1 名前:132人目の素数さん mailto:ageteoff [2016/02/28(日) 02:49:11.60 ID:OARIlKQB.net] 数値の連続的継続は大事だよね
2 名前:132人目の素数さん mailto:sage [2016/02/28(日) 09:39:45.37 ID:cZj4/Bcy.net] >>1 死ね
3 名前:132人目の素数さん [2016/02/28(日) 10:20:03.54 ID:rxrMPzBw.net] これは手の込んだ自演だろう と思ってROMってる 続けてがんばってねw
4 名前:132人目の素数さん mailto:sage [2016/03/04(金) 07:51:20.96 ID:/ZUhjL9x.net] おめでとう!
5 名前:132人目の素数さん [2016/03/08(火) 09:21:50.66 ID:vPGV71AD.net] キモイ
6 名前:132人目の素数さん [2016/03/11(金) 08:31:42.25 ID:AIVFJz9m.net] ふうん
7 名前:132人目の素数さん [2016/03/11(金) 18:04:36.06 ID:HMyMwoA2.net] 『もういちど読む数研の高校数学 第1巻』の P252 練習問題3 が分からないので教えて下さい。 問題 数列{An}は A1 = 1, nAn+1 = 2(n+1)An によって定められています。 (1)Bn = An / n とおくとき、数列{Bn}の一般項を求めて下さい。 (2)数列{An}の一般項を求めて下さい。 回答 (1)Bn = 2^(n-1) (2)An = n・2^(n-1) 疑問 数列{An}の一般項を先に求めず、数列{Bn}の一般項を先に求めています。 何か一連の回答がしやすくなる理由があると思いますが、それがわかりません。 つまり、数列{Bn}の一般項がやさしく求まる計算方法があるはずですが、わかりません。 本の回答は文字通り回答だけで計算手順が書かれていないので困っています。
8 名前:132人目の素数さん [2016/03/11(金) 18:17:39.11 ID:/JlZtBKT.net] こんなところで聞くと憲兵様が喚きだすぞ
9 名前:132人目の素数さん mailto:sage [2016/03/11(金) 18:36:18.12 ID:czZ1IFW5.net] >>7 B_n は初項1、公比2の等比数列となり、 一般項が 1*2^(n-1) つまり 2^(n-1) であることが分かります。 B_n=2*B_(n-1)=2*2*B_(n-2)=・・・=2*2*2*・・・*2*1 「2の個数がn-1個」 = 2^(n-1)
10 名前:132人目の素数さん [2016/03/11(金) 18:47:12.05 ID:HMyMwoA2.net] >>9 7です。 おっしゃることは回答をみれば分かるのですが、回答にたどりつく計算手順が知りたいです。 おそらく nAn+1 = 2(n+1)An の両辺に何か掛けて ?・Bn+1 = ?・Bn の形に すると思うのですが。 よろしくお願いします。
11 名前:132人目の素数さん [2016/03/11(金) 19:03:38.15 ID:6l4aWesk.net] 高校の教科書は難しすぎるんじゃない
12 名前:132人目の素数さん mailto:sage [2016/03/11(金) 19:50:03.04 ID:czZ1IFW5.net] >>10 両辺に 1/{n*(n+1)}をかけるんです。すると A_(n+1)/(n+1)=2*A_n/n が現れて B_nの決め方から B_(n+1)=2*B_n となります。
13 名前:132人目の素数さん [2016/03/11(金) 20:16:19.42 ID:HMyMwoA2.net] >>12 7です。 分かりました。 1/{n*(n+1)}をかける方法に気がつきませんでした。 感謝します。 どうもありがとうございました。
14 名前:132人目の素数さん [2016/03/15(火) 15:41:54.71 ID:DS167a0e.net] 『もういちど読む数研の高校数学 第1巻』の P58 練習問題3 が分からないので教えて下さい。 問題 1の3乗根のうち、虚数であるものの1つをωとするとき、次の式の値を求めてください。 (1)ω^5 + ω^4 + 1 (2)ω^8 + ω^7 解答 (1)0 (2)-1 疑問 自分は1の3乗根のうち虚数のものを実際に求めて計算したのですが釈然としません。 x^3 - 1 = (x - 1) (x^2 + x + 1) x^2 + x + 1 = 0 より ω = (-1 ±(√3)i) / 2 (1)なら ω^2 + ω + 1 を、(2)なら ω^2 + ω を計算しましたが、出題側が 求めているのは、このような解答手順なのでしょうか。 もっとスマートな解法があるのでしょうか。 章立ては『第2章 方程式』で思いつかないです。 本の解答は、結果としての解答のみなので、判断できずにいます。
15 名前:132人目の素数さん mailto:sage [2016/03/15(火) 15:57:23.50 ID:1eNRG3Is.net] >>14 z^3=1より (z-1)(z^2+z+1)=0 であるから ω^2+ω+1=0より ω^5+ω^4+1=ω^2+ω+1=0 ω^8+ω^7=ω^2+ω=-1 としても何も問題はないはず
16 名前:132人目の素数さん [2016/03/15(火) 16:08:40.47 ID:DS167a0e.net] >>15 14 です。 ありがとうございます。 分かりました。 きれいな解法があったことに驚きました。 本当にありがとうございました。
17 名前:132人目の素数さん [2016/03/15(火) 16:11:30.03 ID:SObtE+x4.net] 元のも言う程きたなくないよ
18 名前:132人目の素数さん mailto:sage [2016/03/15(火) 16:16:14.74 ID:1eNRG3Is.net] >>17 質問者はωの値を求めてるからωに値を代入してやってるんじゃないかな 本当はω^3=1, ω^2+ω+1=0を使うだけね
19 名前:132人目の素数さん [2016/03/15(火) 20:16:23.56 ID:DS167a0e.net] >>17 >>18 14 です。 虚数解を直接ωに当てはめて計算していました。 2つ虚数解があるので、それぞれ計算してみて、解答が同じだと思っていたのですが、 そういうものだったことも気がつきました。 ありがとうございました。
20 名前:132人目の素数さん mailto:sage [2016/03/16(水) 15:01:49.95 ID:uXRz11ln.net] n個のサイコロを振って出た目の積が6の倍数になる確率を求めよという問題で 解説見ますとn個のサイコロの積が6の倍数にならない場合を考えるとありまして オール奇数もしくは(1,2,4,5)の場合であり、またこの二つは全て(1,5)のときが被ってるので 1 - (1/2)^n - (2/3)^n + (1/3)^nとなるのは納得出来るのですが違うやり方として 6の倍数になるのは2の倍数になるかつ3の倍数になるということのなので n個のサイコロを振って2の倍数になる確率は1 - (1/2)^n n個のサイコロを振って3の倍数になる確率は1 - (2/3)^n よってこの二つをかけて1 - (1/2)^n - (2/3)^n + (1/3)^nとなるで大丈夫でしょうか?
21 名前:132人目の素数さん mailto:sage [2016/03/16(水) 16:26:41.44 ID:0XRkz84I.net] >>20 問題ない
22 名前:132人目の素数さん [2016/03/16(水) 18:15:44.70 ID:43OvSMuV.net] >>20 全然駄目です。 その論法を使うためには2の倍数になる事象と3の倍数になる事象が独立であることを 示す必要があります。
23 名前:132人目の素数さん mailto:sage [2016/03/16(水) 19:48:16.59 ID:uXRz11ln.net] >>22 少し引っかかってはいたんです けどサイコロ振って2の倍数になる確率は1/2で3の倍数になる確率は1/3だから 6の倍数になるのは2の倍数かつ3の倍数なので1/6でいいのかなと… 具体的に2の倍数になる事象と3の倍数になる事象が独立であることを示すにはどう言えばよろしいでしょうか?
24 名前:132人目の素数さん [2016/03/16(水) 20:09:13.02 ID:P6s1jW8F.net] >>23 examist.jp/mathematics/probability/jisyou-dokuritu/
25 名前:132人目の素数さん mailto:sage [2016/03/22(火) 22:54:34.05 ID:ICzx2LvR.net] ワッチョイで建てれる方、建て直しをお願いします
26 名前:132人目の素数さん [2016/03/24(木) 11:46:02.28 ID:32jBvufj.net] cosθ>sinθ+1 (0≦θ<2π)をとけ 何処で間違ってますか? -sinθ+cosθ>1 √2sin(θ+3/4π)>1 sin(θ+3/4π)>1/√2 ここで0≦θ<2πより 3/4π≦θ+3/4π<11/4π よって θ=3/4π,9/4π<θ<11/4π
27 名前:132人目の素数さん [2016/03/24(木) 12:42:24.26 ID:ITTXIIFs.net] 最後の最後がダメです
28 名前:132人目の素数さん mailto:sage [2016/03/24(木) 19:40:17.18 ID:Ubtky4c1.net] 下3行
29 名前:132人目の素数さん [2016/03/25(金) 19:15:48.51 ID:HNoUvGxe.net] >>28 下から三行目は、定義域を確認してるだけだけど、別に間違ってないじゃん。 >>26 最後の行を「9/4π<θ+3/4π<11/4π」に修正してね。 「θ+3/4π=3/4π」はいらないよ。 これは、sin(θ+3/4π)=1/√2になるための条件だから。
30 名前:132人目の素数さん mailto:sage [2016/03/25(金) 19:23:15.65 ID:qyiBMVOv.net] >>29 pi/4<θ+3pi/4<3pi/4 ∴-pi/2<θ<0 ネタか?
31 名前:132人目の素数さん mailto:sage [2016/03/25(金) 19:28:02.06 ID:qyiBMVOv.net] >>29 すまん俺が間違えた
32 名前:132人目の素数さん mailto:sage [2016/03/29(火) 13:01:44.09 ID:F1tYsIjG.net] よくあること
33 名前:132人目の素数さん mailto:sage [2016/03/29(火) 16:19:23.95 ID:WEG7F9gC.net] まれによくあること
34 名前:132人目の素数さん [2016/04/01(金) 13:24:19.09 ID:q+b5PhB0.net] 原点Oを中心とする半径1の円に内接する正三角形の各頂点から 直線x=-1までの距離(3頂点分)の和の最大値と最小値を求めよ。
35 名前:132人目の素数さん [2016/04/01(金) 13:29:02.50 ID:q+b5PhB0.net] 原点Oを中心とする半径1の円に内接する正三角形の各頂点から 直線x=-1までの距離(3頂点分)の和の最大値と最小値を求めよ。 追加・訂正 和が最大値と最小値をとるときの各頂点の座標を求めよ。
36 名前:132人目の素数さん mailto:sage [2016/04/01(金) 14:50:15.71 ID:tzTvXD8A.net] 単位円の周上にある偏角Φの点 と x=-1の距離は cosΦ+1 であるから 単位円に内接する正三角形の頂点のうちの1つの点の偏角をθ (0≦θ<2π)とすると ほかの2頂点のそれぞれの偏角は θ+π/3,θ+2π/3 となる よって求める長さLは L=cosθ+cos(θ+π/3)+cos(θ+2π/3)+3 =cos(θ+π/3-π/3)+cos(θ+π/3)+cos(θ+π/3+π/3)+3 =(1/2+1+1/2)cos(θ+π/3)+(-√3/2+√3/2)sin(θ+π/3)+3 =2cos(θ+π/3)+3 よって 最大値は5 (θ=π/6のとき) (0, 1) , (-√3/2, -1/2) , (√3/2, -1/2) 最小値は1 (θ=-π/6のとき) (0,-1) , (-√3/2, 1/2) , (√3/2, 1/2)
37 名前:132人目の素数さん mailto:sage [2016/04/01(金) 14:53:17.79 ID:tzTvXD8A.net] 訂正 最大値は5 (θ=5π/3のとき) (0, 1) , (-√3/2, -1/2) , (√3/2, -1/2) 最小値は1 (θ=2π/3のとき) (0,-1) , (-√3/2, 1/2) , (√3/2, 1/2)
38 名前:132人目の素数さん [2016/04/01(金) 14:53:34.21 ID:sdGz/xlT.net] (´・∀・`)ヘー
39 名前:132人目の素数さん mailto:sage [2016/04/01(金) 14:59:18.35 ID:tzTvXD8A.net] さらに訂正 最大値は5 (θ=5π/3のとき) (1, 0) , (-1/2, -√3/2) , (-1/2, √3/2) 最小値は1 (θ=2π/3のとき) (-1, 0) , (1/2, -√3/2) , (1/2, √3/2)
40 名前:132人目の素数さん mailto:sage [2016/04/01(金) 15:07:24.86 ID:TVR4rqyR.net] 問題ミス? 引っかけ問題? >>ほかの2頂点のそれぞれの偏角は >> θ+π/3,θ+2π/3 ここからおかしいよ
41 名前:132人目の素数さん mailto:sage [2016/04/01(金) 15:18:50.35 ID:tzTvXD8A.net] >>40 どういうふうにおかしいのか詳しく
42 名前:132人目の素数さん mailto:sage [2016/04/01(金) 15:19:00.27 ID:tzTvXD8A.net] これは煽りではない
43 名前:132人目の素数さん mailto:sage [2016/04/01(金) 15:36:43.88 ID:TVR4rqyR.net] 一つをθとしたら、残り二つはθ+2π/3とθ+4π/3、あるいは、θ±2π/3
44 名前:132人目の素数さん mailto:sage [2016/04/01(金) 16:01:19.62 ID:tzTvXD8A.net] >>43 その通りだね
45 名前:132人目の素数さん mailto:sage [2016/04/01(金) 20:22:55.84 ID:daHp8iSy.net] s∈{A,B}ならs=Aかs=Bですか?
46 名前:132人目の素数さん mailto:sage [2016/04/01(金) 21:02:32.49 ID:HW6u2pgy.net] 釣り
47 名前:132人目の素数さん mailto:sage [2016/04/01(金) 21:14:27.43 ID:RdFENbf/.net] わからないんですね(笑)
48 名前:132人目の素数さん mailto:sage [2016/04/01(金) 23:03:41.81 ID:JoQB8dE+.net] 何をしたいのかわからない。 質問が目的じゃないよね?
49 名前:132人目の素数さん mailto:sage [2016/04/02(土) 11:22:29.10 ID:cUeBqtbE.net] あってるか、あってないか
50 名前:132人目の素数さん mailto:sage [2016/04/02(土) 13:44:29.17 ID:+pC+A+zn.net] まさか、本当に>>45 が質問したいのか? あってる。 {,}の定義を復習するか、あるいは 「s=Aかs=B」の「か」の意味を反省のこと。
51 名前:132人目の素数さん mailto:sage [2016/04/02(土) 13:59:36.37 ID:T7Q4KmeR.net] 釣りに決まっとるさ
52 名前:132人目の素数さん mailto:sage [2016/04/02(土) 14:10:17.03 ID:+pC+A+zn.net] そうだろ?そうだよな。
53 名前:132人目の素数さん mailto:sage [2016/04/02(土) 14:52:42.42 ID:cUeBqtbE.net] >>50 sはAまたはBですか? sは{A,B}の元なわけですが, そのsとしてはどのようなものを取りえますか?
54 名前:132人目の素数さん mailto:sage [2016/04/02(土) 17:25:04.37 ID:CTaAOz9p.net] ほら、ルアーの出来の確認が始まった。
55 名前:132人目の素数さん mailto:sage [2016/04/02(土) 21:29:55.36 ID:+pC+A+zn.net] >>53 ⇒ >>50
56 名前:132人目の素数さん [2016/04/03(日) 10:47:52.39 ID:Ej7CZZew.net] >>55 aが集合Aの要素であるときa∈Aですね. だからsは集合{A,B}の要素なので, s=Aまたはs=Bでいいですか?
57 名前:132人目の素数さん mailto:sage [2016/04/03(日) 11:58:40.94 ID:un2aWmu1.net] >>45 s,A,Bってなんのことですか?
58 名前:132人目の素数さん mailto:sage [2016/04/03(日) 12:16:34.53 ID:Bs69mCZJ.net] なんか本当にレベルが低すぎる回答とか逆質問しかなくてドン引きです。。
59 名前:132人目の素数さん mailto:sage [2016/04/03(日) 12:21:08.00 ID:Ej7CZZew.net] >>57 x∈{1,2,3}としていいです
60 名前:132人目の素数さん mailto:sage [2016/04/03(日) 12:30:37.60 ID:a4owsjGS.net] >>58 >>50 が低レベルなら、 どんなのが高レベルか?
61 名前:132人目の素数さん mailto:sage [2016/04/03(日) 12:55:49.07 ID:Bs69mCZJ.net] >>50 はまともでしたね
62 名前:132人目の素数さん mailto:sage [2016/04/03(日) 13:23:03.98 ID:czexFGVc.net] disりたいだけの劣等感は放置
63 名前:132人目の素数さん mailto:sage [2016/04/04(月) 01:19:04.17 ID:Y/Ev9saJ.net] 結局誰もわからない...。
64 名前:132人目の素数さん mailto:sage [2016/04/04(月) 12:53:22.55 ID:RJ6zArQ6.net] おまえだけ
65 名前:132人目の素数さん [2016/04/11(月) 13:40:58.08 ID:d2UTcKz7.net] 『三角形の中線は一点で交わる』 ふとコレ思い出し、解こうとして5分考えて解けなかったよ。 オレも歳食ったなとガックリきたぜ。
66 名前:132人目の素数さん mailto:sage [2016/04/11(月) 16:33:10.05 ID:xhZXNU4k.net] 3頂点ベクトルの平均を考えればいい
67 名前:132人目の素数さん mailto:sage [2016/04/11(月) 18:20:47.34 ID:JrYvG5cb.net] ABの中点とCを結ぶ線分とACの中点とBを結ぶ線分の交点が(AB↑+AC↑)/3で表せる事をしめしてからそれを(AB↑+AC↑)/2*(2/3)って変形するだけだろ
68 名前:132人目の素数さん mailto:sage [2016/04/12(火) 12:28:32.70 ID:lfi/Js3G.net] チェバの定理の逆で一撃ですな
69 名前:132人目の素数さん mailto:sage [2016/04/14(木) 03:55:52.99 ID:vfPBU9VW.net] A=10^Bと表記されている場合 Bは指数と言いますが、Aは何とよぶのでしょうか? また、10は底ですか?
70 名前:数ですか? [] [ここ壊れてます]
71 名前:132人目の素数さん mailto:sage [2016/04/14(木) 13:36:14.67 ID:jrsF/Frz.net] 真数, 底
72 名前:132人目の素数さん [2016/04/14(木) 19:32:32.44 ID:zeJllq/J.net] B=log_10(A) より Aが真数、10が底 ほんとに?
73 名前:132人目の素数さん mailto:sage [2016/04/15(金) 07:10:01.08 ID:VmCuYRnb.net] Bは、指数なのか、対数なのか。
74 名前:132人目の素数さん mailto:sage [2016/04/15(金) 11:58:12.04 ID:lqLIuQzB.net] A=10^Bと書いたときは指数だし、 B=log_10(A)と書いたときは対数 底と基数はbaseをどう訳したかの違いだけ
75 名前:132人目の素数さん mailto:sage [2016/04/15(金) 12:26:47.54 ID:VmCuYRnb.net] そのとおり。 で、それが 「指数関数」「対数関数」という呼び方と 相性悪いんだよな。
76 名前:132人目の素数さん mailto:sage [2016/04/16(土) 05:08:58.03 ID:0ZlpopAz.net] 分数関数の積分は分母の微分形が分子になってると置換積分を用いてlogの形にもっていけますが 分母の微分形が分子になってないようなときは高校数学の範囲じゃ積分出来ないよとありました ∫{x/(x^2-1)}dx←これは積分出来るけど ∫{1/(x^2-1)}dx←これは高校数学範囲内じゃ無理という事でしょうか?
77 名前:132人目の素数さん [2016/04/16(土) 06:18:36.28 ID:l31iCuUg.net] 大嘘 むしろ部分分数分解なり三角関数での置換なりで解く問題が大半 例えば ∫(1/(x^2-1))dx =∫(1/(x+1)(x-1))dx =∫(((-1/2)/(x+1))+((1/2)/(x-1)))dx (以下略)
78 名前:132人目の素数さん mailto:sage [2016/04/16(土) 06:43:24.65 ID:cwDrZDnx.net] >>76 ありがとうございます 部分分数分解見逃してました 分数関数の積分は分母の微分形が分子になってるか部分分数分解するか三角関数への置換(まだ知らない)を考えると覚えておきます
79 名前:132人目の素数さん mailto:sage [2016/04/17(日) 17:39:39.21 ID:byfZy+vl.net] xⁿを((x-1)+1)ⁿとして展開すると最後の2項以外は割り切れるようですが何故なのか分かりません ご教示ください
80 名前:132人目の素数さん mailto:sage [2016/04/17(日) 17:54:54.57 ID:FgB0JWME.net] 割り算ってしってる?
81 名前:132人目の素数さん mailto:sage [2016/04/17(日) 17:58:07.79 ID:yeXLxja/.net] 共通な因子をもつ多項式P,Qは互いに素といえますか?(P,Q)=(1)ですか?0ですよね?
82 名前:132人目の素数さん mailto:sage [2016/04/17(日) 17:58:17.39 ID:byfZy+vl.net] >>79 はい 例えば(x-1)ⁿでn=1のときそれは(x-1)²で割り切れませんよね? よく分かりません
83 名前:132人目の素数さん mailto:sage [2016/04/17(日) 18:12:26.71 ID:nwR2XHnH.net] レス乞食
84 名前:132人目の素数さん mailto:sage [2016/04/17(日) 18:15:41.99 ID:UJFUjBvr.net] 割り算知ってたら、「6は割りきれますか?」みたいな質問はしないんだよなぁ
85 名前:132人目の素数さん mailto:sage [2016/04/17(日) 18:49:40.79 ID:ATkM75wq.net] >>83 >>81 の場合は割り切れませんよね?
