存じませんが・・(^^

>この「サル石」とやらは何年も朝から晩まで粘着しているようですが、どのように生計を立てているのでしょうか

哀れな素人さんから、「小学生に教えている」ということを聞いた記憶があります
(なお、粘着は3年近いですねw(^^; )

>レスを見たところとても数学で食える頭はしていませんし

同意
彼は自称、「私?某大学の数学科卒 修士課程修了ですが何か?」らしい(>>2
で、”とても数学で食える頭はしていません”に同意です

>幼稚な人間性を見ても社会人の憂さ晴らしという感じでもないですよね

私の素人診断は、彼はサイコパスです(>>2ご参照)
他人の死、殺人とか自殺、それに動物の屠殺(とさつ)に異常な興味と知識を示しています

>自分の事を棚に上げて他者に粘着
>滑稽な人生ですねw

全く同意です
そして、適切かつ良識的見解と思います(^^

518 名前:132人目の素数さん [2019/09/22(日) 18:58:15.79 ID:g+51A3D4.net]
>>471
>「Z/nZは有限集合」と書いてある文献探して、提示してくれ
>そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
>おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ
https://pc1.math.gakushuin.ac.jp/~shin/html-files/Algebra_Introduction/2017/07.pdf
(引用開始)
次に,自然数 M が 2 つの互いに素な約数の積として表される場合を考えよう. すなわ
ち,M = mn であって,かつ m, n は互いに素とする. このとき,m, n の最小公倍数は
M と一致する. したがって,命題 7.5 より,自然な写像
F : Z/MZ −→ (Z/mZ) × (Z/nZ)
は単射である. さらに今の場合,Z/MZ の元の個数は M = mn
(引用終了)

Z/MZ の元の個数は 自然数M なので有限集合です。
直ちに約束を履行して下さい。

519 名前:132人目の素数さん [2019/09/22(日) 19:00:16.55 ID:g+51A3D4.net]
>>477
>ID:oqWKgEJSさ

520 名前:ん、どうも。スレ主です。
>どなたか存じませんが・・(^^
そんな訳ないだろw おまえ自身なんだからw
[]
[ここ壊れてます]

521 名前:132人目の素数さん [2019/09/22(日) 19:01:00.49 ID:g+51A3D4.net]
スレ主早くスレ閉じて消え失せて
また約束を反故にする気?

522 名前:132人目の素数さん [2019/09/22(日) 19:01:51.41 ID:g+51A3D4.net]
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 
スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ スレ主消えろ 

523 名前:132人目の素数さん [2019/09/22(日) 19:06:23.23 ID:g+51A3D4.net]
      / \  /\ キリッ
.     / (ー)  (ー)\ 「Z/nZは有限集合」と書いてある文献探して、提示してくれ。そ

524 名前:、したら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ
    /   ⌒(__人__)⌒ \
    |      |r┬-|    |
     \     `ー'´   /
    ノ            \
  /´               ヽ
 |    l              \
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、.
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))


         ____
       /::::::::::  u\
      /:::::::::⌒ 三. ⌒\     
    /:::::::::: ( ○)三(○)\  
    |::::::::::::::::⌒(__人__)⌒  | ________
     \::::::::::   ` ⌒´   ,/ .| |          ...|
    ノ::::::::::u         \ | |  Z/MZ の元の個数は 自然数M
  /:::::::::::::::::      u     | |            |
 |::::::::::::: l  u             | |         |
 ヽ:::::::::::: -一ー_~、⌒)^),-、   | |_________.|
  ヽ::::::::___,ノγ⌒ヽ)ニニ- ̄   | |  |
[]
[ここ壊れてます]

525 名前:132人目の素数さん [2019/09/22(日) 19:14:47.41 ID:g+51A3D4.net]
www.math.s.chiba-u.ac.jp/~otsubo/article/kiyosato.pdf
(引用開始)
定義 2.2. 整数の集合 Z から, N を法として合同な整数を同一視することに
よって得られる集合を Z/NZ と書く. 整数 a から (同一視によって) 得られ
る Z/NZ の元を a と書く.
つまり, a ≡ b (mod N) の時, またその時に限り, Z/NZ において a = b で
ある. 例えば,
· · · −2N = −N = 0 = N = 2N = · · ·
· · · −2N + 1 = −N + 1 = 1 = N + 1 = 2N + 1 = · · ·
である. 上の注意より,
Z/NZ = {0, 1, 2, . . . , N − 1}
であり, これは N 個の元からなる集合である.
(引用終了)
スレ主も終了w

526 名前:132人目の素数さん [2019/09/22(日) 19:15:54.17 ID:g+51A3D4.net]
スレ主、必死に言い訳考え中w



527 名前:132人目の素数さん mailto:sage [2019/09/22(日) 19:17:46.05 ID:oqWKgEJS.net]
サル石さん
文章を読めば一目で分かるはず 私はスレ主とは別人です
私やスレ主だけではなく、誰に言わせたとしても
同じ事を言うでしょう


この粘着の先に何があるの?
自分の人生から逃げてるだけじゃないの?