86 名前:132人目の素数さん mailto:sage [2016/04/17(日) 18:56:27.83 ID:ATkM75wq.net] 公式再確認したら(x-1)ⁿが最高でそこからnが減少していくんですね 上に凸の二次関数のように増減するものと勘違いしてましたそれだと割り切れませんね 煽りばかりで本質的な解答は見られませんでしたがありがとうございますm(__)m
87 名前:132人目の素数さん mailto:sage [2016/04/17(日) 18:59:12.65 ID:qV51woSd.net] >>78 小学校の時、割り算では割る数と割られる数の2つが現れること習ってなかった?
88 名前:132人目の素数さん mailto:sage [2016/04/17(日) 20:57:16.57 ID:nwR2XHnH.net] 釣り
89 名前:132人目の素数さん mailto:sage [2016/04/17(日) 21:59:24.35 ID:pMkd3Y6c.net] >最後の2項以外は わかってて聞いてるんだろうな いつもの劣等感くんかな
90 名前:132人目の素数さん mailto:sage [2016/04/19(火) 09:20:52.29 ID:odZ/gEH0.net] 上に凸であることを示せ、って問題なんですが、数式的には何を示せば良いですか? 一次導関数が正で、二次導関数が負であることを示せば証明になりますか?
91 名前:132人目の素数さん mailto:sage [2016/04/19(火) 09:47:19.27 ID:j6IShooW.net] >>89 一次導関数が負で二次導関数が負もね
92 名前:132人目の素数さん mailto:sage [2016/04/19(火) 09:48:05.45 ID:UUBcW2KX.net] 増減表とグラフだけ書けばいいと思うが
93 名前:132人目の素数さん mailto:sage [2016/04/19(火) 14:28:16.21 ID:wuEwx/Hy.net] そもそも微分可能な関数なのか?
94 名前:132人目の素数さん mailto:sage [2016/04/19(火) 14:43:20.96 ID:oRwXG0mI.net] 凸不等式の逆
95 名前:132人目の素数さん mailto:sage [2016/04/19(火) 16:58:03.91 ID:wRHKzSR9.net] a<b<c, f(B)>((c-b)f(a)+(b-a)f(c))/(c-a)
96 名前:132人目の素数さん mailto:sage [2016/04/19(火) 19:40:33.04 ID:96EaKgMD.net] 正三角形の外心と重心の一致について質問です [外心→重心] 正三角形ABCの外心をOとする. このときOA=OB=OC,BC=CA=ABから△OBC≡△OCA≡△OABとなり,OAとBCの交点をXとすればBX:XC=△OAB:△OAC=1:1となるから、XはBCの中点. 同様にOBとACの交点,OCとABの交点もぞれぞれAC,ABの中点になるので Oは△ABCの重心. このような説明があったのですが このときOA=OB=OC,BC=CA=ABから△OBC≡△OCA≡△OAB←ここまではOK、三辺が同じだから合同ですよね OAとBCの交点をXとすればBX:XC=△OAB:△OAC=1:1となるから←この部分が分からないです 何故BXとXCの比が△OABと△OACの比になるのでしょうか? BXとXCの比が△OAXと△OXCの比になるといわれたら高さは同じだから底辺の比が面積の比になるんだなと納得は出来るのですが…
97 名前:132人目の素数さん [2016/04/19(火) 23:58:00.51 ID:eC/AVc1Y.net] BX:XC=△OBX:△OCX BX:XC=△ABX:△ACX ∴BX:XC=(△ABX-△OBX):(△ACX-△OCX)=△ABO:△ACO 一般に a:b=s:t=u:vのとき a:b=(s-u):(t-v)
98 名前:132人目の素数さん [2016/04/20(水) 00:02:49.57 ID:RwJ06OCr.net] 一応示すと 条件式よりat=bs, av=bu 辺々足してat+av=bs+bu ∴a(t+v)=b(s+u) よってa:b=(s+u):(t+v)
99 名前:132人目の素数さん [2016/04/20(水) 00:39:02.77 ID:RwJ06OCr.net] 何で足したんやろ 片々引くね
100 名前:132人目の素数さん [2016/04/20(水) 05:52:41.90 ID:zlN6JT60.net] >>96 >>97 ありがとうございます納得しました > 一般に > a:b=s:t=u:vのとき > a:b=(s-u):(t-v) これは知らなかったので嬉しい ついで足しても成立するというのもわかりましたしありがたいです
101 名前:132人目の素数さん [2016/04/21(木) 15:33:17.85 ID:YDGj326k.net] 座標平面上を点(x,y)が x^2ー2xy+2y^2=4 を満たして動く時 x+yの最大値は?という問題なのですが。 解答ではy=−x+kを代入して判別式で2√5という解を出してるのですが 与式をyについて解いてy=(x±√-x^2+8)/2として 図を描きy=-x+kを動かして最大切片を求めると3√2になってしまいます。 この解法の問題点はなんでしょうか?よろしくお願いいたします。
102 名前:132人目の素数さん mailto:sage [2016/04/21(木) 16:24:53.91 ID:XeIsqfx1.net] 図はどうやって描かれたのかが不明なので、なんとも言えない。
103 名前:132人目の素数さん mailto:sage [2016/04/21(木) 16:27:11.68 ID:0Jj4GnJ+.net] 正しく図がかけていれば問題は全くないよ 大方y=(x±√-x^2+8)/2がかけてないだけだろ
104 名前:132人目の素数さん mailto:sage [2016/04/21(木) 18:17:32.84 ID:YDGj326k.net] 図は微分して -2√2<<x<<2√2で各々2、−2が極大、極小で 接点が(2√2、√2)で最大かな?と・・・ どこが間違ってるのでしょうか?
105 名前:132人目の素数さん mailto:sage [2016/04/21(木) 21:30:35.45 ID:V4nXmTci.net] aを自然数とする。A君とB君がそれぞれ袋を持っている。A君の袋には赤球が1個、白球がa個入っていて、B君の袋には赤球が0個、白球が1個入っている。2人は次の操作を行う。 操作 まずA君が自分の袋から球を1つ取り出す。それが白球なら自分の袋に戻し、それが赤球ならB君の袋にそれを入れる。次にB君が自分の袋から球を1つ取り出す。それが白球なら自分の袋に戻し、それが赤球ならA君の袋にそれを入れる。 操作を繰り返し行う場合は、2人の袋の状態は前回の操作の結果のまま行うことにする。次の問に答えよ。 (1)操作を1回行った結果、A君の袋に赤球が1個ある確率を求めよ。 (2)操作をn回繰り返し行った結果、A君の袋に赤球が1個ある確率を求めよ。
106 名前:132人目の素数さん mailto:sage [2016/04/22(金) 00:41:26.46 ID:weKDu5iM.net] >>103 接点の場所違う。
107 名前:132人目の素数さん mailto:sage [2016/04/22(金) 01:01:03.79 ID:LopaxVnS.net] >>100 とりあえず √の中の -x^2+8 が正になる必要があるので -2√2≦x≦2√2。 なんとなく x=2√2 で接する(なんと言っても判別式=0だもんな)に違いない、な〜んて思ったんだろうな。
108 名前:132人目の素数さん [2016/04/22(金) 16:59:20.08 ID:+EWK4wZS.net] >>104 しょうたくん?
109 名前:132人目の素数さん mailto:sage [2016/04/22(金) 22:55:34.35 ID:6juxg5aW.net] >>101-6 どうもありがとうございました。曲線の膨らみ分を考慮して無かったですOrz 解決しました。
110 名前:132人目の素数さん mailto:sage [2016/04/23(土) 00:45:20.27 ID:HBmj2s8x.net] 解答者の特徴 ・ブサメンの底辺Fラン大生・Fラン大院生 ・数学と関係ないニート・無職 ・非課税、年金滞納中
111 名前:132人目の素数さん mailto:sage [2016/04/23(土) 00:51:36.98 ID:kZRftf0X.net] 解答者の特徴を言う人の特徴 ・ブサメンの底辺Fラン大生・Fラン大院生 ・数学と関係ないニート・無職 ・非課税、年金滞納中 ・劣等感の塊 ・ただの馬鹿
112 名前:132人目の素数さん mailto:sage [2016/04/23(土) 03:14:15.24 ID:iElJJ4Qb.net] 劣等感
113 名前:132人目の素数さん mailto:sage [2016/04/23(土) 12:27:03.52 ID:HBmj2s8x.net] しっかし誰も解けない難しい質問ばっかでつまんねえなぁ。 本当に「実際は解いている連中ばっか」状態になったこと一度もねえじゃんw もっと簡単な質問してこい、脳みそウンコまみれの底辺層ども。
114 名前:132人目の素数さん [2016/04/23(土) 12:30:43.82 ID:890qd1M3.net] ここにいて何度も質問がスルーされる現場を見たけどな
115 名前:132人目の素数さん mailto:sage [2016/04/23(土) 12:34:54.81 ID:HBmj2s8x.net] 質問者の特徴 ・何もかも分かってるエリート高校生 ・ネットや専門書で調べつくして、理解した上で書いてるスーパー頭脳 ・何度も諦めずに質問をする努力家 解答者の特徴 ・ブサメンの底辺Fラン大生・Fラン大院生 ・数学と関係ないニート・無職 ・非課税、年金滞納中
116 名前:132人目の素数さん mailto:sage [2016/04/23(土) 16:57:14.75 ID:iElJJ4Qb.net] はいはい劣等感
117 名前:132人目の素数さん mailto:sage [2016/05/05(木) 18:57:53.34 ID:bwoD75TI.net] examist.jp/mathematics/sum-volume-length1/menseki-beta/ この問題の2番の解説について質問です x^1/m=tと置換してA(m、n) A(m、n+1)を求めるところまでは良いのですが A(m+1、n)の置換の部分が分かりません x^1/m=tなのだからA(m+1、n)=∫(1 - x^1/m+1)^n dxとなると思いますが この部分からx^1/m+1=tと置換してるように見えるのですが私のどこが考えが違うのでしょうか? A(m、n+1)のときはx^1/m=tと置換してとやってA(m+1、n)のときはx^1/m+1=tと置換してる(ように見える)のに 得られたtを含む式を比較して同じtと考えて良いのでしょうか?
118 名前:132人目の素数さん mailto:sage [2016/05/05(木) 19:38:21.17 ID:hfvwV6ue.net] 見難いからヤーメタ
119 名前:132人目の素数さん mailto:sage [2016/05/05(木) 23:47:16.65 ID:6dE/Nike.net] ×見難い ◯わからない これが数学板の実力です 専門板なのに異常にレベルが低い せいぜい数学の少しできる高校生レベル
120 名前:132人目の素数さん mailto:sage [2016/05/05(木) 23:59:36.48 ID:fY101T4H.net] はいはい劣等感
121 名前:132人目の素数さん mailto:sage [2016/05/06(金) 00:12:37.20 ID:MijzQ65H.net] >>116 A(m+1,n) を求める前に 「ここで 改めて x^(1/(m+1))=t と置き直し、前と同様にすると」 と、書き加えて読め
122 名前:132人目の素数さん mailto:sage [2016/05/06(金) 01:17:42.79 ID:Bc2B77Fh.net] >>120 ありがとうございます そうしますと同じ操作をする事でサイトと同じ結果を得る事が出来ました となりますと、 A(m,n+1)=(n+1)∫[0,1](1-t)^n t^m dt…@のtはx^(1/m)=tであり A(m+1,n)=(m+1)∫[0,1](1-t)^n t^m dt…Aのtはx^(1/(m+1))=tであると思いまして @とAの∫[0,1](1-t)^n t^m dtは形が同じでもtの中身が違うのでAを∫[0,1](1-t)^n t^m dt=A(m+1,n)/(m+1)として@に代入というのが出来ないのでは?というところで躓きます この部分で分かりませんよろしかったらお願いします
123 名前:121 [2016/05/06(金) 01:39:56.83 ID:Bc2B77Fh.net] x^(1/m)をtと置換するから dx=m x^(m-1) dt x^(1/(m+1))もtと置換するから dx=(m+1) x^m dt 違うものを同じものに置換したのでdxが違ってると考えたら良いのかも… というか別に違うものを同じものに置換してもいいというのかわたしの置換の考えが足りないだけだったのかもしれません 違うものを同じものに置換したらその分dxや積分範囲が変わるイメージなんでしょうか
124 名前:132人目の素数さん [2016/05/06(金) 02:13:47.64 ID:0jNYFIuo.net] Σ[n=1→∞]n/(n+1)! これの解き方教えていただけませんか?
125 名前:132人目の素数さん mailto:sage [2016/05/06(金) 08:26:08.03 ID:mWoyF+Ky.net] >>123 f(x) = Σ[n=1,∞] x^(n+1)/(n+1)! とする。これは e^x - 1 -x。 (d/dx)f(x) = Σ(n+1)x^n/(n+1)! = Σnx^n/(n+1)! + Σx^n/(n+1)! = Σnx^n/(n+1)! + (1/x)(e^x-1-x). だが、(d/dx)(e^x - 1 -x) = e^x-1 に等しいので、 Σnx^n/(n+1)! + (1/x)(e^x-1-x) = e^x-1。 よって Σnx^n/(n+1)! = e^x-1 -(1/x)(e^x-1-x)。求める総和 Σnx^n/(n+1)! は、この右辺に x = 1 を代入したものに等しいので、e-1-(e-1-1) = 1.
126 名前:132人目の素数さん [2016/05/06(金) 08:40:14.94 ID:a1EL4lz0.net] n/(n+1)!=1/n!-1/(n+1)!
127 名前:132人目の素数さん mailto:sage [2016/05/06(金) 08:42:47.15 ID:alMvmh67.net] >>125 がかっこよすぎる
128 名前:132人目の素数さん mailto:sage [2016/05/06(金) 09:59:35.93 ID:n54YPP11.net] 階上の部分分数分解ってどうやればよいですか? 例えば1 /( n! * m! )などです
129 名前:132人目の素数さん mailto:sage [2016/05/06(金) 12:39:00.29 ID:M70jFy1E.net] できるか
130 名前:132人目の素数さん mailto:sage [2016/05/07(土) 02:08:59.74 ID:rjWroSWy.net] >>127 > 例えば1 /( n! * m! )などです 大笑い。 既存の公式らしきものからの類推式には殆どの場合意味がない。
131 名前:132人目の素数さん mailto:sage [2016/05/07(土) 02:10:03.91 ID:rjWroSWy.net] >>122 置換して得られる最終形が同じなら、それは同じもの。
132 名前:132人目の素数さん mailto:sage [2016/05/07(土) 02:31:03.70 ID:3A4/oHBM.net] 受験生です 駿台全国模試の過去問です 理1 (1)一辺の長さが2の正三角形ABCの各辺の中点をD,E,Fとし、これらの6点から選んだ異なる2点を始点と終点とし てできるベクトルすべての集合をSとする。Sから異なる2つのベクトルa↑,b↑を選ぶとき、内積a↑・b↑の最小値は (ア)、最大値は(イ)であり、|a↑+b↑|の最小値は(ウ)、最大値は(エ)である。 (2)実数の定数aに対して、xの方程式log[2](x-a)=log[4](2x-a)・・・(※)を考える。 a>0とする。まず真数は正であるからxの範囲は(オ)である。このもとで、底をそろえることにより、xの2次方程式(カ) が得られる。これらからxを求め、aの式で表すとx=(キ)である。 次にaを実数(正とはかぎらない)とするとき、(※)が異なる2つの実数解をもつようなaの値の範囲は(ク)である。 理2 xy平面において、3点A(1,0),B(-2,2),C(-2,-2)を頂点とする三角形ABCおよび、実数tに対して定まる直線L (t):x+2ty=t^2を考える。 (1)2点B,CがL(t)に関して反対側にあるようなtの値の範囲を求めよ。 (2)L(t)が2線分AB,AC(ともに両端を除く)と共有点をもつようなtの値の範囲を求めよ。 (3)L(t)が三角形ABCの周とちょうど2点を共有するようなtの値の範囲を求めよ。 理3 三角形ABCがあり、BC=1,∠A=60°,∠B=2θ(o°≦θ≦30°)であるとする。∠Bの二等分線がACと交わる点をD とする。また、辺AB(両端を除く)上に点Eをとり、∠ACE=θ+30°とする。 (1)CDとCEの長さをθを用いて表せ。 (2)∠CED=xとおく。∠CDEをxとθを用いて表せ。 (3)∠CEDを求めよ。 理4 A,B,Cの3人を含むn人(n≧5)を3つの組に分けるとき、次のようなわけ方はそれぞれ何通りあるか。ただし、各組は 少なくとも1人を含み、組は区別できない(組に番号や名前はない)とする。 (1)A,B,Cがそれぞれ別の組に入るわけ方 (2)AとBが同じ組に入り、Cが別の組に入る分け方 (3)A,B,Cが同じ組に入る分け方 答えあわせしたいので解法の方針はいいので答えだけ書いてください よろしくお願いします。
133 名前:132人目の素数さん mailto:sage [2016/05/07(土) 05:31:24.79 ID:+jlu3JK5.net] 答えの無い駿台の過去問なんてあるのか
134 名前:132人目の素数さん [2016/05/07(土) 07:35:09.43 ID:EWsC3Shtb] 54の三乗根 + 16の三乗根 − 1/4の三乗根 を途中式含め教えてください 54の三乗根+16の三乗根が5×2の三乗根まではわかりました 答えは(9/2)×2の三乗根だそうです
135 名前:132人目の素数さん mailto:sage [2016/05/07(土) 09:06:25.81 ID:MyzK+ir+.net] >>131 答えあわせだけでいいなら、お前が答え晒せばよくね? 間違ってたら嬉々として指摘する奴でてくるよ
136 名前:132人目の素数さん [2016/05/07(土) 12:41:22.07 ID:u6nWR9NF.net] その餌の方が食い付きが良いよね
137 名前:131 mailto:sage [2016/05/07(土) 13:16:15.69 ID:3A4/oHBM.net] i.imgur.com/Qcs8JYa.jpg 解答です まだできていないとこもあるのでそこは答えなくていいです
138 名前:132人目の素数さん [2016/05/07(土) 13:21:56.28 ID:Wt/+8mqC.net] 答えなくていいですルアーが投入されました
139 名前:132人目の素数さん mailto:sage [2016/05/07(土) 14:43:23.34 ID:09mjRaKv.net] あるけど持ってないとかだろ
140 名前:132人目の素数さん [2016/05/07(土) 15:22:29.99 ID:A/2CUct6.net] アホ丸出しの字だな
141 名前:132人目の素数さん mailto:sage [2016/05/07(土) 17:58:17.27 ID:X7dB7rC9.net] >>136 とりあえず1はエ オ ク 違う。
142 名前:131 [2016/05/07(土) 19:15:42.29 ID:4Prv3u1H.net] オを間違えました X>aです エはなんですか答えは? 長さ2のベクトルと√3のベクトルで二つのなす角度が30度のベクトルの和だと思いました
143 名前:132人目の素数さん mailto:sage [2016/05/07(土) 19:23:26.63 ID:iEeoLI4M.net] 答えが無いとか不正入手を疑わざるをえない
144 名前:131 mailto:sage [2016/05/07(土) 19:26:38.82 ID:eOFhliRb.net] ネットのコピペをしただけです
145 名前:132人目の素数さん mailto:sage [2016/05/07(土) 19:32:26.31 ID:7RAaxxjY.net] 答えの無いネットのコピペねぇ
146 名前:132人目の素数さん mailto:sage [2016/05/07(土) 22:57:25.24 ID:X7dB7rC9.net] >>141 あーすまん計算ミスだったあってるよ 2の(2)は間違ってる 与式をf(x,y)=0の形に変形して f(1,0)f(-2,2)<0かつf(1,0)f(-2,-2)<0の範囲を出す。 やってる事がわからんかったら正領域負領域で調べてくれ
147 名前:132人目の素数さん mailto:sage [2016/05/08(日) 11:09:01.69 ID:ElcbpR6b.net] (-1)^m=1であることとmが偶数であることは同値ですか? 負の数の指数って範囲どこまでなんでしょう
148 名前:132人目の素数さん mailto:sage [2016/05/08(日) 13:28:45.49 ID:AN/swqkX.net] レス乞食
149 名前:132人目の素数さん mailto:sage [2016/05/12(木) 00:44:01.60 ID:tKMDcqby.net] 【米国】機内で微分方程式を解いていた教授、隣の女性に怪しまれて通報される…飛行機は予定より2時間遅れで出発 www.bbc.com/japanese/36244840 受験生気をつけろよwww
150 名前:132人目の素数さん mailto:sage [2016/05/14(土) 20:08:44.91 ID:dYfpaXux.net] これの(1)(2)はどう解けばよいのでしょうか i.imgur.com/2giBPT5.jpg
151 名前:132人目の素数さん mailto:sage [2016/05/14(土) 20:30:14.96 ID:iHuBgK04.net] マルチ乙 そのへんの本に出ている有名問題をいちいち人に聞くな
152 名前:132人目の素数さん mailto:sage [2016/05/16(月) 07:45:54.66 ID:wEXXZBm/.net] h→0の場合のlim{(a^h - 1)/h)} = ln(a)の証明法を教えてください
153 名前:132人目の素数さん mailto:sage [2016/05/16(月) 07:49:07.45 ID:F1Stsu0h.net] 思考停止のロピタル(a^x)'=a^x*lna
154 名前:132人目の素数さん mailto:sage [2016/05/16(月) 18:42:35.80 ID:wEXXZBm/.net] >>152 どうもありがとうございました。 lim{(e^h -1)/h} = 1 を利用する方法も教えていただけませんか?