528 名前:132人目の素数さん [2019/09/22(日) 19:18:03.22 ID:g+51A3D4.net]
>Z/NZ = {0, 1, 2, . . . , N − 1}
>であり, これは N 個の元からなる集合である.
これは言い逃れ出来ないなw

529 名前:132人目の素数さん [2019/09/22(日) 19:19:36.03 ID:g+51A3D4.net]
すれぬ...いやID:oqWKgEJSさん
心配要りませんよ
スレ主はもう数学板から居なくなりますからw

530 名前:132人目の素数さん [2019/09/22(日) 19:23:13.34 ID:g+51A3D4.net]
      / \  /\ キリッ
.     / (ー)  (ー)\ 「Z/nZは有限集合」と書いてある文献探して、提示してくれ。そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ
    /   ⌒(__人__)⌒ \
    |      |r┬-|    |
     \     `ー'´   /
    ノ            \
  /´               ヽ
 |    l              \
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、.
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))


         ____
       /::::::::::  u\
      /:::::::::⌒ 三. ⌒\     
    /:::::::::: ( ○)三(○)\  
    |::::::::::::::::⌒(__人__)⌒  | ________
     \::::::::::   ` ⌒´   ,/ .| |          ...|
    ノ::::::::::u         \ | |  Z/NZ = {0, 1, 2, . . . , N − 1}であり, これは N 個の元からなる集合である
  /:::::::::::::::::      u     | |            |
 |::::::::::::: l  u             | |          |
 ヽ:::::::::::: -一ー_~、⌒)^),-、  | |_________.|
  ヽ::::::::___,ノγ⌒ヽ)ニニ- ̄   | |  |

531 名前:132人目の素数さん [2019/09/22(日) 19:25:40.02 ID:g+51A3D4.net]
今日は祭りだなw
酒持ってこーーーーーーいw

532 名前:132人目の素数さん mailto:sage [2019/09/22(日) 19:27:43.91 ID:oqWKgEJS.net]
スレ主に言っているのではありません

粘着を続けているサル石とやらに言っています

今、あなたの人生の主役はスレ主になってしまっています
悔しくないですか?
あなたの人生の主役はあなた自身であるべきです
いくら粘着しても粘着し続ける限り
永久に「スレ主 > サル石」 のままです。
わかりますか?

どうかご自身と向き合って新しい一歩を踏み出して下さい
今の粘着活動の先には虚しさと後悔以外の何も残りません

ご自身のためになる事をやって下さい

533 名前:132人目の素数さん [2019/09/22(日) 19:34:38.58 ID:g+51A3D4.net]
>>490
ですから心配ご無用ですって
スレ主はもう数学板から駆除されましたからw
まさかこの期に及んで数学板に居座り続けるなんて図々しいマネはできないでしょうw
いくら恥知らずなスレ主でもw

534 名前:132人目の素数さん mailto:sage [2019/09/22(日) 19:40:46.12 ID:oqWKgEJS.net]
いや 全てあなたに言っています

言いたいことは書きましたので

思い出す度に読み返して下さい

あなたのために書いた事です

否定したい気持ちはあるでしょうが

私の言葉はあなた自身に伝わっているはずです

逃げないでください

あなたはあなたのために生きてください


お前はお前の人生を生きろー 舵をとれぇ〜

数学板に平和が訪れますように(>人<;)

(完)

535 名前:132人目の素数さん [2019/09/22(日) 19:42:32.59 ID:g+51A3D4.net]
>数学板に平和が訪れますように(>人<;)
数学板に平和は訪れますよ
数学板最悪のバイキンが駆除されましたからw

536 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 20:04:32.91 ID:dCfcIyTY.net]
>>491
(引用開始)
ですから心配ご無用ですって
スレ主はもう数学板から駆除されましたからw
まさかこの期に及んで数学板に居座り続けるなんて図々しいマネはできないでしょうw
いくら恥知らずなスレ主でもw
(引用終り)

<設問は>



537 名前:
>>471より抜粋)
整数環Zに合同(≡又はmod)を定義して、あるnによる同値類でn個の同値類が出来る
単に、Zを均等にn個に分けただけ
各0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちは、無限集合だ
そのn個を集めて、集合を作る
Z/nZと書くのが普通だそうだが、集合の元はたったのn個だから、Z/nZは有限集合だと?