155 名前:132人目の素数さん mailto:sage [2016/05/16(月) 18:53:28.94 ID:mMI18qz1.net] a^h=e^(h・log_[e](a))
156 名前:132人目の素数さん mailto:sage [2016/05/17(火) 17:31:26.48 ID:gNQN2sGC.net] x^4+2をx^2+1で割ると商がx^2−1で余りが3になりますよね。 そこでxに2以上の整数をいろいろ入れて計算するときちんと合うんです。 例えばx=2だと18÷5になって商は3で余りは3といった具合です。 でもxが1の時だけうまくいきません。 x=1だと3÷2になって、商が1で余りが1になるはずなんですが、商のx^2−1のxに1を 代入すると0になってしまいます。 どうしてこうなるのか教えてもらえませんか?
157 名前:132人目の素数さん mailto:sage [2016/05/17(火) 17:38:33.23 ID:pCtPMoNx.net] 余りが3固定なんだから 3÷2=0...3 としかできないでしょ
158 名前:132人目の素数さん mailto:sage [2016/05/17(火) 17:50:05.90 ID:gNQN2sGC.net] なるほど「余りが固定」というニュアンスなんですか。 わかりました、ありがとうございます。
159 名前:132人目の素数さん mailto:sage [2016/07/26(火) 10:40:01.86 ID:Lv/ZJVAO.net] A駅を発車した特急列車は20分、急行列車は25分、普通列車は30分でB駅に到着する。 特急列車は毎時0分、急行列車は毎時20分と40分、普通列車は毎時x分、x+20分 、及びx+40分にA駅を発車する。(0<x<20)。 乗客は時刻表を知らないものとし、A駅に到着後、最も早く発車する列車に 乗るものとする。 (1) 乗客が特急列車、急行列車に乗る確率を求めよ。 (2) 乗客がA駅に到着してから、普通列車に乗車しB駅に到着するまでの平均時間を求めよ。 (3) 乗客がA駅に到着してから、B駅に到着するまでの時間の期待値を最小にするxを求めよ。
160 名前:132人目の素数さん mailto:sage [2016/08/16(火) 01:29:47.27 ID:p1q/G2tc.net] この問題意味不明です 進数もないし 解説もなぜそうなるのか意味わかんないです 左が問題です右が解説で 解いてほしいのは(2)のウです i.imgur.com/6sAMIKV.jpg
161 名前:132人目の素数さん mailto:sage [2016/08/16(火) 01:42:48.06 ID:ORnow9a7.net] >>159 x以外の文字は定数として積分の計算をする sssp://o.8ch.net/fms7.png
162 名前:132人目の素数さん [2016/10/19(水) 23:11:03.52 ID:4lQ3dGML.net] こっちも、どうしようかなあ・・・ この際だから、上げておこうか。
163 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:13:16.74 ID:2Wa6Uw62.net] ¥ >191 名前:132人目の素数さん :2016/10/12(水) 14:26:06.21 ID:5WGW5M4m > 「筑波大学准教授の強制わいせつ痴漢行為」に思う | 月光院璋子の日記 > plaza.rakuten.co.jp/gekkouinnblog/diary/200708060000/ > > 芳雄「哲也の話にするな、忘れろ!奴は増田家の恥、もはや養子でさえない」 >
164 名前:132人目の素数さん [2016/10/19(水) 23:20:19.00 ID:4lQ3dGML.net] こちらも! 早速、お疲れ様です。 こんごとも宜しく。 しっかり監視してるんですね。
165 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:25:46.87 ID:2Wa6Uw62.net] ¥
166 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:26:05.73 ID:2Wa6Uw62.net] ¥
167 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:26:24.2
] [ここ壊れてます]
168 名前:9 ID:2Wa6Uw62.net mailto: ¥ [] [ここ壊れてます]
169 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:26:42.85 ID:2Wa6Uw62.net] ¥
170 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:27:03.80 ID:2Wa6Uw62.net] ¥
171 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:27:23.51 ID:2Wa6Uw62.net] ¥
172 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:27:41.86 ID:2Wa6Uw62.net] ¥
173 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:28:01.71 ID:2Wa6Uw62.net] ¥
174 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:28:22.03 ID:2Wa6Uw62.net] ¥
175 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/19(水) 23:28:44.39 ID:2Wa6Uw62.net] ¥
176 名前:132人目の素数さん mailto:sage [2016/10/20(木) 01:00:02.99 ID:bTNtZrII.net] 劣等感ババアよ 古い投稿だけど>>158 を解いてやれよ お前が知らなかったポアソン分布を使う問題だぞwww
177 名前:132人目の素数さん mailto:sage [2016/10/20(木) 01:39:16.67 ID:q3Bs8QID.net] 11レス飛んでたんだが
178 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:14:26.00 ID:4i85UFaq.net] ¥
179 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:14:44.04 ID:4i85UFaq.net] ¥
180 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:14:59.60 ID:4i85UFaq.net] ¥
181 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:15:17.71 ID:4i85UFaq.net] ¥
182 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:15:37.43 ID:4i85UFaq.net] ¥
183 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:16:15.32 ID:4i85UFaq.net] ¥
184 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:16:34.39 ID:4i85UFaq.net] ¥
185 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:16:54.43 ID:4i85UFaq.net] ¥
186 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:17:09.07 ID:4i85UFaq.net] ¥
187 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 03:17:33.09 ID:4i85UFaq.net] ¥
188 名前:132人目の素数さん mailto:sage [2016/10/20(木) 12:46:32.66 ID:YZs60yB4.net] 荒らしが必死
189 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/20(木) 12:48:47.45 ID:4i85UFaq.net] ¥
190 名前:¥ ◆2VB8wsVUoo mailto:age [2016/10/20(木) 23:11:30.47 ID:4i85UFaq.net] ¥
191 名前:¥ ◆2VB8wsVUoo mailto:age [2016/10/20(木) 23:25:39.92 ID:4i85UFaq.net] ¥
192 名前:¥ ◆2VB8wsVUoo mailto:age [2016/10/20(木) 23:29:14.48 ID:4i85UFaq.net] ¥
193 名前:132人目の素数さん [2016/10/20(木) 23:58:40.90 ID:EwcuzDLZ.net] 52枚のトランプから4枚のカードを抜き取ったとき、 スペードとハートのカードが一枚ずつ含まれている確率は? お願いいたします。
194 名前:132人目の素数さん mailto:sage [2016/10/21(金) 00:00:41.10 ID:0RRlftrj.net] しっかし誰も解けない難しい質問ばっかでつまんねえなぁ。 本当に「実際は解いている連中ばっか」状態になったこと一度もねえじゃんw もっと簡単な質問してこい、脳みそウンコまみれの底辺層ども。
195 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:01:00.86 ID:bLSYGql/.net] ¥ >673 名前:132人目の素数さん :2016/10/20(木) 08:48:57.82 ID:1+lfflhP > 阪大ごときで研究者目指したらアカンやろw > >674 名前:¥ ◆2VB8wsVUoo :2016/10/20(木) 08:53:56.11 ID:4i85UFaq > ホウ、なるほどナ。 > > ¥ > >675 名前:¥ ◆2VB8wsVUoo :2016/10/20(木) 09:21:36.53 ID:4i85UFaq > そやし東大と京大以外の大学院は全部閉鎖せんとアカンわ。無駄やさかいナ。 > > ¥ > >676 名前:¥ ◆2VB8wsVUoo :2016/10/20(木) 09:28:07.86 ID:4i85UFaq > ほんで宮廷以外の数学科かて全部閉鎖せんとアカンわ。馬鹿板人みたいな > 低能ゾンビばっかし居っても税金の無駄にナルだけで役に立たへんしナ。 > > ¥ >
196 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:05:37.75 ID:bLSYGql/.net] ¥
197 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:05:57.42 ID:bLSYGql/.net] ¥
198 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:06:15.83 ID:bLSYGql/.net] ¥
199 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:06:33.81 ID:bLSYGql/.net] ¥
200 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:06:50.31 ID:bLSYGql/.net] ¥
201 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:07:27.23 ID:bLSYGql/.net] ¥
202 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:07:44.01 ID:bLSYGql/.net] ¥
203 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:08:01.94 ID:bLSYGql/.net] ¥
204 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:08:24.14 ID:bLSYGql/.net] ¥
205 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 00:42:35.59 ID:bLSYGql/.net] ¥
206 名前:132人目の素数さん mailto:sage [2016/10/21(金) 11:30:32.31 ID:tUkUXeUa.net] 荒らしが必死
207 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/10/21(金) 11:34:51.20 ID:bLSYGql/.net] ¥
208 名前:¥ ◆2VB8wsVUoo mailto:age [2016/10/21(金) 19:12:13.76 ID:bLSYGql/.net] ¥
209 名前:132人目の素数さん mailto:sage [2016/10/23(日) 19:49:43.33 ID:5tvC2hL4.net] >>191 (ダイヤ,ハート)の数は (2,0),(1,1),(0,2)の 3通りがあり得る。 それぞれの場合もの数は? →多項分布
210 名前:132人目の素数さん [2016/11/03(木) 20:31:56.79 ID:F1gJNWy8.net] (a-b)^2 がa^2+b^2-4abになるのは何故でしょうか? a^2-2ab+b^2なら分かるのですが……
211 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:49:11.83 ID:s0algnPx.net] ¥
212 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:49:30.63 ID:s0algnPx.net] ¥
213 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:49:48.49 ID:s0algnPx.net] ¥
214 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:50:04.57 ID:s0algnPx.net] ¥
215 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:50:21.41 ID:s0algnPx.net] ¥
216 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:50:38.76 ID:s0algnPx.net] ¥
217 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:50:54.99 ID:s0algnPx.net] ¥
218 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:51:12.70 ID:s0algnPx.net] ¥
219 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:51:30.15 ID:s0algnPx.net] ¥
220 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/03(木) 20:51:47.09 ID:s0algnPx.net] ¥
221 名前:132人目の素数さん mailto:sage [2016/11/04(金) 07:18:31.71 ID:OeSMEDUA.net] 方程式なんじゃないの?
222 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 09:14:44.83 ID:gM7SVQP5.net] ¥
223 名前:132人目の素数さん mailto:sage [2016/11/04(金) 13:25:09.86 ID:VX6tBY8X.net] 荒らしが必死
224 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 13:42:25.88 ID:gM7SVQP5.net] ¥
225 名前:132人目の素数さん mailto:sage [2016/11/04(金) 20:43:52.18 ID:QneffHMM.net] 教えてください。AとBとCで競争をすることにしました。 AがBに勝つ確率は1/2 BがCに勝つ確率は1/2 CがAに勝つ確率は1/2 とします。 競争の結果、A>B>Cとなる確率はどのように求めればよいのでしょうか。 1/3p1の並べ替えで1/6になるのは直感で理解できますが、各対戦時の確率1/2は このときどのように扱って1/6を導出すればよいのでしょうか。 分かる方いたら教えてください。
226 名前:132人目の素数さん mailto:sage [2016/11/04(金) 20:58:25.00 ID:QneffHMM.net] もしかしてですがA>Bになったとき(1/2) C>A>B、A>C>B、A>B>Cになる場合が3通り等しくあるので 1/2*1/3=1/6になる、という理解でよいのでしょうか。
227 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:00:32.79 ID:gM7SVQP5.net] ¥
228 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:00:48.96 ID:
] [ここ壊れてます]
229 名前:gM7SVQP5.net mailto: ¥ [] [ここ壊れてます]
230 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:01:25.63 ID:gM7SVQP5.net] ¥
231 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:01:45.52 ID:gM7SVQP5.net] ¥
232 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:02:04.45 ID:gM7SVQP5.net] ¥
233 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:02:22.88 ID:gM7SVQP5.net] ¥
234 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:02:39.53 ID:gM7SVQP5.net] ¥
235 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:02:58.80 ID:gM7SVQP5.net] ¥
236 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:03:17.44 ID:gM7SVQP5.net] ¥
237 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 21:03:35.33 ID:gM7SVQP5.net] ¥
238 名前:132人目の素数さん mailto:sage [2016/11/04(金) 21:21:12.98 ID:WSCcrQ8F.net] >>223 ABC と CBA が各々確率1/2、他が確率ゼロ とか ACB と BCA が各々確率1/2、他が確率ゼロ とかでも >AがBに勝つ確率は1/2 >BがCに勝つ確率は1/2 >CがAに勝つ確率は1/2 は満たされてるんでは?
239 名前:132人目の素数さん mailto:sage [2016/11/04(金) 21:31:34.73 ID:QneffHMM.net] >>235 なるほど、A>B>Cが1/6になるというのは、まず勘違いなわけですね。 たしかにそうですね。 マッチレースで勝つ確率が分かっただけでは、全体の確率は導き出せないということになりますでしょうか。
240 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:56:01.36 ID:gM7SVQP5.net] ¥
241 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:56:18.46 ID:gM7SVQP5.net] ¥
242 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:56:36.01 ID:gM7SVQP5.net] ¥
243 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:56:53.19 ID:gM7SVQP5.net] ¥
244 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:57:09.75 ID:gM7SVQP5.net] ¥
245 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:57:28.31 ID:gM7SVQP5.net] ¥
246 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:57:45.57 ID:gM7SVQP5.net] ¥
247 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:58:01.07 ID:gM7SVQP5.net] ¥
248 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:58:19.39 ID:gM7SVQP5.net] ¥
249 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/04(金) 23:58:37.62 ID:gM7SVQP5.net] ¥
250 名前:132人目の素数さん mailto:sage [2016/11/05(土) 01:40:48.91 ID:Jrh4QhwW.net] 荒らしが必死
251 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/05(土) 04:27:28.75 ID:fu3WaMnc.net] ¥
252 名前:132人目の素数さん mailto:sage [2016/11/14(月) 00:18:49.77 ID:aJg8j1np.net] 前スレでωの質問をしたものですが、結局のところ (1)^10/3のように、いくつもの値を取る数というのが存在するんですね?
253 名前:132人目の素数さん mailto:sage [2016/11/14(月) 00:28:52.39 ID:qxFMPXXf.net] 何言ってるのかわからない
254 名前:132人目の素数さん [2016/11/14(月) 00:42:05.16 ID:mMpJ8BZq.net] >>249 合理的な意味付けが可能な数学記号を合理の外で使おうとするからそのような混乱が起こる。
255 名前:132人目の素数さん mailto:sage [2016/11/14(月) 01:16:17.56 ID:7aOOTGvK.net] >>249 ルートと平方根の違いのようなものです ルートとは、平方根のうち負でないもの、として定義され、この場合はいいわけです ですが、複素数の場合、正も負もないわけですから、先のように一つに絞るということが難しいのです まあ、偏角の最も小さいものとかで定義できなくはないでしょうけど、普通はしませんよね
256 名前:132人目の素数さん mailto:sage [2016/11/14(月) 01:17:35.68 ID:7aOOTGvK.net] x^(1/n)をz^n=xを満たす複素数のうち、偏角の最も小さいz、として定義すると、ちゃんと指数法則は成り立ちますか? また、無理数乗を有理数乗の極限と定義した場合はどうでしょうか? めんどくさいので誰か教えてください
257 名前:132人目の素数さん mailto:sage [2016/11/14(月) 03:12:59.20 ID:h/UZB2M/.net] >>252 =>>253 なんだ釣り質問だったのかwwwwwwwwww
258 名前:132人目の素数さん mailto:age [2016/11/14(月) 03:13:16.93 ID:h/UZB2M/.net] 晒し上げ
259 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 05:56:20.23 ID:JaV5hWGY.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
260 名前:132人目の素数さん mailto:sage [2016/11/14(月) 12:50:50.26 ID:CNsA5hTh.net] 荒らしが必死
261 名前:132人目の素数さん mailto:sage [2016/11/14(月) 16:52:02.21 ID:M2D2KgFz.net] >>253 1^(1/3)^2 は?
262 名前:132人目の素数さん [2016/11/14(月) 23:24:05.54 ID:aJg8j1np.net] ωの質問したの
263 名前:ヘ自分ですが、旧課程だと(複素数平面は範囲外であるが)ω^10を求めよ とかいう問題が普通に出てきて、 (1)^10/3として解いていけないという事が教科書には確かどこにも 載ってなかったと思うので、混乱してしまいました。 [] [ここ壊れてます]
264 名前:132人目の素数さん [2016/11/14(月) 23:42:04.95 ID:mMpJ8BZq.net] >>259 それゆえ>>251
265 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:45:20.38 ID:JaV5hWGY.net] ¥
266 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:45:37.49 ID:JaV5hWGY.net] ¥
267 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:45:53.73 ID:JaV5hWGY.net] ¥
268 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:46:10.55 ID:JaV5hWGY.net] ¥
269 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:46:27.70 ID:JaV5hWGY.net] ¥
270 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:46:45.20 ID:JaV5hWGY.net] ¥
271 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:47:03.74 ID:JaV5hWGY.net] ¥
272 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:47:22.94 ID:JaV5hWGY.net] ¥
273 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:47:41.41 ID:JaV5hWGY.net] ¥
274 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/14(月) 23:48:01.32 ID:JaV5hWGY.net] ¥
275 名前:132人目の素数さん [2016/11/15(火) 00:32:26.30 ID:IXLfib3o.net] >>259 それはお前の勘違いだろが 複素数でも指数に分数を使っていいと思い込んでいただけ
276 名前:132人目の素数さん mailto:sage [2016/11/15(火) 00:45:10.86 ID:OVHBpdb6.net] あの屋敷には幽霊がでるという噂を耳にして 幽霊がでるというのは本当かと聞いて回っている人
277 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 01:09:30.62 ID:rHUcGvFT.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
278 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:07:25.42 ID:rHUcGvFT.net] ¥
279 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:07:42.68 ID:rHUcGvFT.net] ¥
280 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:08:00.20 ID:rHUcGvFT.net] ¥
281 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:08:17.76 ID:rHUcGvFT.net] ¥
282 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:08:35.17 ID:rHUcGvFT.net] ¥
283 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:08:51.96 ID:rHUcGvFT.net] ¥
284 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:09:11.41 ID:rHUcGvFT.net] ¥
285 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:09:27.27 ID:rHUcGvFT.net] ¥
286 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:09:47.97 ID:rHUcGvFT.net] ¥
287 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 04:10:08.05 ID:rHUcGvFT.net] ¥
288 名前:132人目の素数さん mailto:sage [2016/11/15(火) 11:29:59.95 ID:gRAGWEjZ.net] 荒らしが必死
289 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 12:09:45.85 ID:rHUcGvFT.net] ¥
290 名前:132人目の素数さん [2016/11/15(火) 17:49:44.29 ID:GPIJk7g/.net] 教えて下さい 偏差値の出し方についてです 50+(自分の得点−平均点)÷2 平均点がわからなかったので50点としたら、高い数字になりました。 よくわからなかったので、宜しくお願いします
291 名前:132人目の素数さん [2016/11/15(火) 17:55:26.14 ID:GPIJk7g/.net] かっこから先に計算するんでしたっけ? それなら。。。
292 名前:132人目の素数さん mailto:sage [2016/11/15(火) 18:00:57.71 ID:XXrgkSoc.net] ググれ
293 名前:132人目の素数さん [2016/11/15(火) 18:03:27.88 ID:Ot7zcwge.net] >>286 50+10*(得点-平均値)/標準偏差 です 標準偏差とは得点のばらつきを表す量であって、偏差値の肝と言える量です たとえば、自分以外50点のテストで100点取るのと、平均50点だけど、点数いい人もいるし悪い人も満遍なくいるテストで100点取るのでは明らかに状況が異なりますね? 前者の方が、より価値があるはずです 何故ならば、前者ではほぼ全員が同じ点数な訳で、そこに得点が集中しているため、ばらつきが少ないからです このときは偏差値は跳ね上がるでしょう 結局、偏差値は自分では求めることはできないということです 平均値だけわかってても、ダメなのです
294 名前:132人目の素数さん [2016/11/15(火) 18:13:10.17 ID:GPIJk7g/.net] >>288 さん >>289 さん レスありがとうございます 平均点がわからずに平均点50点としました。調べて計算をすると偏差値が出てきました。自分の偏差値を知る為には模試を受けるのが必要でしょうか
295 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 18:14:57.60 ID:rHUcGvFT.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
296 名前:132人目の素数さん [2016/11/15(火) 18:14:59.39 ID:Ot7zcwge.net] >>290 あなたは何の偏差値を知りたいのでしょうか? 具体的に書いてくれればヒントが見つかるかもしれません
297 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 18:15:28.00 ID:rHUcGvFT.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
298 名前:132人目の素数さん [2016/11/15(火) 18:18:44.95 ID:IXLfib3o.net] >>290 オマエの書き込みを見る限りにおいては、50未満だな
299 名前:132人目の素数さん [2016/11/15(火) 18:21:20.14 ID:GPIJk7g/.net] >>292 高校生レベルの偏差値を知りたかったのです。自分が進学の出来る大学はどこなのか知りたいのです
300 名前:132人目の素数さん [2016/11/15(火) 18:23:18.41 ID:GPIJk7g/.net] >>294 残念ですが、50以上でした。
301 名前:132人目の素数さん [2016/11/15(火) 18:28:00.73 ID:Ot7zcwge.net] >>295 センターの過去問とか解いてみたらどうでしょうか? 偏差値表とか探せばあるはずですから、目安にはなるかと思いますよ
302 名前:132人目の素数さん [2016/11/15(火) 18:32:50.83 ID:IXLfib3o.net] >>296
303 名前:偏差値分かってるじゃねえかよカス [] [ここ壊れてます]
304 名前:132人目の素数さん [2016/11/15(火) 18:33:33.72 ID:Ot7zcwge.net] 高校時代の偏差値ということではないでしょうか?