「Z/nZは有限集合」と書いてある文献探して、提示してくれ
そうしたら、スレを閉じて、すっぱりと、おれは5CH数学板から去るよ(^^;
おっと、「Z/nZは有限集合」と書いてある”そのものずばり”だよ
>>466は、だめだよ)
はい、どうぞ〜!ww(^^;
(引用終り)

1)設問の重要キーワードを読み落としてはいけない
 ”「Z/nZは有限集合」と書いてある文献探して、提示してくれ”
 設問の条件を外して、答案をいくら書いても、点は取れず院試なら不合格
 設問の重要キーワードには、下線かマークを付けましょうね〜w
2)設問 >>471 で、
 ”Z/nZと書くのが普通だそうだが、集合の元はたったのn個だから、Z/nZは有限集合だと?”
 と書いてあるでしょ。そういう文献ではダメで、上記の1)を出せってこと

で、おサルが必死で書き始めたのが、>>473>>487>>483たちだ
つまり話は、全く逆で、”Z/nZと書くのが普通だそうだが、集合の元はたったのn個”

ここまでの文献は、すぐ見つかるよ
だが、『「Z/nZは有限集合」と書いてある”そのものずばり”』は、おそらくおサルの記憶にもないのだろう

だから、>>473>>487>>483などを必死で言いつのるしかないのだった
だが、>>473>>487>>483などは、設問で封じてあるので

設問の条件を外した答案をいくら書いても、点は取れず院試なら不合格
なのでしたww(^^
[]
[ここ壊れてます]

538 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 20:10:01.30 ID:dCfcIyTY.net]
>>494 タイポ訂正

だから、>>473>>487>>483などを必死で言いつのるしかない
だが、>>473>>487>>483などは、設問で封じてあるので
 ↓
だから、>>473>>478>>483などを必死で言いつのるしかない
だが、>>473>>478>>483などは、設問で封じてあるので

>>487>>478の訂正な(^^;

539 名前:132人目の素数さん mailto:sage [2019/09/22(日) 20:48:39.62 ID:extbQu++.net]
https://ja.wikipedia.org/wiki/有限体

> 有限体とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている
> 有限集合のことである。

> 位数最小の有限体は集合としては F2 = Z/2Z = {0, 1}

540 名前:132人目の素数さん mailto:sage [2019/09/22(日) 21:05:28.46 ID:extbQu++.net]
https://ja.wikipedia.org/wiki/剰余環

> 剰余環 Z/2Z は偶数全体と奇数全体というただ二つの元からなる


https://maths.ucd.ie/~astier/math20300/Z.pdf

> The set Z/nZ is the set of all possible remainders in the division by n, so:
> Z/nZ = {0, 1, ... , n - 1}.

541 名前:132人目の素数さん [2019/09/22(日) 21:08:51.09 ID:g+51A3D4.net]
>>494
つまり元の個数がある自然数だとしても有限集合とは限らないと
そう言いたいわけ?



っぷ

542 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 21:31:34.99 ID:dCfcIyTY.net]
>>494 補足

整数の集合Z = {・・・,-4,-3,-2,-1,0,1,2,3,4・・・}
偶数の集合2Z = {・・・,-4,-2,0,2,4・・・}
奇数の集合1+2Z = {・・・,-3,-1,1,3,・・・}

明らかに
Z =2Z ∪ 1+2Z
Φ =2Z ∩ 1+2Z

ここで、偶数の集合2Zと、奇数の集合1+2Zとを元に持つ集合Z/2Zを考える
Z/2Z ={2Z, 1+2Z}
確かに、Z/2Zは集合としての元は二つ

だが、「Z/2Zは有限集合」と書いてあるテキストなり論文はあるのか??
これが>>471の設問の題意である!!(>>494に書いたとおり)
入試では、題意外しは禁物だよ、注意しましょうね〜ww(^^;

(参考)
https://hiroyukikojima.hatenablog.com/entry/20140606/1402035822
hiroyukikojima’s blog
2014-06-06
「同じと見なす」ことの素晴らしさと難しさ
(抜粋)
数学は世界をこう見る (PHP新書)
作者: 小島寛之
出版社/メーカー: PHP研究所
発売日: 2014/05/16
メディア: 新書
この本には、複数のコンセプトが込められているのだけど、その中で非常に大きいのが、「同じと見なす」という数学固有のテクニックをこれでもか、というぐらいに徹底的に解説することだ。
「同じと見なす」ということを、数学の専門の言葉では「同一視」という。この「同じと見なす」という数学の手法は、高校までの数学ではほとんど表れない。
というか、本当は随所でニアミ

543 名前:Xしているだけれど、高校までの数学教育で強調されることは(情熱のある特殊な先生を除けば)全くない。 []
[ここ壊れてます]

544 名前:132人目の素数さん [2019/09/22(日) 21:40:31.61 ID:g+51A3D4.net]
>>499
>確かに、Z/2Zは集合としての元は二つ
じゃあ
https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E9%9B%86%E5%90%88
>集合が有限であるとはその濃度(元の個数)が自然数である場合にいう。
によれば有限集合じゃんw

おまえ往生際悪いぞ

545 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 21:55:07.46 ID:dCfcIyTY.net]
>>500
往生際が悪いのはおサル
<設問> >>471通りの文典を検察しろやw(^^
おまえら、おサルの低レベルの議論は不要だよw

546 名前:132人目の素数さん mailto:sage [2019/09/22(日) 22:14:30.55 ID:extbQu++.net]
https://ja.wikipedia.org/wiki/有限群

> 有限群とは台となっている集合Gが有限個の元しか持たないような群のことである。

math.shinshu-u.ac.jp/~hanaki/edu/group/group2011pre.pdf
p.7
> 群Aの集合としての要素の数(濃度)をAの位数といい|A|と表す。
> 特にAが有限集合であるときAを有限群と呼び、そうでないとき無限群と呼ぶ。

Z/2Zは有限群
> 特にAが有限集合であるときAを有限群と呼び
「Z/2Z」が有限集合であるとき「Z/2Z」を有限群と呼ぶ



547 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 22:22:43.75 ID:dCfcIyTY.net]
>>499 補足
Z/2Z ={2Z, 1+2Z}

確かに、Z/2Zは集合としての元は二つ
だが、「Z/2Zは有限集合」と書いてあるテキストなり論文はあるのか??

これが>>471の設問の題意である!!(>>494に書いたとおり)
もちろん、そんなテキストや論文は無い!!というのがおれの主張だよ

素朴集合論の例えで説明しよう
1)英語で財布をwalletと言うそうだ
 いま、財布が二つ、w1赤とw2青 を含む集合Mがあるとする
2)財布の中のお金を考える
・財布が空の場合M0={w1(赤),w2(青)} 合計金額0円
・財布に各千円札が入っている場合M1={w1赤,w2青} 合計金額二千円
・財布に各一万円札が入っている場合M2={w1赤,w2青} 合計金額二万円
・財布に各百万円が入っている場合 M3={w1赤,w2青} 合計金額二百万円
・財布に無限のお金が入っている場合M∞={w1赤,w2青} 合計金額∞
3)財布からなる集合という意味では、上記2)は全て、財布が二つ
 そこは、同意だ
 しかし、財布の中のお金を考えるなら、M0≠M1≠M2≠M3≠M∞
4)同様に、Z/2Z ={2Z, 1+2Z}が有限集合だという数学者はいない
 (∵M∞で、財布の中には無限のお金が入っているのと同様に、2Zには無数の整数が入っているのだから)

もし、Z/2Zが有限集合という数学者が居たら教えてくれということ
それが、>>471の設問の題意である!!(>>494に書いたとおり)

さっさと検索しろや!(^^;
勝負は見えているけどなw おサルにも分かっているんだろうねww

(参考)
https://hiroyukikojima.hatenablog.com/entry/20140606/1402035822
hiroyukikojima’s blog 小島寛之
2014-06-06
「同じと見なす」ことの素晴らしさと難しさ

548 名前:132人目の素数さん [2019/09/22(日) 22:33:57.55 ID:g+51A3D4.net]
Z/NZの元の個数は自然数である。
元の個数が自然数の集合は有限集合である。

サルには人間の言葉が通じないらしい     っぷ

549 名前:132人目の素数さん mailto:sage [2019/09/22(日) 23:18:20.23 ID:extbQu++.net]
大体スレ主は「Z/2Zが無限集合」と言うことを示していないじゃん

https://ja.wikipedia.org/wiki/濃度_(数学)
> 集合 X と Y の間に全単射が存在するとき X ≈ Y と書き、
> X と Y は濃度が等しいという。