305 名前:132人目の素数さん [2016/11/15(火) 18:34:30.13 ID:Ot7zcwge.net] 時代じゃなくて高校自体です 中学の時の偏差値ってことですね
306 名前:132人目の素数さん [2016/11/15(火) 18:35:23.30 ID:GPIJk7g/.net] >>297 さん、参考になりました。センターの過去問をまずは本屋で見てみます。 レスありがとうございました。
307 名前:132人目の素数さん [2016/11/15(火) 18:40:15.62 ID:IXLfib3o.net] なんのこっちゃ 進学校なら一年でも全国模試を学校で受けるだろ? 中卒か?
308 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 19:09:36.83 ID:rHUcGvFT.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
309 名前:132人目の素数さん [2016/11/15(火) 19:27:58.41 ID:hWK/PjRm.net] ^ ^ (=^ェ^=)知りません、知りません。 何も知りません。
310 名前:132人目の素数さん [2016/11/15(火) 19:32:27.06 ID:Ot7zcwge.net] >>302 もし受けてたらこんな質問すると思いますか? あなたは数学は多少はできるのかもしれませんが、国語が苦手そうですね
311 名前:132人目の素数さん mailto:sage [2016/11/15(火) 19:39:42.29 ID:QVZWWbL/.net] 中卒か
312 名前:132人目の素数さん [2016/11/15(火) 19:43:55.73 ID:hWK/PjRm.net] ^ ^ (=^ェ^=)
313 名前:132人目の素数さん [2016/11/15(火) 20:01:58.56 ID:IXLfib3o.net] >>305 アホ丸出しの中卒か
314 名前:132人目の素数さん [2016/11/15(火) 20:08:09.64 ID:Ot7zcwge.net] >>308 偏差値50程度の高校が進学校だと思いますか? 私は偏差値70の自称進学校出身だからわかりませんけど、レベルの低い学校では模試受けないのかもしれませんね? さらにもう一度なんですが、>>296 の偏差値が模試等で測られたちゃんとした偏差値を意味してるとしたら、質問者はこんな質問すると思いますか??
315 名前:132人目の素数さん [2016/11/15(火) 20:20:43.53 ID:IXLfib3o.net] >>309 劣等感ババアの質問には答えませんからwww
316 名前:132人目の素数さん [2016/11/15(火) 20:21:36.82 ID:Ot7zcwge.net] >>310 ちゃんとレス返してくれてるじゃないですか? やっぱり国語とかできなかったんですか?
317 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:38:13.18 ID:rHUcGvFT.net] ¥
318 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:38:31.26 ID:rHUcGvFT.net] ¥
319 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:38:49.16 ID:rHUcGvFT.net] ¥
320 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:39:07.32 ID:rHUcGvFT.net] ¥
321 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:39:24.51 ID:rHUcGvFT.net] ¥
322 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:39:42.17 ID:rHUcGvFT.net] ¥
323 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:40:00.17 ID:rHUcGvFT.net] ¥
324 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:40:19.96 ID:rHUcGvFT.net] ¥
325 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:40:41.86 ID:rHUcGvFT.net] ¥
326 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/15(火) 20:41:02.95 ID:rHUcGvFT.net] ¥
327 名前:132人目の素数さん mailto:sage [2016/11/16(水) 00:41:05.60 ID:47vAS7e4.net] >>311 レスした=質問に答えたと思ってるバカw 劣等感の人は国語力もないのか?
328 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:56:42.76 ID:dNgJpCiU.net] ¥
329 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:57:00.76 ID:dNgJpCiU.net] ¥
330 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:57:19.39 ID:dNgJpCiU.net] ¥
331 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:57:34.77 ID:dNgJpCiU.net] ¥
332 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:57:51.01 ID:dNgJpCiU.net] ¥
333 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:58:06.99 ID:dNgJpCiU.net] ¥
334 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:58:23.63 ID:dNgJpCiU.net] ¥
335 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:58:38.36 ID:dNgJpCiU.net] ¥
336 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:58:53.00 ID:dNgJpCiU.net] ¥
337 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 00:59:19.27 ID:dNgJpCiU.net] ¥
338 名前:132人目の素数さん mailto:age [2016/11/16(水) 02:43:40.55 ID:FVrOG4nm.net] いいぞもっとやれ 劣等感BBAなんて倒しちゃえ
339 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 04:38:35.19 ID:dNgJpCiU.net] ¥ >544 名前:132人目の素数さん :2016/11/10(木) 14:51:03.66 ID:Q64a0U8Q > 違う貧民の総意 > 貧民は手玉に取られたのだ > >545 名前:132人目の素数さん :2016/11/10(木) 18:31:02.97 ID:XWS/rnm/ > メディアの政治操作を許さない民主主義の保全システムが > 目的通りに完全に機能したのがすごい > >546 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 18:37:05.74 ID:6c0BrRUL > メディアとかお上を鵜呑みにするどっかの馬鹿国民とは大違いですわ。 > > ¥ > >547 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:46:32.78 ID:6c0BrRUL > 貧民の総意を汲んだらアカンのや、なるほどナ。そらァ自民党が喜ぶわサ。 > > ケケケ¥ > >548 名前:¥ ◆2VB8wsVUoo :2016/11/10(木) 19:52:21.65 ID:6c0BrRUL > しかも貧民を手玉に取ってもアカンのかいな。ほしたら共産党とか、また > かつての民主党とかはどないしたらエエのや。エライこっちゃwww > > コココ¥ > >549 名前:貧民 ◆2VB8wsVUoo :2016/11/10(木) 20:00:41.60 ID:6c0BrRUL > 貧民 >
340 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:39:54.44 ID:dNgJpCiU.net] ¥
341 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:40:13.24 ID:dNgJpCiU.net] ¥
342 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:40:30.50 ID:dNgJpCiU.net] ¥
343 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:40:47.28 ID:dNgJpCiU.net] ¥
344 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:41:06.72 ID:dNgJpCiU.net] ¥
345 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:41:22.19 ID:dNgJpCiU.net] ¥
346 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:41:38.48 ID:dNgJpCiU.net] ¥
347 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:41:54.88 ID:dNgJpCiU.net] ¥
348 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:42:11.92 ID:dNgJpCiU.net] ¥
349 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 07:42:30.28 ID:dNgJpCiU.net] ¥
350 名前:132人目の素数さん mailto:sage [2016/11/16(水) 13:22:43.26 ID:37ePreHq.net] 荒らしが必死
351 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/16(水) 14:10:08.74 ID:dNgJpCiU.net] ¥
352 名前:132人目の素数さん [2016/11/25(金) 04:21:42.93 ID:tekxrrmY.net] fast-uploader.com/file/7035570816652/ 左下の△が正三角形になる理由を教えて下さい
353 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 05:09:15.12 ID:qbOZp+6P.net] ¥ >前科持ち変質者と絶対出会える掲示板 [無断転載禁止] > >1 名前:132人目の素数さん 2016/11/16(水) 21:02:24.40 ID:8UX5OsVV > 変質者前科持ちと気が触れ合える掲示板 > >11 名前:132人目の素数さん :2016/11/19(土) 08:36:12.59 ID:6KwDBI7h > 変質者前科持ち=増田哲也 > >12 名前:132人目の素数さん :2016/11/19(土) 09:04:39.15 ID:AZB04dZ8 > わざわざ言わんでもええ > >13 名前:出会える掲示板 ◆2VB8wsVUoo :2016/11/19(土) 15:58:01.20 ID:21LrO2+x > 絶対に… > > ケケケ¥ > >14 名前:132人目の素数さん :2016/11/19(土) 16:31:33.55 ID:6KwDBI7h > 六十目前で父親逆恨みしたり掲示板逆恨みする根性の腐れっぷりは凄くて困る >
354 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:25:16.61 ID:qbOZp+6P.net] ¥
355 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:25:33.52 ID:qbOZp+6P.net] ¥
356 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:25:48.77 ID:qbOZp+6P.net] ¥
357 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:26:04.47 ID:qbOZp+6P.net] ¥
358 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:26:19.70 ID:qbOZp+6P.net] ¥
359 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:26:35.75 ID:qbOZp+6P.net] ¥
360 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:26:53.45 ID:qbOZp+6P.net] ¥
361 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:27:08.90 ID:qbOZp+6P.net] ¥
362 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:27:27.42 ID:qbOZp+6P.net] ¥
363 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 07:27:44.89 ID:qbOZp+6P.net] ¥
364 名前:132人目の素数さん mailto:sage [2016/11/25(金) 12:39:28.89 ID:v5zDtVJy.net] 荒らしが必死
365 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 13:01:58.69 ID:qbOZp+6P.net] ¥
366 名前:132人目の素数さん mailto:sage [2016/11/25(金) 15:49:13.46 ID:iOZ4bOks.net] >>347 直角三角形ABCは、斜辺ABを直径とする円に内接する ABの中点Mは円の中心だから、 △MBCはMB=MCの二等辺三角形 ∠B=60°より∠MCB=∠BMC=60° 画像のアップロードはimgur推奨
367 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:07:28.16 ID:qbOZp+6P.net] ¥
368 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:07:44.21 ID:qbOZp+6P.net] ¥
369 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:08:01.27 ID:qbOZp+6P.net] ¥
370 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:08:18.05 ID:qbOZp+6P.net] ¥
371 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:08:36.02 ID:qbOZp+6P.net] ¥
372 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:08:52.64 ID:qbOZp+6P.net] ¥
373 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:09:10.40 ID:qbOZp+6P.net] ¥
374 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:09:27.68 ID:qbOZp+6P.net] ¥
375 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:09:46.48 ID:qbOZp+6P.net] ¥
376 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/11/25(金) 16:10:04.31 ID:qbOZp+6P.net] ¥
377 名前:132人目の素数さん mailto:sage [2016/11/26(土) 11:35:30.11 ID:dn1O6+jP.net] 荒らしが必死
378 名前:132人目の素数さん [2016/12/12(月) 22:59:09.08 ID:Yh/WAGm4.net] | x + y | ≦ √2 × √(x^2 + y^2) を証明せよ。 この問題の解答をお願いします。
379 名前:132人目の素数さん mailto:sage [2016/12/13(火) 00:06:56.52 ID:BFltloVb.net] 丸恥
380 名前:132人目の素数さん mailto:sage [2016/12/13(火) 08:38:20.89 ID:n/f6YANm.net] >>373 (右辺)^2 - (左辺)^2 = (a^2 + b^2)(x^2 + y^2) - (ax+by)^2 = (bx-ay)^2 ≧ 0, ラグランジュの恒等式 rio2016.2ch.net/test/read.cgi/math/1456656899/380-382 rio2016.2ch.net/test/read.cgi/math/1476935212/650-670 rio2016.2ch.net/test/read.cgi/math/1306508856/746-747
381 名前:132人目の素数さん mailto:sage [2016/12/13(火) 14:44:12.63 ID:BFltloVb.net] 答えも丸恥
382 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:13:27.13 ID:SmsN7Loc.net] ¥
383 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:13:57.10 ID:SmsN7Loc.net] ¥
384 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:14:26.01 ID:SmsN7Loc.net] ¥
385 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:14:47.17 ID:SmsN7Loc.net] ¥
386 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:15:02.72 ID:SmsN7Loc.net] ¥
387 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:15:19.65 ID:SmsN7Loc.net] ¥
388 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:15:42.41 ID:SmsN7Loc.net] ¥
389 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:15:57.50 ID:SmsN7Loc.net] ¥
390 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:16:13.80 ID:SmsN7Loc.net] ¥
391 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/14(水) 16:16:29.70 ID:SmsN7Loc.net] ¥
392 名前:132人目の素数さん mailto:sage [2016/12/15(木) 13:12:49.28 ID:dMXX+oEn.net] 悲惨な荒らしが必死
393 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/15(木) 14:11:14.04 ID:RKp+jZjD.net] ¥
394 名前:132人目の素数さん mailto:sage [2016/12/16(金) 12:56:53.18 ID:buQVI+hD.net] 荒らしが悲惨
395 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/16(金) 13:50:50.73 ID:XSHCKxgO.net] ¥
396 名前:132人目の素数さん mailto:sage [2016/12/17(土) 12:51:41.10 ID:DxJZ/5J9.net] 必死な荒らし
397 名前:132人目の素数さん mailto:sage [2016/12/20(火) 18:07:05.35 ID:UWZGIxmO.net] 問.コインを2回投げて,2回とも表が出る確率を求めよ. という問題で,以下の「間違い答案」が「間違い」で「正しい答案」が「正しい」 ことを,どんな中学生・高校生にも納得がいくように説明したいんですが,どうしたらいいですか? 知恵をお貸しください. 天才(?)ダランベール様もこの間違いをおかしたらしいですから,この間違いをする人を 単に「アホ!」で済ませるわけにはいかないと思うんです. 間違い答案: {表,表},{表,裏},{裏,裏}の3つが同様に確からしい(嘘)から答えは1/3(嘘) 正しい答案: (表,表),(表,裏),(裏,表),(裏,裏)の4つが同様に確からしいから答えは1/4
398 名前:132人目の素数さん [2016/12/20(火) 22:58:20.05 ID:ZPNBjK4n.net] 同様に確からしい、という概念をちゃんと教える
399 名前:132人目の素数さん mailto:sage [2016/12/20(火) 23:25:53.14 ID:MrnHPDKB.net] 何も書いてないコインを使うとする. このとき表と裏の区別はつかない. 表と裏は対称だ, もし裏のことを表と呼んだら表は裏になる. つまり表と裏を交換したものは呼び方を変えただけなので全く等価な はずだ. つまり コインを1回投げて表が出る確率を裏が出る確率は等しい. しかし2回投げて表裏が1回ずつ出るというのはどうか? これは表裏を交換しても自分に返るだけである. 1回目だけ を交換しようとしても1回目と2回目を区別
400 名前:オていないので うまくいかない. (というかよく考えれば両方表, または両方裏となる ことと等価である. ) つまりこれが両方表の確率や両方裏の確率と 等しいということは言えないのだ. 1回目と2回目を分けて考えたらどうだろうか? とりあえず2回目の結果が なんにせよ1回目が表であることと1回目が裏でことは等価である. だから1回目に表, 2回目に表が出ることと1回目に裏, 2回目に表が出る ことは等価である. 同様に1回目を置いといて2回目についてこれを 考えれば, 順も含めて{表,表},{表,裏},{裏,表},{裏,裏}となるのは すべて等価なのである. [] [ここ壊れてます]
401 名前:132人目の素数さん mailto:sage [2016/12/20(火) 23:29:17.59 ID:7eI1x8Ue.net] 10円玉と100円玉でやれ。
402 名前:132人目の素数さん mailto:sage [2016/12/20(火) 23:33:32.82 ID:MrnHPDKB.net] コインを1000回投げて全部表の確率と500個表で500個裏の確率が等しい というのはさすがに感覚的におかしいだろう? 実際投げてみれば1/4になる というのでも納得してくれるかもしれんが.
403 名前:132人目の素数さん [2016/12/21(水) 00:02:59.49 ID:wmh7iaFu.net] >>396 普通の中高生に教える方法として393と395比べて前者を取る理由は皆無な気がする
404 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:21:55.43 ID:0N19MYRA.net] ¥
405 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:22:14.43 ID:0N19MYRA.net] ¥
406 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:22:32.85 ID:0N19MYRA.net] ¥
407 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:22:50.70 ID:0N19MYRA.net] ¥
408 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:23:08.50 ID:0N19MYRA.net] ¥
409 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:23:25.82 ID:0N19MYRA.net] ¥
410 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:23:43.79 ID:0N19MYRA.net] ¥
411 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:24:02.91 ID:0N19MYRA.net] ¥
412 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:24:22.57 ID:0N19MYRA.net] ¥
413 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 00:24:42.01 ID:0N19MYRA.net] ¥
414 名前:132人目の素数さん mailto:sage [2016/12/21(水) 12:39:36.42 ID:A+rIhgHz.net] 悲惨な荒らしが必死
415 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/21(水) 13:01:19.70 ID:0N19MYRA.net] ¥
416 名前:132人目の素数さん mailto:sage [2016/12/22(木) 00:11:23.30 ID:2MTAEJIX.net] 長年の疑問があるんですが、このスレは機能してるのでしょうか
417 名前:132人目の素数さん mailto:sage [2016/12/22(木) 00:16:30.45 ID:WPtgjol9.net] >>397 : 普通の中高生に教える方法としては、>>395 を勧める。 1)10円玉と100円玉を投げる。 2)100円玉2枚を、片方にマジックでしるしを書いて投げる。 3)100円玉2枚を、特にしるしをつけずに投げる。 1)〜3)の状況にどういう違いがあるのか説明させる。 これでも解らないようなら、 2')100円玉2枚を、片方に発光塗料でしるしを書いて投げ、 ブラックライトをon/offしながら考えてもいい。
418 名前:132人目の素数さん mailto:sage [2016/12/22(木) 00:20:27.56 ID:kiHw4LUO.net] >>410 してますよ
419 名前:132人目の素数さん [2016/12/22(木) 00:20:36.16 ID:VhN29ADX.net] >>411 393と395比べて話しただけで、394がよさそうなのは同意やで
420 名前:132人目の素数さん mailto:sage [2016/12/22(木) 01:07:43.55 ID:2MTAEJIX.net] 円で、ピザの縁を底辺とし半径を高さとする三角形の面積の総和を円の面積とする説明が有ります。 球の体積でも、スイカの皮を底面として半径を高さとする錐体の総和とする説明があります。 しかし球の表面積については、剥いたミカンの皮を三角形と見なした面積の総和からはできません。 円のピザの縁や球のスイカの皮は直線と見なしてよい、しかし表面積のミカンの皮は三角形と見なせない、この明確な違いはどこか。 「なんでこれだけダメなの?」と聞かれたときの良い答えはどんなものだと思いますか、
421 名前:132人目の素数さん mailto:sage [2016/12/22(木) 01:22:09.07 ID:kiHw4LUO.net] >>414 ミカンでどのように計算しましたか? 詳しく書いてください
422 名前:132人目の素数さん mailto:sage [2016/12/22(木) 02:00:31.40 ID:2MTAEJIX.net] >>415 ありがとう。 地球儀の経線にそって切り開き、赤道が底辺となる状態です。 半球の表面積を直径の円周を底辺として、1/4円周の長さを高さとした三角形の集まりと見なしたわけですね。 これは中高生にしてみれば、それまでなんとなく丸め込まれてきた近似的な説明と区別がありません。 「球面の三角形は膨らんでるからでかいんだよ、グラビアのビキニだな。内角の和から180度を引いて…」と説明したならば、 では今までの数々の近似的だった
423 名前:關マ分ぽかったりする説明は何故ありなのかということに、 [] [ここ壊れてます]
424 名前:132人目の素数さん mailto:sage [2016/12/22(木) 10:41:26.68 ID:0d7mGmbQ.net] 凸凹については、ピザの分割数を増やすと 耳の部分が平らになっていくのが見てわかる。 それよりも、ピザ式説明のうまくないところは 平らになった耳部分の辺の長さが半円周と等しい ことの理由が説明されないこと。 面積より長さの扱いのほうが難しい。
425 名前:132人目の素数さん mailto:sage [2016/12/22(木) 12:09:31.01 ID:6oUjfyiu.net] >>416 その方法で計算できるものは、底面が半径rの円、母線の長さが(1/2)πrの円錐の曲面部分の表面積です。 両者が異なることは、赤道の長さの半分の長さの紐を用意し、輪にして、地球儀にかぶせてみてください。 半球は北緯60度=87%位の高さのところで引っかかりますが、上の円錐なら、半分の高さのところで引っかかります。 半球を経線に沿って細かく切り開いた時現れる二等辺三角形状の図形が 円錐を母線に沿って細かく切り開いて現れる二等辺三角形状の図形と異なる点は、 前者三角形は三辺とも外に膨らんでいますが、後者は、底辺部分だけが膨らんでいます。 底辺に当たる部分の長さ(幅)をDとすると、緯度θに当たる部分の幅は、 前者は Dcosθ で後者は、 D(1-r) となります(r=θ/(π/2))。
426 名前:132人目の素数さん mailto:sage [2016/12/22(木) 20:19:43.41 ID:2MTAEJIX.net] >>418 ありがとう。 これならば三角形と対応しないことが見えます。 以前どこかで「底辺の角が両方直角だから三角形にならない」という説明を見たことがありますが、アレはまずいですよね。
427 名前:132人目の素数さん mailto:sage [2016/12/22(木) 21:05:09.27 ID:2MTAEJIX.net] >>417 ありがとう。 たしかに、直線と“みなせる”のではなく“等しい”のだという説明が無いと誤解を生みますね。 その点でピザよりもバウムクーヘンのほうが説明に向いてるかな
428 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:30:57.26 ID:rdvMKUKs.net] ¥
429 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:31:14.01 ID:rdvMKUKs.net] ¥
430 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:31:31.59 ID:rdvMKUKs.net] ¥
431 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:31:49.64 ID:rdvMKUKs.net] ¥
432 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:32:09.23 ID:rdvMKUKs.net] ¥
433 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:32:29.65 ID:rdvMKUKs.net] ¥
434 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:32:47.45 ID:rdvMKUKs.net] ¥
435 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:33:07.02 ID:rdvMKUKs.net] ¥
436 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:33:25.44 ID:rdvMKUKs.net] ¥
437 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 22:33:47.70 ID:rdvMKUKs.net] ¥
438 名前:132人目の素数さん mailto:sage [2016/12/22(木) 23:29:40.89 ID:6oUjfyiu.net] >>419 細長い二等辺三角形状の図形の等辺に当たる部分が直線では無く、膨らんでいて 三角形では無いため、三角形の面積の公式が使えないのが本質的な理由です。 高さθでの幅は、一方は、Dcosθ で他方は、 D(1-(2θ/π)) です。 この形状の違いは、底辺部分をいくら細かくしても、解消されません。別の図形のままです。 別の図形なので、その図形に対応した面積の算出法を用いなければなりません。 球の半径をrとして、緯度では、θとθ+Δθに、そして、二つの等辺で挟まれた台形状の図形の面積は、 上底がDcos(θ+Δθ)≒Dcosθ、下底がDcosθ、高さがrΔθなので r*D*cosθ*Δθ これを、Δθを細かくして、θ=0からπ/2まで変化させながら加え合わせると、rD が得られます。 (円錐の場合、三角形なので、小学校で習う公式が使え、D×(πr/2)/2=πrD/4 が得られます。) このあと、Dの幅を小さくすれば、本当は円弧だった底辺を直線と思うことができ、赤道一週分積み合わせ、 さらに南半球分を考えて二倍すれば、4πr^2 が得られるという流れになります。 >> 以前どこかで「底辺の角が両方直角だから三角形にならない」という説明を見たことがありますが 「三角形にならない」という部分は正しい。 実際、面積を求めるための手段が、三角形のそれと異なるのは、上で示した通り。 ただ、「両方直角だから」として、三角形では無い理由とするのはどうだろうか? 二辺は膨らんでいるからとか、曲線だからとかの方が、無難だし、直接的だと思う。
439 名前:132人目の素数さん [2016/12/22(木) 23:31:58.73 ID:CAkhX8B2.net] 異なる6台のミニチュアカーを3人
440 名前:ノ配る。 1台も配られない人がいてもよいとき 配り方は何通りあるか。 3人とも少なくとも1台は配るとき、 配り方は何通りあるか。 [] [ここ壊れてます]
441 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/22(木) 23:59:41.49 ID:rdvMKUKs.net] ¥
442 名前:132人目の素数さん mailto:sage [2016/12/23(金) 03:17:09.02 ID:06iuOQ6r.net] >>420 そうなんだ。 ピザ式の状況と紛らわしい例として有名なものに、 三角形を中点連結で相似比1/2の三角形2個に変換する というものがある。 もとの三角形の二辺がなすへの字形が 2個の小三角形の二辺づつがなすMの字形に 変換されるが、この操作でへの字形とMの字形の 折れ線長は変わらない。 小三角形に対して再帰的にこの操作をくり返すと、 折れ線は最初の二辺の長さを保ったまま 点集合としては最初の三角形の第三辺に収束する。 すこし不思議な感じがする。 冷静に考えると、変換を繰り返す回数→∞の極限と 折れ線の長さを総和する級数の項数→∞の極限が lim交換できないというだけの話なのだが、この話と、 円の面積のピザ式説明で長方形の長辺が半円周になる 話とは、どこがどう違うのか。 小学生には、タネあかしどころか 問題点のありかを説明することさえ難しい。 困難の源は、線分の長さしか扱えない初等幾何で 円周長を扱おうとしたことにあるのだが、 そのバウムクーヘン式というのは、この困難を 回避できる説明なのだろうか?
443 名前:132人目の素数さん mailto:sage [2016/12/23(金) 10:12:39.04 ID:wTv/UKEJ.net] 質問ですが、固有値がすべて正の行列と、成分がすべて正である対角行列の和の行列は、固有値がすべて正になりますか?
444 名前:132人目の素数さん [2016/12/23(金) 10:27:00.10 ID:BAMdfooG.net] またお前か
445 名前:132人目の素数さん mailto:sage [2016/12/23(金) 10:28:05.28 ID:wTv/UKEJ.net] >>435 質問者ですが、反例がつくれそうですね。お騒がせしました。
446 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 10:29:26.34 ID:4DBBdpBR.net] ¥
447 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:26:00.13 ID:4DBBdpBR.net] ¥
448 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:26:18.63 ID:4DBBdpBR.net] ¥
449 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:26:37.27 ID:4DBBdpBR.net] ¥
450 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:26:56.44 ID:4DBBdpBR.net] ¥
451 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:27:14.27 ID:4DBBdpBR.net] ¥
452 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:27:35.42 ID:4DBBdpBR.net] ¥
453 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:27:52.40 ID:4DBBdpBR.net] ¥
454 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:28:09.07 ID:4DBBdpBR.net] ¥
455 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 11:28:26.04 ID:4DBBdpBR.net] ¥
456 名前:132人目の素数さん [2016/12/23(金) 12:07:55.99 ID:VdOGxmtm.net] x^2-14.7^2=-2*9.8*-19.6 簡単なやり方教えてください
457 名前:132人目の素数さん [2016/12/23(金) 12:13:04.56 ID:6oPLtrvz.net] 諦めるのが一番簡単
458 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 12:26:46.90 ID:4DBBdpBR.net] ¥
459 名前:132人目の素数さん mailto:sage [2016/12/23(金) 12:45:07.00 ID:0UzCqGnQ.net] 荒らしが悲惨
460 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 12:50:34.76 ID:4DBBdpBR.net] ¥
461 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:50:30.34 ID:4DBBdpBR.net] ¥
462 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:50:48.78 ID:4DBBdpBR.net] ¥
463 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:51:04.32 ID:4DBBdpBR.net] ¥
464 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:51:21.08 ID:4DBBdpBR.net] ¥
465 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:51:39.22 ID:4DBBdpBR.net] ¥
466 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:51:56.20 ID:4DBBdpBR.net] ¥
467 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:52:16.20 ID:4DBBdpBR.net] ¥
468 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:52:39.05 ID:4DBBdpBR.net] ¥
469 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/23(金) 14:52:57.52 ID:4DBBdpBR.net] ¥
470 名前:132人目の素数さん mailto:sage [2016/12/24(土) 10:59:10.81 ID:qQpw0VgY.net] なにがしたいのか荒らしがすごいね、 >>434 バウムクーヘン“式”ってほど考えてないけど、同心円のイメージの例としてバウムクーヘンを出しました。ただし穴はなく中心までみっちりのお得なもので、 バウムクーヘンの断面の円を扇形にカット。 この扇形の面積は、中心から1枚目、2枚目…r枚目と全て足したものと言える。 一枚一枚の長さは中心からの距離に正しく比例している。 このバウムクーヘンを、r枚目、(r-1)枚目…1枚目と平たく置いて重ねたとする。 底辺は弧を置いたものなので弧の長さのまま、 高さは、n枚目と(n+1)枚目は垂直という関係を保っているので半径のまま、 弧の長さと半径は比例なので斜辺は直線、 正しく弧を底辺に半径を高さとした三角形になる。 これは細い扇形から円そのものまで変わりがない。 12時0分の半径1本で切り開いて重ねて置いていけば、底辺が円周、高さが半径の三角形になる。 ピザよりは良いと思うけどいかがでしょ
471 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 11:01:55.75 ID:kEm4zZD9.net] ¥
472 名前:132人目の素数さん mailto:sage [2016/12/24(土) 11:16:33.42 ID:Dz6Xsf+Q.net] 1^n+2^n+...+n^nがnは偶数のときnで割りきれないことを示せ
473 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 11:18:53.04 ID:kEm4zZD9.net] ¥
474 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:43:54.78 ID:kEm4zZD9.net] ¥
475 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:44:12.14 ID:kEm4zZD9.net] ¥
476 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:44:29.16 ID:kEm4zZD9.net] ¥
477 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:44:46.20 ID:kEm4zZD9.net] ¥
478 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:45:05.10 ID:kEm4zZD9.net] ¥
479 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:45:24.79 ID:kEm4zZD9.net] ¥
480 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:45:42.37 ID:kEm4zZD9.net] ¥
481 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:46:00.12 ID:kEm4zZD9.net] ¥
482 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 16:46:18.70 ID:kEm4zZD9.net] ¥
483 名前:132人目の素数さん mailto:sage [2016/12/24(土) 21:06:43.27 ID:lfAsO9WY.net] 悲惨な荒らしが必死
484 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/24(土) 21:15:24.07 ID:kEm4zZD9.net] ¥
485 名前:132人目の素数さん mailto:sage [2016/12/25(日) 13:16:42.34 ID:BZO1HpZq.net] 荒らしが必死で悲惨
486 名前:132人目の素数さん [2016/12/25(日) 22:17:09.19 ID:/mh4LLNN.net] 立方体ABCD−EFGHの 辺EF上のEから4cmの点にPを取り、 EH上のEから4cmの点にQを取る。 またAB、ADの中点をそれぞれR,Sとする。 P,Q,R,Sを通る平面で立方体を切った時の点Aを含む部分の体積ですが、 これって体積比を使わずに解けますかね?
487 名前:132人目の素数さん [2016/12/25(日) 22:17:36.28 ID:/mh4LLNN.net] もし解けるなら解き方を教えて下さい。
488 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:37:07.50 ID:O010A8Dr.net] ¥
489 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:37:23.04 ID:O010A8Dr.net] ¥
490 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:37:40.10 ID:O010A8Dr.net] ¥
491 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:37:55.75 ID:O010A8Dr.net] ¥
492 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:38:11.13 ID:O010A8Dr.net] ¥
493 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:38:27.33 ID:O010A8Dr.net] ¥
494 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:38:42.76 ID:O010A8Dr.net] ¥
495 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:38:58.42 ID:O010A8Dr.net] ¥
496 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:39:16.05 ID:O010A8Dr.net] ¥
497 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/25(日) 22:39:32.05 ID:O010A8Dr.net] ¥
498 名前:132人目の素数さん mailto:sage [2016/12/26(月) 01:16:17.34 ID:15+5HjUV.net] >>478 立方体の一辺の長さをL、面PQRSが辺AEを切る点をmとする。 求める体積は? Amの長さはLと4で表すと?
499 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 02:08:06.53 ID:P7KkK7Ue.net] ¥
500 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:29:21.53 ID:P7KkK7Ue.net] ¥
501 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:29:39.12 ID:P7KkK7Ue.net] ¥
502 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:29:55.99 ID:P7KkK7Ue.net] ¥
503 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:30:15.51 ID:P7KkK7Ue.net] ¥
504 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:30:33.42 ID:P7KkK7Ue.net] ¥
505 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:30:45.71 ID:P7KkK7Ue.net] ¥
506 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:31:03.40 ID:P7KkK7Ue.net] ¥
507 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:31:18.90 ID:P7KkK7Ue.net] ¥
508 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 03:31:37.34 ID:P7KkK7Ue.net] ¥
509 名前:132人目の素数さん mailto:sage [2016/12/26(月) 13:07:16.83 ID:A4YqIMg7.net] 悲惨な荒らし
510 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 13:48:48.53 ID:P7KkK7Ue.net] ¥
511 名前:132人目の素数さん mailto:sage [2016/12/26(月) 19:50:25.47 ID:vlw06GsS.net] p≧1 a,b≧0のとき (a+b)^p≦(2^p)(a^p+b^p) の示し方をどなたか指針だけでも教えてください
512 名前:132人目の素数さん mailto:sage [2016/12/26(月) 20:03:45.46 ID:zugjJV27.net] >>503 p>1 のときは関数 x^p の凸性から
513 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 20:35:45.34 ID:P7KkK7Ue.net] ¥
514 名前:ジー・オーグループ [2016/12/26(月) 21:22:49.69 ID:QZIjwzNf.net] p>0, a1,...,an>0のとき (a1 + ... + an)^p と 2^(p-1) (a1^p + .. + an^p) の大小を比べよ お願いします
515 名前:132人目の素数さん mailto:sage [2016/12/26(月) 21:30:43.52 ID:y/pA+S68.net] (a1 + ... + an)^p>2^(p-1) (a1^p + .. + an^p)のとき (a1 + ... + an)^p>2^(p-1) (a1^p + .. + an^p) (a1 + ... + an)^p=2^(p-1) (a1^p + .. + an^p)のとき (a1 + ... + an)^p=2^(p-1) (a1^p + .. + an^p) (a1 + ... + an)^p<2^(p-1) (a1^p + .. + an^p)のとき (a1 + ... + an)^p<2^(p-1) (a1^p + .. + an^p)
516 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 21:38:54.63 ID:P7KkK7Ue.net] ¥
517 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:16:14.96 ID:P7KkK7Ue.net] ¥
518 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:16:32.76 ID:P7KkK7Ue.net] ¥
519 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:16:48.51 ID:P7KkK7Ue.net] ¥
520 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:17:06.89 ID:P7KkK7Ue.net] ¥
521 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:17:24.31 ID:P7KkK7Ue.net] ¥
522 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:17:41.60 ID:P7KkK7Ue.net] ¥
523 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:18:01.66 ID:P7KkK7Ue.net] ¥
524 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:18:17.76 ID:P7KkK7Ue.net] ¥
525 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 22:18:34.40 ID:P7KkK7Ue.net] ¥
526 名前:132人目の素数さん mailto:sage [2016/12/26(月) 23:48:59.14 ID:vlw06GsS.net] >>504 ありがとうございます!
527 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/26(月) 23:54:16.69 ID:P7KkK7Ue.net] ¥
528 名前:132人目の素数さん mailto:sage [2016/12/27(火) 13:27:18.38 ID:WCfrYtTC.net] 悲惨な荒らし
529 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/12/27(火) 15:59:49.17 ID:iZPD86tj.net] ¥
530 名前:ジー・オーグループ mailto:sage [2016/12/27(火) 20:44:09.51 ID:WOKpz7Gd.net] 幻の健康茶の値段をxとする xを求めよ お願いします
531 名前:132人目の素数さん mailto:sage [2016/12/27(火) 21:09:46.06 ID:ww42pVF2.net] 頭が悪すぎて生きている意味が分からなくなりました 頭の悪い人は生きている必要はないですよね?
532 名前:132人目の素数さん mailto:sage [2016/12/27(火) 21:31:15.62 ID:hK6rTU6g.net] >>523 ない
533 名前:132人目の素数さん mailto:sage [2016/12/28(水) 00:30:21.40 ID:PixzW5
] [ここ壊れてます]
534 名前:vB.net mailto: >>523 どのくらい頭悪いの? ここで示してみなさい [] [ここ壊れてます]
535 名前:132人目の素数さん mailto:sage [2016/12/28(水) 00:30:54.05 ID:vJLSfdNK.net] 何か問題ください 多分解けないです
536 名前:132人目の素数さん mailto:sage [2016/12/28(水) 01:23:06.30 ID:IpWanj5D.net] >>526 なぜ数学にこだわる? 好きなことをすりゃあいいだろ?
537 名前:132人目の素数さん mailto:sage [2016/12/28(水) 05:13:19.21 ID:UAG+gwzR.net] >>527 数学板で?
538 名前:132人目の素数さん mailto:sage [2016/12/28(水) 13:01:24.09 ID:Ta3j8BZO.net] 人殺しの理由付けしたい奴に協力するな
539 名前:132人目の素数さん mailto:sage [2016/12/29(木) 00:26:08.86 ID:N8BbdmKt.net] >>503 PPAP
540 名前:132人目の素数さん mailto:sage [2016/12/29(木) 00:34:20.87 ID:g/epfTbT.net] >>478 >>490 Em = 8L/|8-L|, (L≠8) Am = Em * (L/8), 僞PQ = 8, V(m-EPQ) = (64/3) L/|8-L|, V(m-ARS) = (L/8)^3 V(m-EPQ), V(ARS-EPQ) = |V(m-ARS) - V(m-EPQ)| = |(L/8)^3 - 1| V(m-EPQ) = (1/24)L(LL+8L+64),
541 名前:132人目の素数さん mailto:sage [2016/12/29(木) 01:20:32.50 ID:g/epfTbT.net] >>464 n=(2^e)m (mは奇数、e≧1) とする。 2^e ≧ e+1 だから n ≧ e+1, 2^(e+1) | 2^n | (2k)^n …(1) (2k+1)^n -1 = Σ[j=1〜n] C[n,j]・(2k)^j C[n,j] = (n/j) ((n-1)/1)((n-2)/2)…((n-k+1)/(k-1)) ここで素因数2に注目すると、 n-i と i:同数 n: e回(定義) j: 高々j-1回 ∴ 2^(e+1-j) | C[n,j] ∴ 2^(e+1) | C[n,j]・(2^j) ∴ 2^(e+1) | (2k+1)^n -1 …(2) (1)(2)より、 2^(e+1) | (左辺) - (n/2), 定義より、n/2 は 2^e で割り切れない。 ∴(左辺)も 2^e で割り切れず、nで割り切れない。
542 名前:132人目の素数さん mailto:sage [2016/12/29(木) 01:47:13.52 ID:g/epfTbT.net] 1^n + 2^n + … + n^n はnが奇数のとき n^2 で割り切れることを示せ
543 名前:132人目の素数さん mailto:sage [2016/12/29(木) 03:31:34.05 ID:g/epfTbT.net] >>503 a+b ≦ max{2a, 2b} より、 (左辺)= (a+b)・(a+b)^(p-1) ≦ (a+b){(2a)^(p-1) + (2b)^(p-1)} ≦ 2a・(2a)^(p-1) + 2b・(2b)^(p-1) =(右辺)
544 名前:477 [2016/12/29(木) 04:16:48.85 ID:Bn4p8hUS.net] >>490 1辺の長さ忘れてました。1cmとします。実は小学校の問題なんですけど、 直線AEとQS、PRの交点をMとして、 EM:AMの体積比を使うんでしょうか・・・? 結局体積比を使うような・・?
545 名前:132人目の素数さん [2016/12/29(木) 14:07:10.36 ID:MvQSpsjo.net] ⇒ この記号の使い方なんですけど たとえばf(x)=(2^x)^2+5とかあって t=2^xと置いた時 f(x)⇒t^2+5と安易に表記していいのですか? ⇒この矢印の意味が十分条件とか必要条件とかで使われてたので かりにf(x)⇒ なんて書いたら命題を確認しないと本当はダメだったりします?
546 名前:132人目の素数さん [2016/12/29(木) 14:11:09.03 ID:MvQSpsjo.net] というかもしかして f(x)⇔t^2+5と書かないといけなかったり? 必要十分条件満たしてそうだし
547 名前:132人目の素数さん [2016/12/29(木) 14:21:33.40 ID:fZXaw1/n.net] => <= <=> を多用しない方がいいよ 採点者を刺激しないために 一言で言えば「馬鹿は一切使うな」で正解
548 名前:132人目の素数さん [2016/12/29(木) 14:31:58.57 ID:MvQSpsjo.net] なるほど、おとなしく日本語で書くわ でも たとえばf(x)=なになにとする って書くのめんどいから f(x):=なになにって書くのは採点者刺激しないよね?
549 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:32:09.07 ID:VfQ4/RDv.net] >>536-537 >f(x)⇒t^2+5と安易に表記していいのですか? >f(x)⇔t^2+5と書かないといけなかったり? 意味不明 f(x)=t^2+5と書きたくない理由は何?
550 名前:132人目の素数さん [2016/12/29(木) 14:32:18.45 ID:MvQSpsjo.net] := これが定義だったような
551 名前:132人目の素数さん [2016/12/29(木) 14:32:42.39 ID:MvQSpsjo.net] >>540 うちの教師
552 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:35:55.09 ID:yyX6uUzX.net] >>542 教師がそんなわけわからんこと言うと思えないしなんか勘違いしてない?
553 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:36:37.06 ID:yyX6uUzX.net] >>537 必要十分条件とは何かわかってる?
554 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:39:10.51 ID:VfQ4/RDv.net] >>541-542 省略しすぎて何がいいたいのかよくわからんけど ちなみに f(x):=t^2+5 と書くのは間違いだよ
555 名前:132人目の素数さん [2016/12/29(木) 14:39:48.68 ID:MvQSpsjo.net] >>543 増減表書くときにf'(x)=0⇔x=●、▲ と書いてたから同じかなと、すみません 必要十分条件 これ命題か、すみません
556 名前:132人目の素数さん [2016/12/29(木) 14:40:34.45 ID:MvQSpsjo.net] >>545 え、そうなんですか? ウィキペディアにかいてあったんで
557 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:43:21.57 ID:VfQ4/RDv.net] >>547 それはキミが誤読してる >t=2^xと置いた時 なんだからこれが定義 >f(x):=t^2+5 だと定義がダブってしまって論理としておかしい
558 名前:132人目の素数さん mailto:sage [2016/12/29(木) 14:45:28.44 ID:LLxt0Ka3.net] >>535 そこが抜けてちゃだめw L=1固定なら小学校でいける。 AM:EM=1/2:4=1:8 AM=1/9 「体積比〜」っていう疑問の意図がよくわからないけど、AMを求めるのは平行とか三角形の合同とか平面で済む話だよね?
559 名前:132人目の素数さん [2016/12/29(木) 14:46:26.30 ID:MvQSpsjo.net] >>548 ご丁寧にありがとうございます
560 名前:132人目の素数さん mailto:sage [2016/12/29(木) 17:45:19.61 ID:3c/QWRN9.net] ⇒も⇔も命題の関係を記すときにしか使わない f(x)⇒〇〇というのは意味がわからない f(x)はxに対応した述語という定義ならまだわかるがそういうことはめったにない
561 名前:132人目の素数さん mailto:sage [2016/12/29(木) 17:46:01.28 ID:mzhT5Dof.net] >>478 >>535 >1辺の長さが1cmの立方体ABCD−EFGHの >辺EF上のEから4cmの点にPを取り、 >EH上のEから4cmの点にQを取る。 >またAB、ADの中点をそれぞれR,Sとする。 >P,Q,R,Sを通る平面で立方体を切った時の点Aを含む部分の体積を求めよ。 図なしで問題文だけ書くと、AB、ADのそれぞれの中点R,Sの位置は必ず決まる。 だが、Pは辺EF上のEから4cmの点、QはEH上のEから4cmの点と仮定されているから、 点Eを基準とした2点P、Qの取り方次第でP、Qの位置は変わり、点Aを含む部分の体積Sも変わる。 単純に考えても、P,Q,R,Sを通る平面Πが辺AEと交差するときと、 Πが2辺BF、CGと交差するときとの2通りの考え方は出来る。 どっちで考えても、体積Sを求めることは出来て、どっちかで考えるかでSは異なる。 「P,Q,R,Sを通る平面Π」の「P,Q,R,S」を必ずしもその順序に 従って(反)時計回りに一周するとは限らなくなるような感じで解釈したときの4点P,Q,R,Sの 位置関係を考えると、P,Q,R,Sはねじれの位置にあり、平面Πは存在しなくなる。 もし図が一緒に描かれていないなら、「P,Q,R,Sを通る平面Πが辺AEと交差するときと、 Πが2辺BF、CGと交差するときとの2通りの考え方が出来る。答えが唯1つには決まらない。 2つの値がある。問題文に不備があり曖昧になっている」と書いておけばいい。
562 名前:132人目の素数さん mailto:sage [2016/12/29(木) 18:22:49.53 ID:mzhT5Dof.net] >>478 >>535 >>552 の「P,Q,R,Sはねじれの位置にあり、」のところは 「P,Q,R,Sは同一平面上になく、」というべきだな。
563 名前:132人目の素数さん mailto:sage [2016/12/30(金) 03:16:02.46 ID:uVzPs5A/.net] >>532 〔補題〕 2^e | n (e≧1)のとき、 2^(e+2) | {(奇数)^n -1} 2^(e+2) | (偶数)^n (n>2)
564 名前:132人目の素数さん mailto:sage [2016/12/30(金) 03:20:47.35 ID:uVzPs5A/.net] >>554 (上) n=(2^e)m(mは奇数)、Kは奇数とする。 K^n - 1 = {K^(n/2) -1}{K^(n/2) +1} = {K^(n/4) -1}{K^(n/4) +1}{K^(n/2) +1} = ・・・ = (K^m -1)(K^m +1){K^(2m) +1} ・・・・・ {K^(n/4) +1}{K^(n/2) +1} 右辺の e+1 個の因子はすべて偶数で、初めの2つの一方は4の倍数。 (下) 2^e≧e+1、m≧1, 但し、等号は同時には成立しない。(n>2) ∴ n = (2^e)m > e+1, ∴ n≧e+2.
565 名前:132人目の素数さん mailto:sage [2016/12/30(金) 18:27:01.76 ID:S/ebX7Bm.net] >>555 (2k+1)^n -1 = Σ[j=1〜n] C[n,j]・(2k)^j なぜ?
566 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:17:30.70 ID:z6Xd7xLu.net] 直線(3+2k)x+(4−k)y+5−3k=0がある。この直線はkの値によらず定点(□,□)を通る。また、点A(1,−1)とこの直線との距離が最大となるのはk=□のときで、そのときの距離は□である。 解説に、定点をBとおくと、Aと直線の距離≦ABが成立する。ってあるけどわかりません 誰か助けて
567 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:20:12.92 ID:U+UTyWD8.net] >>557 問題自体がわからないのですか? それとも、解説のその一文が何故なのかが理解できないのですか?
568 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:26:09.40 ID:z6Xd7xLu.net] >>558 解説その一文です
569 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:34:58.81 ID:z6Xd7xLu.net] 例えばこの赤線みたいしたらABより大きくなると思って頭が混乱してますi.imgur.com/ldZLnGg.jpg
570 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:37:28.68 ID:U+UTyWD8.net] >>559 絵を書けばわかることですね 与えられた直線Lは定点Bを通るということだけが決まっていて、傾きはkの値によって変化するため、どんな傾きの直線でもいいわけです Bを通る直線Lを考えて、Bを中心にぐるぐる直線Lを回すようなイメージです このような状態で、一点Aを考えて、Aと直線Lとの距離を考えます ABと直線Lが垂直になるような状態を考えましょう このとき、Aと直線Lとの距離はABとなっています 次に、Lを少し傾けてみてください そうすると、Aと直線Lとの距離が少し縮まったことがわかるかと思います 直線と点の距離とは、点から直線に対して垂線を下ろせば求められるのでした と、こんな感じで考えると、わかるかと思います なんにしても、絵を描くことが大事ですね 慣れないうちは横着せずに手を動かしましょう
571 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:38:09.23 ID:U+UTyWD8.net] >>560 定点はBですよ それAに引いてますよね
572 名前:132人目の素数さん mailto:sage [2016/12/30(金) 23:49:43.36 ID:z6Xd7xLu.net] >>561 点と直線の距離は垂線からしか求めれられないので定点Bとの距離のとき最大となるという解釈でいいでしょうか?
573 名前:132人目の素数さん mailto:sage [2016/12/31(土) 00:01:13.75 ID:m6j8E7Gl.net] >>563 絵を書けばわかるだろ、ってことですね 解説もそういう意味だと思いますよ まあ、でもそういうことになるんでしょうかね ABとLが垂直にならないとき、AからLに降ろした垂線の足HはBとは異なるわけで、線分HAはAと直線Lを結ぶ線分のうち最短のものですから、HA<ABが成り立っている、と
574 名前:132人目の素数さん mailto:sage [2016/12/31(土) 00:10:07.31 ID:iumxOpFE.net] >>564 なるほど、スッキリしました ありがとうございます!
575 名前:554 mailto:sage [2016/12/31(土) 03:52:11.40 ID:5BX5Oht0.net] >>556 >>532 の2項公式ですね。 結論はいいのですが、途中に不正確な個所(n-iとiで同数とか)があるので >>555 に改めました。
576 名前:132人目の素数さん mailto:sage [2016/12/31(土) 08:57:33.39 ID:npMVhqz9.net] >>566 なるほど理解しました しかしなかなか複雑な問題ですね
577 名前:132人目の素数さん mailto:sage [2016/12/31(土) 23:22:06.63 ID:5BX5Oht0.net] >533 nは奇数とする。 kとn-kをペアにすると、2項公式から (n-k)^n + k^n = Σ[j=0,n-1] C[n,j]・n^(n-j)・(-k)^j となる。 ここで C[n,n-1]=n、C[n,n-2]=n・(n-1)/2 だから (n-k)^n + k^n = n^3・{Σ[j=0,n-2] C[n,j]・n^(n-3-j)・(-k)^j} + n^2・k^(n-1) = n^2・L_k, k=1,2,・・・,(n-1)/2 についてたす。 また、n^n も n^2 で割り切れる。(クロニャンコ氏による)
578 名前:132人目の素数さん mailto:sage [2017/01/01(日) 01:45:33.42 ID:eZiIGZe1.net] 放物線y=x^2と円x^2+(y−a)^2=16との共有点の個数を求めなさい。 解説読んでもイマイチ理解できません 誰か助けて
579 名前:132人目の素数さん mailto:sage [2017/01/01(日) 02:07:28.01 ID:26HqwLTQ.net] >>569 解説のどこがわからないのかを書け
580 名前:132人目の素数さん mailto:sage [2017/01/01(日) 02:21:05.26 ID:eZiIGZe1.net] >>570 i.imgur.com/tBqeH1s.jpg i.imgur.com/A0eNNDP.jpg 2枚目からが理解できません
581 名前:132人目の素数さん mailto:sage [2017/01/01(日) 02:23:14.26 ID:eZiIGZe1.net] あ、11の(2)です
582 名前:132人目の素数さん mailto:sage [2017/01/01(日) 02:51:48.55 ID:26HqwLTQ.net] >>571 1枚目がわかってたら2枚めの最初(a=4のとき)はわかるだろ もっと具体的にどこがわからないのか書けよ
583 名前:132人目の素数さん mailto:sage [2017/01/01(日) 03:02:19.68 ID:eZiIGZe1.net] >>573 大方理解しました あと重解=2a−1/2>0 ってところでなんで2解の和を2で割るのかがわかりません
584 名前:132人目の素数さん mailto:sage [2017/01/01(日) 03:15:03.60 ID:IJt4G2B/.net] >>574 解の公式で√が0 1対1ならそういうこともどこかに書いてあるんじゃねーの?
585 名前:132人目の素数さん mailto:sage [2017/01/01(日) 03:20:15.06 ID:26HqwLTQ.net] こういう解説あるのにわからないとかほざく奴はちゃんと読んでないか勘違いしてることがほとんど
586 名前:132人目の素数さん mailto:sage [2017/01/01(日) 03:26:19.77 ID:9CA4Cfcr.net] 今回は勘違いではないようだが、勘違いは許してやれよ……
587 名前:132人目の素数さん mailto:sage [2017/01/01(日) 03:43:50.75 ID:eZiIGZe1.net] 解の公式か 基礎が全然できてませんでした 精進します
588 名前:132人目の素数さん mailto:sage [2017/01/01(日) 08:59:15.08 ID:QIMtnvuu.net] 実際、数学板使って学力が上がった奴おんの?
589 名前:132人目の素数さん mailto:sage [2017/01/01(日) 12:36:56.83 ID:I+6ldsFI.net] ありえん
590 名前:132人目の素数さん mailto:sage [2017/01/01(日) 13:32:54.40 ID:26HqwLTQ.net] >>577 >>574 の2解の和を2で割るってなんだよ
591 名前:132人目の素数さん mailto:sage [2017/01/01(日) 13:33:33.59 ID:26HqwLTQ.net] >>579 いるわけないだろ 高校数学なんぞ自分が考えることで理解できる分野なんだから
592 名前:132人目の素数さん mailto:sage [2017/01/02(月) 22:38:41.19 ID:7w+Zt7En.net] Let $x = 4\cos \theta$ and $y = a + 4\sin \theta$. Then, the last equation of parabolic curve gives $a = 16\cos^2 \theta - 4\sin \theta = -16\sin^2 \theta -4\sin \theta + 16$. We have only to consider the solution of $a = -16s^2 - 4s + 16$ with $-1 \leq s \leq 1$.
593 名前:132人目の素数さん mailto:sage [2017/01/06(金) 18:12:17.00 ID:XPhYoKHI.net] >>249 に基づけば 前スレ 高校数学の質問スレPart409 [無断転載禁止]©2ch.net rio2016.2ch.net/test/read.cgi/math/1476944083/
594 名前:132人目の素数さん [2017/01/08(日) 00:30:14.16 ID:bG2nsZ6C.net] P地点とQ地点は12km離れています。 二人は自転車に乗りAはPからQまで、 BはQからPまで、午前8時に同時に出発しました。 Aは午前8;48にQに到着し、 Bは午前9時にPに到着しました。 AとBが出会うのは何時何分何秒かという問題の答えは、 午前8時26分40秒にはなりませんよね?
595 名前:132人目の素数さん mailto:sage [2017/01/08(日) 00:33:48.90 ID:wq4Bj88l.net] なりそうな気がするんだが、スレ違い
596 名前:132人目の素数さん [2017/01/08(日) 00:43:15.81 ID:bG2nsZ6C.net] なるんですかね
597 名前:132人目の素数さん mailto:sage [2017/01/08(日) 00:45:05.61 ID:wq4Bj88l.net] スレ違い
598 名前:132人目の素数さん mailto:sage [2017/01/08(日) 00:49:12.50 ID:bG2nsZ6C.net] 数1の方程式の問題なのですが、スレ違いですかね?
599 名前:132人目の素数さん mailto:sage [2017/01/08(日) 13:10:17.42 ID:nToamyTH.net] なわけあるか
600 名前:132人目の素数さん [2017/01/08(日) 13:26:19.22 ID:JkfdGeHC.net] 底辺向けきょーかしょ()ならそんなもんでね
601 名前:132人目の素数さん [2017/01/08(日) 14:12:51.28 ID:rvO+vuWG.net] >>585 なるよ
602 名前:132人目の素数さん mailto:sage [2017/01/08(日) 14:24:33.36 ID:k802AKwK.net] 1/(1/48+1/60)=26+2/3
603 名前:132人目の素数さん mailto:sage [2017/01/11(水) 05:29:58.60 ID:o5/kKbcv.net] >>585 ・速さが一定でない。(信
604 名前:号待ちなど) ・ルートが同じでない。(実はBも8:48にPの近くまで来たが、予定より早かったので、12分間辺りを走った後にPに着いた) が考えられる。 [] [ここ壊れてます]
605 名前:132人目の素数さん [2017/01/11(水) 09:29:40.39 ID:pH/xM5yj.net] Bは優弧を選んだということも考えられる。 補助ロケット装着フロート付き水陸両用自転車。
606 名前:132人目の素数さん mailto:sage [2017/01/11(水) 23:52:19.53 ID:q8BVSjyg.net] Bはコリン星から来てたのか。
607 名前:132人目の素数さん [2017/01/27(金) 21:17:07.85 ID:/KFcDenJ.net] fast-uploader.com/file/7041074249783/ fast-uploader.com/file/7041074726898/ fast-uploader.com/file/7041074783326/ fast-uploader.com/file/7041074824228/ fast-uploader.com/file/7041074862796/ fast-uploader.com/file/7041074945740/ この問題の解答でaと2/aを何度も比較するのですが、何故比較するのかがわかりません。また、比較した結果解が絞られるとき、x=0はともかくとして、x=2/aがどのようにして絞られているのかがわかりません。 どなたか解説して頂けないでしょうか。
608 名前:132人目の素数さん [2017/01/27(金) 23:13:23.39 ID:R35F3tfR.net] xy+2x+y=3を満たすx、yの組のうちxyの値が最大になるのは x= y= これ教えて下さい
609 名前:132人目の素数さん [2017/01/27(金) 23:17:17.49 ID:R35F3tfR.net] x>0 y>0 z>0 であるとき (2/x+1/y+1/z)(x+2y+4z)の最小値は?
610 名前:132人目の素数さん [2017/01/27(金) 23:19:59.21 ID:R35F3tfR.net] ax-2≦x/2+2≦3の解が-2≦x≦2であるときのaの値 これも教えて下さい。
611 名前:132人目の素数さん [2017/01/27(金) 23:24:10.46 ID:R35F3tfR.net] 整数x、yは方程式2x+3y-11=0と不等式x2+y2≦29を満たしているとする。このとき解(x,y)は何個存在するか?また、xの最小値、最大値は?合計4問です。至急お願いします。
612 名前:132人目の素数さん [2017/01/27(金) 23:30:34.01 ID:I91TUqtO.net] スレ紛らわしいな
613 名前:132人目の素数さん mailto:sage [2017/01/28(土) 10:16:08.60 ID:E3zNZ08K.net] >>598 (x+1)(y+2)=4, (x,y)=(-5,-3) (-3,-4) (-2,-6) (0,2) (1,0) (3,-1) xy=15 (x,y)=(-5,-3) >>599 コーシーより (√2+√2+2)^2=4(3+2√2) x:y:z=2:1:1/√2 のとき。 >>600 a=-1/2. >>601 (x,y)=(-2,5) (1,3) (4,1) ∴3個
614 名前:132人目の素数さん mailto:sage [2017/01/28(土) 11:57:28.08 ID:ds1znOov.net] >>603 >>598 のx,yは整数とは言ってないぞ
615 名前:132人目の素数さん [2017/01/28(土) 18:45:39.83 ID:bM9FsTy6.net] 今年の私立工学部の入試にデータの分析でるかなあ
616 名前:132人目の素数さん mailto:sage [2017/01/28(土) 20:01:22.91 ID:xf5bAoLx.net] >> 597 >>604 2x+y を最小にすればいい。 2x+y=u [1] と置くと、xy+2x+y=3 は -2x^2+ux+(u-3)=0 [2] と同値。 対応する x が在るような u の範囲は、 二次方程式の判別式から u^2+8u-24≧0. これを解いて、 u≦-4-2√10 または u≧-4+2√10. あれ? u には最小値が無い。 x または y が負で絶対値の大きい値 をとるとき、xy はいくらでも大きくなる。 >>603 は、だから整数問題と考えたのかな? もし、x,y≧0 とか条件が付いたら、 u=-4+2√10 から [2] を解いて x=-1+(1/2)√10, [1] を解いて y=-3+(3/2)√10 のとき u は最小値であり、xy は最大値 7-2√10 をとる。
617 名前:132人目の素数さん mailto:sage [2017/01/28(土) 20:07:12.37 ID:xf5bAoLx.net] >>600 ax-2≦x/2+2≦3 [1] ⇔ (a-1/2)x≦4 かつ x≦2 なので、 a>1/2 のとき [1] ⇔ x≦4/(a-1/2) かつ x≦2, a=1/2 のとき [1] ⇔ x≦2, a<1/2 のとき [1] ⇔ 4/(a-1/2)≦x≦2. -2≦x≦2 と一致するのは 4/(a-1/2)=-2 のときで、 a=-3/2
618 名前:132人目の素数さん mailto:sage [2017/01/28(土) 20:13:37.77 ID:xf5bAoLx.net] >>601 2x+3y-11=0 [1], x^2+y^2≦29 [2] の解の個数。 [1] ⇔ 2(x-1)+3(y-3)=0 を解く。 x-1:y-3=2:-3 より、x=-3k+1, y=2k+3, k∈整数. これを [2] へ代入して、13k^2+6k-19≦0 すなわち -19/13≦k≦1. (k,x,y) = (-1,4,1), (0,1,3), (1,-2,5) だから 解は 3 個で、最小の x は -2、最大の x は 4。
619 名前:132人目の素数さん mailto:sage [2017/01/28(土) 21:02:37.91 ID:IV9BrYcN.net] >>606 x=0, y=3
620 名前:132人目の素数さん mailto:sage [2017/01/28(土) 22:17:02.67 ID:lL0IjclH.net] i.imgur.com/WjFvYOC.jpg (2)まではできたのですがそこからどう(3)にいくのでしょうか 多項式P(x)の一次係数の-1倍なのは分かりますが あと(1)の1つめの等式の右辺の一番最初に掛けられているnはなんの意味があるのでしょうかnP(x)を改めてP(x)とすればよいのでは?Pはnに対して変化してもよいのですから
621 名前:132人目の素数さん mailto:sage [2017/01/28(土) 23:25:23.43 ID:IV9BrYcN.net] >>610 kubojie.net/PDF/titech1990B-2Ans.pdf
622 名前:132人目の素数さん mailto:sage [2017/01/29(日) 00:16:54.95 ID:FA4WuNML.net] >>609 xy+2x+y=3 と軸の交点 (0,3), (3/2,0) を通る直線が 2x+y=u と平行であることを見れば、 u の最小値に対応する接点が第一象限にあることは すぐ判るだろう? >>606 は、yの値が違ってた。y=6-3√10. 他はあってる。
623 名前:132人目の素数さん mailto:sage [2017/01/29(日) 06:55:11.76 ID:6WdOd4sc.net] 白チャの応用例題でつまづくのですがぼくはどうしたらいいのでしょうか
624 名前:132人目の素数さん mailto:sage [2017/01/29(日) 08:51:38.57 ID:uiSp/z4L.net] 高校数学?なのかわからないのだけど質問お願いします https://ja.wikipedia.org/wiki/%E8%A6%81%E7%B4%A0%E5%86%85%E8%A3%9C%E9%96%93 この四面体の部分の局所座標系についてなのですが、この局所座標系はp_0を原点とした局所座標系、と呼ぶのでしょうか? 正式な呼び方がわからなくて困っています
625 名前:132人目の素数さん mailto:sage [2017/01/29(日) 11:41:16.69 ID:tOfGCsOY.net] 「書く人が勝手に定義して良い」程度の物
626 名前:132人目の素数さん mailto:sage [2017/01/29(日) 21:52:42.62 ID:tkNCMz5b.net] 下の問題で、解答にはg(x)の方程式の両辺をxで微分してそこにf(x)を代入して云々とあったのですが、これに気づかない場合ゴリ押しでf(x)をg(x)に代入して求めても問題無いですか? i.imgur.com/Q3j8NQs.jpg
627 名前:132人目の素数さん mailto:sage [2017/01/29(日) 22:41:46.94 ID:f2krDq1N.net] 出来るなら良いんちゃうの
628 名前:132人目の素数さん mailto:sage [2017/01/29(日) 22:58:16.17 ID:ARcHFqGU.net] >>616 f(t)=2+costを代入して、インテグラルの中身計算した時に出てくるxcostが処理できないからNG
629 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:07:11.49 ID:tkNCMz5b.net] >>618 tの積分の式においてxは定数なので、展開して出てきたxは外に出して計算しましたよ そうしたら答えは一致しました
630 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:17:46.56 ID:KF0Ke+pI.net] 2次以下の実数係数多項式f(x)は、f(0)、f(1)、f(-1)がいずれも-1以上1以下である。このようなy=f(x)の存在範囲を求めよ。
631 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:20:10.84 ID:ARcHFqGU.net] >>619 確かにそうですね 失礼いたしました
632 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:21:24.26 ID:tkNCMz5b.net] >>621 こちらこそありがとうございました
633 名前:132人目の素数さん [2017/01/29(日) 23:23:19.13 ID:iBAa6dWE.net] 埼玉大の問題です。 (1) aがすべての実数をとって変わるとき、z^2-az-a=0を 満たす複素数zは、複素数平面上
634 名前:ナどんな図形を描くか。 (2)zが(1)で求めた図形上にあって、|z|≦2であるとき、 |z-1+i|の最大値と最小値をもとめよ。 お願いします。 [] [ここ壊れてます]
635 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:35:50.18 ID:7nr1NpxJ.net] z=-1でz^2-az-a=0は成り立たないからzはそうでないとしてよい そのときa=z^2/(z+1) この右辺が実数であることのみが条件 共役とって等しい条件を変形し、 zが実数または|z+1|=1 よって添付画像のよう ガウス平面におけるzと1-iとの距離の最大最小だからそれぞれ√5-1,1 sssp://o.8ch.net/o10c.png
636 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:36:40.93 ID:7nr1NpxJ.net] 最大値√5+1だった
637 名前:132人目の素数さん mailto:sage [2017/01/29(日) 23:39:55.19 ID:7nr1NpxJ.net] しかもz=-1除き忘れてる
638 名前:132人目の素数さん [2017/01/29(日) 23:57:24.40 ID:iBAa6dWE.net] 式変形を詳しく教えてください。
639 名前:132人目の素数さん [2017/01/30(月) 00:22:19.56 ID:dNxRLUCC.net] いやです
640 名前:132人目の素数さん [2017/01/30(月) 00:28:16.10 ID:bRY/8KxW.net] 代入法と加減法があります
641 名前:132人目の素数さん [2017/01/30(月) 00:55:47.12 ID:dNxRLUCC.net] 自分の生きている意味がわかりません 頭が悪いのに生きてる価値なんてないですよね? 頭の悪いということは、その人はその人である必要はないんです 他の人でもいいけど、ただ一時的に自分が自分を演じているというだけなのです ここにいる人は数学できない、少なくともフィールズ賞受賞者ではない人だと思いますが、そのように自分が頭が悪いということがわかっていながら、普通に生活できるのは何故なのでしょうか? そもそもこういうことは考えないのですか? 考えたとしてもそういうことは中学生のうちに卒業しておくべきことなのでしょうか? 普通になりたいのですが、頭がとてつもなく悪いので全然わかりません 皆さんはどうしているのですか?
642 名前:132人目の素数さん mailto:sage [2017/01/30(月) 01:33:31.15 ID:28W5qGDZ.net] >>630 無職は邪魔だからだまってて
643 名前:132人目の素数さん mailto:sage [2017/01/30(月) 11:34:16.41 ID:mcDeoe+J.net] >>630 死んでください
644 名前:132人目の素数さん mailto:sage [2017/01/30(月) 12:35:44.56 ID:HO281PTp.net] >>623 (1) Im{zz(1+z~)} = {(x+1)^2 + y^2 -1}y = 0, (2) d(z) = |z-1+i| = |(x-1)+(y+1)i| = √{(x-1)^2 + (y+1)^2}, とおく。 ・y=0 のとき -2≦x≦2 (x≠-1) d^2 = (x-1)^2 +1, 1 ≦ d^2 ≦ 10, 1 ≦ d ≦ √10 = 3.16227766 ・(x+1)^2 + y^2 -1 =0 のとき d^2 = {(x+1)^2 +y^2 -1} - 2(2x-y-1) = 6 - 2(2x+2-y), ところで (2(x+1)-y)^2 + ((x+1)+2y)^2 = 5{(x+1)^2 + y^2} = 5, ∴|2x+2-y|≦ √5, 6 - 2√5 ≦ d^2 ≦ 6 + 2√5, √5 - 1 ≦ d ≦ √5 + 1, 1.236067977 ≦ d ≦ 3.236067977 最大値 d(-1-(2-i)/√5)= 1 + √5, 最小値 d(1) = 1,
645 名前:132人目の素数さん [2017/01/30(月) 18:19:28.06 ID:UWAYg8bf.net] 「微分可能であれば連続」と言えるそうなのですが y=x+[x]というグラフはxが整数となるタイミングで線が切れて1ずれる傾き1の直線になると思います またx=整数における微分可能性を左右の極限で計算しても1になったので 微分可能なのに切れた(=不連続な)直線が存在して反例になってしまいました どこがおかしいのでしょうか?
646 名前:132人目の素数さん [2017/01/30(月) 18:30:03.94 ID:Z6MlOQW/.net] >>634 横着せずに微分の定義通りもう一度計算してみてください 極限がそもそも存在しないはずです
647 名前:132人目の素数さん mailto:sage [2017/01/30(月) 18:43:24.97 ID:evBZxC6c.net] 左極限は、 lim[x→a-0]{f(x)-f(a)}/(x-a)であって、 lim[x→a-0]f'(x)ではない。
648 名前:633 [2017/01/30(月) 18:55:33.50 ID:ex51A+Ao.net] f(h+n)-f(n)=[h+n]+h+n-[n]-n=[h+n]+h-n h→+0のとき{f(h+n)-f(n)}/h={n+h-n}/h→1 h→-0のとき{f(h+n)-f(n)}/h={n-1+h-n}/h→1 こんな計算です、ご指導願います
649 名前:132人目の素数さん mailto:sage [2017/01/30(月) 19:46:13.82 ID:evBZxC6c.net] 落ち着け。 h→-0のとき{f(h+n)-f(n)}/h={n-1+h-n}/h=(-1/h)+1→+∞
650 名前:132人目の素数さん mailto:sage [2017/01/30(月) 19:46:56.35 ID:kooj4AOD.net] >>637 > h→-0のとき{f(h+n)-f(n)}/h={n-1+h-n}/h→1 {n-1+h-n}/h={-1+h}/h
651 名前:633 [2017/01/30(月) 20:09:29.19 ID:ex51A+Ao.net] あw失礼しました スッキリしました
652 名前:132人目の素数さん mailto:sage [2017/01/30(月) 20:22:08.39 ID:UMGb0+7F.net] 屁こいて寝ろ
653 名前:132人目の素数さん mailto:sage [2017/01/30(月) 21:30:36.00 ID:RSs9po1B.net] 2次以下の実数係数多項式f(x)は、f(0)、f(1)、f(-1)がいずれも-1以上1以下である。このようなy=f(x)の存在範囲を求めよ。 お願いします 3変数の導入が必要で難しいです
654 名前:132人目の素数さん mailto:sage [2017/01/30(月) 22:57:00.82 ID:mKoUI/sT.net] >>642 y=axx+bx+cと置く。(aは0であってもいい) まず、aの符号で場合分け、 次に、放物線の軸の位置で場合分けして、 各場合のa,bに対してcの範囲がどうなるか、 その結果グラフがどの範囲を通るかを考える。 x軸y軸に関する対称性があるので、実質 グラフが直線の場合ひとつ 放物線の場合ふたつの みつつの場合を考察すれば済む。 めんどくさいけどね。
655 名前:132人目の素数さん [2017/01/31(火) 00:01:47.18 ID:ytVUD3hB.net] i.imgur.com/JoO5hzY.jpg i.imgur.com/tWOrplV.jpg わかんね
656 名前:132人目の素数さん mailto:sage [2017/01/31(火) 00:08:11.49 ID:1CrHXTWs.net] 次の不等式から、sin^2 θ のみを左辺に置きたいんですが、どう解けばいいでしょうか。 物理の問題を解いていて、不等式を導けたんですが、最後の最後で数学力がなくてとけません。 (ちなみに、センター物理の問題です。) √(1 - 1/n^2 * sin^2 θ ) > a/b 答えは、 sin^2 θ < b^2 - a^2 = sin^2 θ < √( b^2 - a^2 ) となります。
657 名前:132人目の素数さん [2017/01/31(火) 00:10:51.55 ID:1CrHXTWs.net] 一番最後、書き間違えました。 × sin^2 θ < √( b^2 - a^2 ) ○ sin θ < √( b^2 - a^2 )
658 名前:132人目の素数さん mailto:sage [2017/01/31(火) 00:12:07.31 ID:jaaRsm0l.net] 両辺2乗したら中1レベルのはず それにしてもなぜnが消えているのか
659 名前:132人目の素数さん [2017/01/31(火) 00:20:46.93 ID:1CrHXTWs.net] >>647 すみません、さっそくレスいただきありがとうございます。 あっ!間違えました。 × √(1 - 1/n^2 * sin^2 θ ) > a/b ○ √(1 - 1/b^2 * sin^2 θ ) > a/b 不等式だから2乗オッケーなのか。(まったく忘れていました) 方程式で解こうとしていて、今日一日中悩んでいました。 ありがとうございます。
660 名前:132人目の素数さん mailto:sage [2017/01/31(火) 00:31:10.69 ID:AWGQrFnd.net] >>644 まるち
661 名前:132人目の素数さん [2017/01/31(火) 00:42:20.95 ID:1F/DGZk9.net] わからないんですね(笑)
662 名前:132人目の素数さん [2017/01/31(火) 08:13:24.33 ID:1CrHXTWs.net] >>648 >不等式だから2乗オッケーなのか。 方程式でも同じですよね。勘違いしていました。 4=4 を考えれば、16=16 ですものね。 累乗すると、等式が成り立たなくなるんじゃないかという変な感覚にとらわれていました。 両辺の条件が同じなのだから、どんな操作をしても同じになると理解しました。
663 名前:132人目の素数さん mailto:sage [2017/01/31(火) 11:10:45.77 ID:zJn/AL8b.net] わかってると思うけど不等式の場合は2乗すると成り立たなくなることもあるぞ
664 名前:132人目の素数さん mailto:sage [2017/01/31(火) 21:32:26.42 ID:jBiTlknM.net] >>651 -2 < -1 (-2)^2 > (-1)^2
665 名前:132人目の素数さん mailto:sage [2017/01/31(火) 22:15:46.24 ID:FVtXe2f7.net] >>652 横からすみません、2次方程式の場合は両辺を2乗してもOKですよね?
666 名前:132人目の素数さん mailto:sage [2017/01/31(火) 23:16:29.01 ID:nQ2GTbJg.net] p を 3 以上の素数として S_k = 1^k + .. + (p-1)^k とする。S_k が p の倍数になるための正整数 k の必要十分条件を求めよ を一週間考えてますが全然分かりません。まじハゲそうです。助けて下さい。
667 名前:132人目の素数さん [2017/01/31(火) 23:18:34.58 ID:1F/DGZk9.net] S_k が p の倍数になることです
668 名前:132人目の素数さん mailto:sage [2017/02/01(水) 00:24:45.62 ID:r+nCqUGq.net] kは奇数
669 名前:132人目の素数さん mailto:sage [2017/02/01(水) 00:28:35.38 ID:jj40UoDt.net] 0≤θ<2のとき、sinθ>-1/2を解くと 0≤θ<7π/6, 11π/6<θ<2π ですか?
670 名前:132人目の素数さん mailto:sage [2017/02/01(水) 02:29:21.17 ID:r+nCqUGq.net] 0?θ<2です
671 名前:132人目の素数さん mailto:sage [2017/02/01(水) 11:25:25.65 ID:aqvkvzlp.net] >>654 方程式は等号で結ばれてるんだから2乗しても成り立つけど同値性は崩れるんじゃね?
672 名前:132人目の素数さん [2017/02/01(水) 11:46:23.81 ID:Yr7Hsdei.net] >>652-653 ありがとうございます。不等式の場合の偶数回累乗のときには注意します。 >>660 累乗してもイコールになることに対する違和感がそれなんでしょうかね。
673 名前:132人目の素数さん [2017/02/01(水) 11:58:51.70 ID:WrK20k6q.net] 全然違うに全部
674 名前:132人目の素数さん mailto:sage [2017/02/01(水) 23:59:17.06 ID:Yr7Hsdei.net] >>661 >不等式の場合の偶数回累乗のとき 奇数回累乗ですね
675 名前:132人目の素数さん mailto:sage [2017/02/02(木) 00:49:46.31 ID:PFmBPRtF.net] First, note that $S_1 = p (p - 1) / 2$ can be divided by $p$ since $p - 1$ is even. Fermat's little theorem yields $S_p = 1^p + \cdots (p - 1)^p \equiv 1 + \cdots + (p - 1) (\textrm{ mod } p) = S_1$ and $S_{p - 1} = 1^{p - 1} + \cdots + (p - 1)^{p - 1} \equiv 1 + \cdots + 1 (\textrm{ mod } p) = p - 1$. Consequencely, we have only to show that $S_1, \cdots, S_{p - 2}$ can be divided by $p$. We show this by induction. $p^{k + 1} = \sum_{i = 0}^{p - 1} (i + 1)^k - i^k = \binom{k + 1}{1} S_k + \binom{k + 1}{2} S_{k - 1} \cdots + \binom{k + 1}{k} S_1 + p$. The assumption that $S_1, \cdots , S_j$ can be divided by $p$ implies that $S_{j + 1}$ is divided by $p$ for $j = 1, \cdots, p - 2$ since the binomial coefficients do not contain the prime factor $p$. The desired condition is that $k$ can be divided by $p - 1$.
676 名前:132人目の素数さん mailto:sage [2017/02/02(木) 07:31:14.51 ID:PFmBPRtF.net] Oops, the answer is that "$k$ can NOT be divided by $p - 1$".
677 名前:132人目の素数さん mailto:sage [2017/02/02(木) 13:40:43.79 ID:A5HTjoGk.net] >>665 Don't use such ugry "$".
678 名前:132人目の素数さん [2017/02/02(木) 14:02:37.57 ID:hxN6bOz1.net] ↑これが数学板の実力です 専門板なのに異常にレベルが低い せいぜい英語の少しできる高校生レベル
679 名前:132人目の素数さん mailto:sage [2017/02/02(木) 16:34:01.31 ID:xMfe9Z+b.net] f(x)はxの3次式で、 f(1)=1 , f(2)=2 , f'(0)=3 を満たす時、f(-2/3)を求めよ という問題なのですが、f(x)=ax^3 + bx^2+ cx+d とおいて、c=3までしかわからず、どう解けば良いのか教えてください
680 名前:132人目の素数さん mailto:ばかめ [2017/02/02(木) 17:07:33.06 ID:LPUN159x.net] a=(4*3d) b=-(23+7d)/4 c=3 f[-2/3]=-98/27
681 名前:132人目の素数さん [2017/02/02(木) 17:09:40.91 ID:LPUN159x.net] a=(4+3d)/4 b=-(12+7d)/4
682 名前:132人目の素数さん mailto:sage [2017/02/02(木) 18:17:53.72 ID:xMfe9Z+b.net] >>669-670 ありがとうございます!魔法の様にスラスラ解かれて目が点になったのですが、 f'(0)=0よりc=3で、 f(1)=a+b+3+d=1 ⇔ a+b+d=-2 f(2)8a+4b+6+d=2 ⇔ 8a+4b+d=-4 と、未知の文字の数に対して与式が足りず解けないと頭を抱えていたのですが、 もしかしてf(x)を求めなくても良い裏ワザみたいなのがあるのでしょうか? どこの分野を見れば良いのか分からず、微積辺りを漁ってみたのですが、 始めからf(x)の与式が決まってる物、或いは極大や他式との共有点等を使って解く物で参考にならずでして… a=(4*3d)とは…?解と係数の関係的な奴か、3次方程式の解の公式みたいな奴でしょうか…?
683 名前:132人目の素数さん mailto:sage [2017/02/02(木) 18:19:07.31 ID:xMfe9Z+b.net] 実際書き込んで見ると見にくい事に気付きましたが、f ' (0)=0
684 名前:です [] [ここ壊れてます]
685 名前:132人目の素数さん mailto:sage [2017/02/02(木) 18:27:44.66 ID:txrRa4U8.net] >>671 a,b,d全てを求める必要がない問題 a,bをdで表して、具体的に計算してごらん
686 名前:132人目の素数さん mailto:sage [2017/02/02(木) 18:35:38.41 ID:hKIoVO4a.net] >>671 極値ってのは単なる一点以上の情報があるんだよ。 例えば二次関数だったら極値つまり頂点分かると残り一点でひとつに決まるだろ?その他の点だったらひとつにきまるのに必要な点が3つ欲しい 要は点2個分の情報量があるとおもっとき
687 名前:132人目の素数さん mailto:sage [2017/02/02(木) 18:39:46.34 ID:hKIoVO4a.net] なに言ってんだ俺完全に見間違ったわ(^^)
688 名前:132人目の素数さん mailto:sage [2017/02/02(木) 20:15:06.67 ID:WX//jlIJ.net] a,b,c,d4変数に対して3つの式ならば全ての文字がdのみで表せることになる もしそれで答えが求まらないのであればdを求める必要が生じるがそんなことはできない よって回答不可能 従って問題が解ける以上全ての文字を1つの文字で表せばいい
689 名前:132人目の素数さん [2017/02/02(木) 21:35:01.17 ID:9dUDrGWo.net] 割りと本当に助けて下さい。数学的帰納法で、n=k が成立するときを証明しても意味がないという理由が分かりません。逆にn=k+1で証明したことになる理由も分かりません。 調べたところ ⇒ 証明する式(A)が成立するかどうか尋ねているのに,n=k が成立する話をしても意味がなく,(A)が成立するかどうかについて述べられていない. ⇒ 「 n=k のとき(A)が成立すると仮定すれば」と書かなければならない. と書いてあったんですが、意味がなくはないと思うんです。右辺左辺が等式で結べますよね?
690 名前:132人目の素数さん mailto:sage [2017/02/02(木) 21:35:22.59 ID:txrRa4U8.net] マルチ
691 名前:132人目の素数さん [2017/02/02(木) 21:45:22.39 ID:9dUDrGWo.net] 1+3+5+...+(2n-1)=n^2について n=1の時 右辺=2×1-1=1,左辺=1^2=1で上の式は成立する。 n=kの時 右辺=Σ(2n-1)=k^2 左辺=k^2 で上の式は成立する と思うんです 仮定する理由が分かりません
692 名前:132人目の素数さん mailto:sage [2017/02/02(木) 21:51:05.00 ID:Qy0Oa7UC.net] マルチ指摘されても質問続ける奴に教えることは無いね
693 名前:132人目の素数さん [2017/02/02(木) 21:54:40.66 ID:9dUDrGWo.net] >>680 え 俺に言ってたんですか?
694 名前:132人目の素数さん [2017/02/02(木) 21:59:17.18 ID:9dUDrGWo.net] >>679 (k+1)番目のドミノを倒そうと思ったら、k番目のドミノが倒れなければなりませんね。 でも、これだけでは全部倒れるとは限りません。 初めに何番目を倒すか分からないからです。 たとえば、3番目から倒し始めたら、1番目、2番目は倒れませんよね。 全部倒そうと思ったら、1番目から倒し始めるしかありません コレがまずk+1番目のドミノを倒す設定にしてる理由が理解出来ず、k番目のドミノに設定すればいいと思うんですが
695 名前:132人目の素数さん [2017/02/02(木) 22:00:36.33 ID:9dUDrGWo.net] >>682 調べてもこのようにまず前提が理解出来ず、困っています
696 名前:132人目の素数さん [2017/02/02(木) 22:03:04.32 ID:/fAQI5PX.net] >>679 それは数学的帰納法ではないです n=kとしただけで証明できてしまったら、それで終わりです 数学的帰納法を使うまでもありません ですが、それだけではうまくいかないことがあります そういう時、n=k→n=k+1を示す、という数学的帰納法を使うと証明できるものがあり、そういうものは数学的帰納法を使えばいいのです
697 名前:132人目の素数さん mailto:sage [2017/02/02(木) 22:03:56.69 ID:WX//jlIJ.net] 1から2n-1までの和なんていう知的障害でもできる問題で帰納法の練習させるほうが悪いのかなこれは
698 名前:132人目の素数さん [2017/02/02(木) 22:04:39.09 ID:/fAQI5PX.net] 実際に「ドミノ倒し」そのものを数学的帰納法で証明してみてはどうですか? また、k番目のドミノが倒れると仮定しただけで今度も先ほどと同じように全てのドミノが倒れるということを証明できるかどうかも試してみると良いでしょう
699 名前:132人目の素数さん [2017/02/02(木) 22:07:11.56 ID:9dUDrGWo.net] >>684 >>685 そういうことですか、やっと分かりました。
700 名前:132人目の素数さん mailto:sage [2017/02/02(木) 22:08:11.86 ID:txrRa4U8.net] いやーすまんね、帰納法について知ってるのかどうかがわからず、
701 名前:閧チ取り早く思い付いた問題で聞いてみた でもお陰で全く理解してないことがわかってよかったよ [] [ここ壊れてます]
702 名前:132人目の素数さん mailto:sage [2017/02/02(木) 22:35:58.82 ID:RflwAeJA.net] >>679 その問題を数学的帰納法を使って解いてみたいなら、狽フ公式を使わずに考えて見るべき ってか君のそれだとn=kって置く意味ないし 左辺=1+2+...+2n-1=(2n-1)=n^2=右辺 で終わるわ 数学的帰納法というのは 「「n=kのとき成り立つ」ならば「n=k+1のとき成り立つ」」をn=k_1=1から順に適応すれば 自然数全体でも成り立つよね っていう証明方法
703 名前:132人目の素数さん [2017/02/02(木) 22:44:31.85 ID:/fAQI5PX.net] ここの回答者って、簡単な問題だと、すでに解決している問題にも回答つけるんですね。。
704 名前:667 mailto:sage [2017/02/03(金) 00:28:09.88 ID:+XdHRVG3.net] a=(4*3d)の変形はできませんでしたが、a=(4+3d)/4の変形はできましたので、 全部dに置き換えたら確かに全部消えて出ました!!すごい!! こういうのはどこで習うのって思えるくらい天才的閃きがテスト中に降りて来なきゃだめですね… 問題を解いてきた絶対量の違いから差が生まれるのでしょうか…ともあれ皆様本当にありがとうございました!
705 名前:132人目の素数さん [2017/02/03(金) 00:30:21.29 ID:bo453aIi.net] 取り敢えずやってみればできるってこともあるんですよ 実際に手を動かさなければ解けない問題というのがあるんです
706 名前:132人目の素数さん mailto:sage [2017/02/03(金) 00:31:00.09 ID:N+cYrGoj.net] こんなん凡才でも手を動かせばできる 出来ないのは手もろくに動かさずに解けねえ解けねえと頭かかえてる知恵遅れ
707 名前:132人目の素数さん mailto:sage [2017/02/03(金) 00:37:23.65 ID:HAtMRDSM.net] とまあこういう余計な煽りを入れられるのが関の山なんでいちいち感謝のレスなんかいらねえぞ
708 名前:132人目の素数さん mailto:sage [2017/02/03(金) 00:40:27.97 ID:N+cYrGoj.net] だいたい式の本数が未知数の個数よりも1個少ないタイプの問題なんぞ センター演習やってりゃよく出てくる話 その解き方で解いてるだけなのに天才的なひらめきとかアホ丸出し過ぎて草はえる
709 名前:132人目の素数さん [2017/02/03(金) 00:51:55.92 ID:ySfg5Tl4.net] >>672 > 実際書き込んで見ると見にくい事に気付きましたが、f ' (0)=0 です これ何?
710 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:03:22.58 ID:N+cYrGoj.net] プライムが見にくいからスペース開けて書きなおしたんだろ 知恵遅れだから右辺が3から0になってしまってるのにも気づいてない
711 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:16:17.28 ID:duBbjsgS.net] そこまで言う必要あるか?対人コミュ力が発達障害レベルだな 礼に礼で返せない人間ってのは別にここじゃ珍しくも無いが
712 名前:132人目の素数さん [2017/02/03(金) 01:17:39.43 ID:bo453aIi.net] レベルの低い問題には、レベルの低い回答者がつくんです ここでの常識ですね
713 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:20:22.30 ID:duBbjsgS.net] 言うても所詮高校数学やしなぁ…何でここまで粋がってんのかわからんわ
714 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:20:38.44 ID:N+cYrGoj.net] これからも知恵遅れにはどんどん人格否定していくからな。 アホは絶対に許さん。ぼっこぼこにしてやるからそのつもりで。
715 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:26:14.07 ID:Lb6hL8Yb.net] 井の中の蛙が暴れとるw
716 名前:132人目の素数さん [2017/02/03(金) 01:30:22.86 ID:bo453aIi.net] >>701 今日あったテストの問題です どの2つを取っても1以外の公約数を持たない3つの自然数をx,y,zとする また、自然数nの全ての素因数の積をf(n)と表すこととする 以下の問いに答えよ (1).f(xyz)=f(x)f(y)f(z)を示せ 以下、x+y=zが成り立つとする (2).f(x)≦z、f(y)≦z、f(z)≦zが成り立つとを示せ (3).(f(xyz))^3≦zとなるx,y,zを全て求めよ 偏差値75の進学校の問題ですけど、もちろん解けますよね? わからなかったので教えてください
717 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:43:24.99 ID:amom4bKu.net] >>703 どこの業者で出してる偏差値なのかそろそろ答えてもらおうか
718 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:50:46.95 ID:Lb6hL8Yb.net] 知恵遅れの蛙さん逃げちゃった?
719 名前:132人目の素数さん mailto:sage [2017/02/03(金) 01:56:23.49 ID://R1iaEi.net] >>703 平気で嘘つくのも>>701 と同レベルもしくはそれ以下やで 君の負けやで
720 名前:132人目の素数さん mailto:sage [2017/02/03(金) 02:00:18.39 ID:amom4bKu.net] 劣等感BBAは毎日負けてますね;;
721 名前:132人目の素数さん mailto:sage [2017/02/03(金) 02:06:54.52 ID:Lb6hL8Yb.net] 自演に草生えるw蛙取りして遊ぼうと思ったのにw ID変えて逃げられちゃったかw
722 名前:132人目の素数さん mailto:sage [2017/02/03(金) 02:27:40.86 ID:Lb6hL8Yb.net] 何か適当に知恵遅れの質問して回答者褒めちぎれば知恵遅れの蛙さん出てくるんや?w 蛙ぶっ叩くの好きなんだよなーw煽りに乗り遅れて残念今度やるわーw ID変えて返事出来ないやろけど今も見とるよな?ちゃんとスレ見とってや^^ワイも一旦巣に帰るわ
723 名前:132人目の素数さん mailto:sage [2017/02/03(金) 03:16:16.62 ID:Bx6ADteW.net] >>668 f(x)が3次式のとき、 f(-(2/3)x)={32f(x)−5f(2x)−40f'(0)x}/27,
724 名前:132人目の素数さん [2017/02/03(金) 05:09:59.82 ID:/7YEP+kz.net] >>709 Jカスくっさwwwwww 巣から出てくんな死ねンゴニキニキ〜www
725 名前:132人目の素数さん mailto:sage [2017/02/03(金) 12:41:53.97 ID:Bx6ADteW.net] >>642 f(x)=axx+bx+c と置く。 a = {f(-1)-2f(0)+f(1)}/2, b = {f(1)-f(-1)}/2, c = f(0), |x|≦ 1 のとき、|f(x)|≦ 1 + |x| - xx, |x|≧ 1 のとき、|f(x)|≦ 2xx - 1,
726 名前:132人目の素数さん mailto:sage [2017/02/03(金) 15:43:38.73 ID:kgzdOowN.net] >>703 プリンタのテストかな? 数学のテストにそれを出す馬鹿は 本物の馬鹿だが。
727 名前:132人目の素数さん mailto:sage [2017/02/03(金) 19:08:04.21 ID:cLiFURLe.net] >>703 テストなら来週返却されますよね? 来週になれば模範解答upできますよね? 本当にテストに出た問題なら。
728 名前:132人目の素数さん [2017/02/03(金) 20:29:00.33 ID:eoZikYFk.net] >>712 最後の2行はどう導いたのですか?
729 名前:132人目の素数さん [2017/02/03(金) 22:10:31.91 ID:XxYRpS3W.net] ■ヤフー知恵袋での自作自演による宣伝行為■ 少し場所が離れますが、新宿ならDC BANKがいいと思います。2009/8/6 20:12:06 少し場所が離れますが、新宿ならDC BANKがいいと思います。2009/8/6 20:13:20(←1分後) 少し場所が離れますが、古着を売るなら新宿のDC BANKがいいと思います。2009/8/6 20:22:34(←10分後) chiebukuro.yahoo.co.jp/my/myspace_ansdetail.php?writer=tamio_kamata&flg=3 ■某ヨウジヤマモト掲示板で個人情報の悪用も暴露される■ 619 :名無しのヨウジ:2015/03/04(水) 02:37:53 ID:4OeXYPI20 その知恵袋で使われてる名前実在の客だからな 本人はまったく知らなかったし 個人情報を無断で使われても構わないなら売買も止めやしないけど、、 俺は他にもいろいろ噂聞いて以来行ってない キチガイ最終章!煽ってやらせて打つ!ワタナベ発狂自滅方程式! きっと今日もどこかで孤独にキチガイ発狂中♪大爆笑 販売業者の名称 有限会社コー ルド ターキ ー/DC BANK 代表取締役:渡邊弘宣 販売業者の
730 名前:住所 〒160-0022 東 京都 新 宿区新 宿3-12-11 石井ビル2F Phone:03-5269-3675 https://www.google.co.jp/?gws_rd=ssl#q=%EF%BC%A4%EF%BC%A3%E3%80%80%EF%BC%A2%EF%BC%A1%EF%BC%AE%EF%BC%AB+%E8%A9%95%E5%88%A4 ↑オー クションの評 価や告 発されたス トーカー悪 事の数々が見 れます!! [] [ここ壊れてます]
731 名前:132人目の素数さん mailto:sage [2017/02/04(土) 02:04:39.91 ID:leLt2L3M.net] >>703 テストなら来週返却されますよね? 来週になれば模範解答upできますよね? 本当にテストに出た問題なら。
732 名前:132人目の素数さん [2017/02/04(土) 02:09:31.63 ID:7OPf7d8b.net] ID変えればバレないとでも思ってるんですかね(笑)
733 名前:132人目の素数さん mailto:sage [2017/02/04(土) 02:25:58.02 ID:ZsDcLneA.net] >>718 テストなら来週返却されますよね? 来週になれば模範解答upできますよね? 本当にテストに出た問題なら。
734 名前:132人目の素数さん mailto:sage [2017/02/05(日) 12:25:57.96 ID:YXH8qn5v.net] コピペ荒らしか
735 名前:132人目の素数さん [2017/02/05(日) 17:12:32.92 ID:sBHp0Rx4.net] ・確率10%当選するクジがある ・当選ごとに50%当選するクジを引ける ・当たり続ければ何回でも50%当選のクジが引ける ・当選一回あたり100円もらえる 合計1000円貰うには、何回クジを引けばいいでしょうか?
736 名前:132人目の素数さん [2017/02/05(日) 17:38:15.99 ID:u64ZokBQ.net] お前は運が悪いから百万回引いてもダメだろうな
737 名前:132人目の素数さん [2017/02/05(日) 17:49:43.77 ID:sBHp0Rx4.net] 簡単な期待値の問題なんだが、わかる人いなかったか 結局低レベルなスレだなー
738 名前:132人目の素数さん mailto:sage [2017/02/05(日) 17:55:22.46 ID:pDXw4XyB.net] この時期は忙しいからね >>723 自分でも簡単だと思うなら自分でやれ
739 名前:132人目の素数さん mailto:sage [2017/02/05(日) 19:08:06.58 ID:2E7AK5EA.net] 質問スレとは
740 名前:132人目の素数さん mailto:sage [2017/02/05(日) 22:34:03.67 ID:UP5z0Pyr.net] 数学的帰納法による証明むずいと感じる俺ガイジ?
741 名前:132人目の素数さん [2017/02/06(月) 00:03:28.78 ID:+hkUvB1b.net] 証明問題ってのは基本なんでも難しいんですよ
742 名前:132人目の素数さん mailto:sage [2017/02/06(月) 01:48:26.44 ID:wWrqduAk.net] 複雑な事を考えられない頭なんだろ
743 名前:132人目の素数さん mailto:sage [2017/02/06(月) 05:29:11.00 ID:jF7kPss1.net] 成田空港 横堀大鉄塔への道 https://www.youtube.com/watch?v=lNG1G4cBdUc&t=12s 。、
744 名前:132人目の素数さん mailto:sage [2017/02/06(月) 12:33:38.18 ID:wWrqduAk.net] 無駄貼り
745 名前:132人目の素数さん mailto:sage [2017/02/06(月) 21:00:15.97 ID:jcrFeIni.net] >>703 の模範解答が楽しみだなあ。
746 名前:132人目の素数さん [2017/02/07(火) 10:40:18.59 ID:+jhsg5Qm.net] 1組52枚のトランプカードがあるとき (1) ここから1枚引き、続いてもう1枚引くとき、2枚ともおなじスートになる確率 (2) ここから1枚引いたらスペードだったとき、さらにもう1枚引くとまたスペードを引く確率 (3) ここから2枚同時に引くとき、2枚ともおなじスートである確率 これら3つの確率は明らかに同じなのでしょうか。
747 名前:132人目の素数さん mailto:sage [2017/02/07(火) 11:00:24.81 ID:AtnEBX0M.net] >>732 (1)(3)は同じ (2)は条件付き確率
748 名前:132人目の素数さん mailto:sage [2017/02/07(火) 17:11:22.69 ID:nW1AqJj0.net] 国公立理系の記述で方程式を変形していくとき、1段下がる度に同値という意味で方程式の左に⇔を付けるべきですか?
749 名前:132人目の素数さん mailto:sage [2017/02/07(火) 17:13:57.65 ID:R4/rxbll.net] 2007頃から2016までの東大数学を、行列を除いて全て答えられるようにしました よってこれで2017全完できなければおかしい 明らかに不当であると言えよう なぜなら10年分の東大数学全完できる力を持った人間が今年の問題だけ間違えた、と見えるからだ
750 名前:132人目の素数さん mailto:sage [2017/02/07(火) 17:59:11.95 ID:yJSVC7fN.net] >>734 好みの問題 普通の書き方すれば無くても伝わる 同値記
751 名前:は強い記号だから乱発するのを嫌う人もいる >>735 あと20年遡ってから言おうね もちろん初見で20年完答してね [] [ここ壊れてます]
752 名前:132人目の素数さん [2017/02/07(火) 18:21:54.93 ID:11bgOyRq.net] >>734 付けないべきです 何故ならば同値でないのにも関わらず書いてしまって減点くらう可能性があり、そうしないように注意を向けることは明らかに余計な労力を必要とするからです
753 名前:132人目の素数さん mailto:sage [2017/02/07(火) 18:39:06.78 ID:R4/rxbll.net] >>736 初見で出来たということと解答を見た上で理解し、自力で解けるようになったことに差はありません
754 名前:132人目の素数さん [2017/02/07(火) 18:50:17.12 ID:11bgOyRq.net] >>738 その問題を解く、という観点に関しては全くもってその通りですが、残念ながら完全に同じというわけではないでしょう 初見で解くことができたということは、その問題以上の知識があったからこそ、完解することができたのだ、という推測が成り立ちますから ま、結局のところ、過去問の数をこなすに越したことはないわけですし、それ以外に方法もないのですが
755 名前:132人目の素数さん mailto:sage [2017/02/07(火) 19:19:13.14 ID:4tyzcH7u.net] >>そうしないように注意を向けることは明らかに余計な労力を必要とするからです 実際に試験に臨むときは確かに無駄な神経を使うことになるが 練習のときはその無駄な神経を使って鍛えるべき だから自信がないなら答案では“⇔”は乱用はしない 練習のときは同値変形かどうか意識しながら解く
756 名前:132人目の素数さん [2017/02/07(火) 19:20:46.01 ID:11bgOyRq.net] >>740 同値かどうかは最初と最後で確認すればいいんです 途中でいちいち確認するのは馬鹿のやることです
757 名前:132人目の素数さん [2017/02/07(火) 19:33:16.09 ID:979uRD7E.net] せやな
758 名前:132人目の素数さん mailto:sage [2017/02/07(火) 19:44:21.21 ID:qXZ3pZ38.net] >>741 テストは返却された? 模範解答うp
759 名前:132人目の素数さん [2017/02/07(火) 19:53:09.13 ID:11bgOyRq.net] よほど悔しかったようですね(笑)
760 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:02:20.19 ID:qXZ3pZ38.net] 本当にテストなら模範解答うpできるよね(笑) それとも嘘ついちゃったのかな?(笑)
761 名前:132人目の素数さん [2017/02/07(火) 20:04:33.98 ID:11bgOyRq.net] 自分が>>703 の問題解けない知恵遅れだと気づいて発狂したのでしょうかね。。
762 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:08:39.59 ID:qXZ3pZ38.net] 嘘ついたんだね(笑)
763 名前:132人目の素数さん [2017/02/07(火) 20:17:55.75 ID:11bgOyRq.net] 知恵遅れさんが何か言ってますね(笑)
764 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:20:11.70 ID:qXZ3pZ38.net] ごまかして逃げるのかな(笑) おまえは逃がさんよ(笑)
765 名前:132人目の素数さん [2017/02/07(火) 20:26:24.21 ID:11bgOyRq.net] 700 名前:132人目の素数さん [sage] :2017/02/03(金) 01:20:38.44 ID:N+cYrGoj これからも知恵遅れにはどんどん人格否定していくからな。 アホは絶対に許さん。ぼっこぼこにしてやるからそのつもりで。 なるほど、確かにあなたのような知恵遅れさんは許されないようですね(笑)(笑)(笑)
766 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:32:06.16 ID:qXZ3pZ38.net] ごまかすのに必死だね(笑)
767 名前:132人目の素数さん [2017/02/07(火) 20:34:06.86 ID:11bgOyRq.net] ぼっこぼこにしてやりますよ(笑)?
768 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:37:34.72 ID:2FUEGfN2.net] Yahoo知恵遅れなら、>>703 にも ちゃんと正解がつくに違いない。
769 名前:132人目の素数さん mailto:sage [2017/02/07(火) 20:40:59.67 ID:qXZ3pZ38.net] 嘘つきの人生って悲しいね(笑)
770 名前:731 [2017/02/07(火) 20:52:50.57 ID:+jhsg5Qm.net] >>733 ありがとうございます。 ただこちらの質問の仕方が悪かったかもしれません。 私が質問したかったのは (1)(2)(3)の確率が同じになることは、明らかと言っていいのでしょうか、ということなのです。
771 名前:132人目の素数さん [2017/02/07(火) 20:56:20.31 ID:11bgOyRq.net] >>755 (1)と(3)は明らかに同じですが、(2)は明らかに異なるものです
772 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:00:52.14 ID:qXZ3pZ38.net] やっぱ嘘つきは逃げるのかな?(笑)
773 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:19:53.39 ID:yJSVC7fN.net] 今日久々にまた見に来たけどこいつ劣等感なの? 一年前にもいて馬鹿を晒して発狂してたからいなくなったのかと思ってた
774 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:31:49.33 ID:qXZ3pZ38.net] 劣等感BBAは生かさず殺さずで楽しむんだよ(笑)
775 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:47:29.68 ID:KQHPhjT5.net] 次の問題の考え方がわかりません 「6個のサイコロを投げて、そのうちの任意のサイコロの組み合わせが10になる確率」 僕の考え 全ての事象から10にならない組み合わせ
776 名前:除く →1マイナス(組み合わせが6から9になる確率) →どうも違うようです 考え方が知りたいです [] [ここ壊れてます]
777 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:51:33.35 ID:yJSVC7fN.net] とりあえず11と12は?
778 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:53:10.71 ID:yJSVC7fN.net] 任意の、ってことは2つの和じゃなくてもいいのかな?
779 名前:132人目の素数さん mailto:sage [2017/02/07(火) 21:56:55.47 ID:KQHPhjT5.net] >>761 なんとなく、他のサイコロを組み合わせれば10になりそう・・・という 761 そうです 6個の中から2個でもいいし、3個でもいいし、6個でもいいから組み合わせて10になればいい であれば、合計が6から9なら絶対どのサイコロを組み合わせても10にならないな、と思ったのですが どうも違うようです
780 名前:132人目の素数さん [2017/02/07(火) 22:01:03.38 ID:jQ+bq+r2.net] imgur.com/6Gi2KW1.jpg imgur.com/HsfO95R.jpg imgur.com/9ZhWa1j.jpg imgur.com/3JFbVs0.jpg imgur.com/P4QcIYu.jpg imgur.com/upm4PBi.jpg imgur.com/IfVPNvz.jpg お願いします!!!
781 名前:132人目の素数さん mailto:sage [2017/02/07(火) 22:06:11.56 ID:yJSVC7fN.net] >>763 とりあえず、全部3と6、全部4、という例外がパッと見つかった
782 名前:132人目の素数さん mailto:sage [2017/02/07(火) 22:09:49.51 ID:yJSVC7fN.net] たくさんみつかるな 1つ1or5残り6のみor4のみ 111残り6 1115残り6 上手い見つけ方考えてみる
783 名前:132人目の素数さん mailto:sage [2017/02/07(火) 22:37:50.85 ID:R4/rxbll.net] 東大入試において2000年代初頭は相当簡単なセットが続きましたが2010年付近は難化し、そこから今に至るまで簡単になりつづけ2016年に至ったわけですが今年はどうなるんですかね
784 名前:731 [2017/02/07(火) 23:33:49.20 ID:+jhsg5Qm.net] >>755 レスありがとうございます。 (2)が(1)と明らかに異なるとのことですが、私は「同じじゃないのかな」と思うのです。 (2) ここから1枚引いたらスペードだったとき、さらにもう1枚引くとまたスペードを引く確率 (2')ここから1枚引いたらハートだったとき、さらにもう1枚引くとまたハートを引く確率 (2'')ここから1枚引いたらあるスートだったとき、さらにもう1枚引くとまたおなじスートを引く確率 このように並べた場合、まず(2)と(2')は同じ確率になるのは明らかに思えます。 ハートをクラブやダイヤに変更しても同じでしょう。 なので、1回目のスートが何であったかは本質的な違いではなく、