> Z/2Z ={2Z, 1+2Z}が有限集合
Z/2Z = {2Z, 1+2Z}と{0, 1}の間に全単射が存在

> 2Zには無数の整数が入っているのだから
単射にならないでしょ

> Z/nZ = {0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZ}
これもZ/nZと{0, 1, ... , (n - 1)}の間に全単射が存在

550 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 23:19:13.75 ID:dCfcIyTY.net]
>>499 補足

”「同じと見なす」という数学固有のテクニック”
”「同じと見なす」ということを、数学の専門の言葉では「同一視」という”(小島寛之)

整数の集合Z = {・・・,-4,-3,-2,-1,0,1,2,3,4・・・}
偶数の集合2Z = {・・・,-4,-2,0,2,4・・・}
奇数の集合1+2Z = {・・・,-3,-1,1,3,・・・}

明らかに
Z =2Z ∪ 1+2Z
Φ =2Z ∩ 1+2Z

無限集合Zを、2Zで類別して
偶数の集合2Zと奇数の集合1+2Z と
小島寛之流にいえば、無限集合Zを有限集合{0,1}と同じと見なすということ
それは、剰余類環の視点でもあり、有限体の視点でもある

しかし、「同じと見なす」のだが、全く「同じ」ではない
そこを、意識して、視点を変えることができるのが、ヒトの数学
「同じと見なす」ことを、「同じ」と思ってしまうのがおサルの数学

まあ、”「同じと見なす」ことの素晴らしさと難しさ”ですよw(^^

(参考)
https://hiroyukikojima.hatenablog.com/entry/20140606/1402035822
hiroyukikojima’s blog 小島寛之
2014-06-06
「同じと見なす」ことの素晴らしさと難しさ

551 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/22(日) 23:20:08.82 ID:dCfcIyTY.net]
>>505
おサルの議論はいらん
検索しろw(^^

552 名前:132人目の素数さん [2019/09/22(日) 23:22:09.59 ID:g+51A3D4.net]
先生「A⇒Cを証明しなさい」
生徒A「A⇒B、B⇒C、よって

553 名前:A⇒Cです」
生徒B「それはA⇒Cの証明になってない。それが、>>471の設問の題意である!!(>>494に書いたとおり)さっさと検索しろや!」
先生「・・・」
生徒A「・・・」
[]
[ここ壊れてます]

554 名前:132人目の素数さん mailto:sage [2019/09/22(日) 23:28:44.49 ID:extbQu++.net]
>>506
> 無限集合Zを有限集合{0,1}と同じと見なすということ
スレ主はここが間違っている

Z でなくて Z/2Z を有限集合{0,1}と同じと見なす

555 名前:132人目の素数さん [2019/09/22(日) 23:37:44.08 ID:g+51A3D4.net]
>>506
> 無限集合Zを有限集合{0,1}と同じと見なすということ
無限集合はどうがんばっても有限集合とは見做せないわなw
バカ過ぎw

556 名前:132人目の素数さん [2019/09/22(日) 23:38:59.85 ID:g+51A3D4.net]
そもそも無限集合が何らかの視点で有限集合と見做せるなら
有限集合だの無限集合だの論じること自体が無意味だわなw
バカ過ぎw



557 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/23(月) 07:00:19.17 ID:Pa2IotH6.net]
>>509-511

「同じと見なす」ことの素晴らしさと難しさ by 小島寛之
おサルには、大学数は無理と自白しているってことだなw(^^;

https://hiroyukikojima.hatenablog.com/entry/20140606/1402035822
hiroyukikojima’s blog 小島寛之
2014-06-06
「同じと見なす」ことの素晴らしさと難しさ
(抜粋)
数学は世界をこう見る (PHP新書)
作者: 小島寛之
出版社/メーカー: PHP研究所
発売日: 2014/05/16
メディア: 新書
この本には、複数のコンセプトが込められているのだけど、その中で非常に大きいのが、「同じと見なす」という数学固有のテクニックをこれでもか、というぐらいに徹底的に解説することだ。
「同じと見なす」ということを、数学の専門の言葉では「同一視」という。この「同じと見なす」という数学の手法は、高校までの数学ではほとんど表れない。
というか、本当は随所でニアミスしているだけれど、高校までの数学教育で強調されることは(情熱のある特殊な先生を除けば)全くない。

558 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/09/23(月) 07:02:18.28 ID:Pa2IotH6.net]
>>512 タイポ訂正

おサルには、大学数は無理と自白しているってことだなw(^^;
 ↓
おサルには、大学数学は無理と自白しているってことだなw(^^;






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<718KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef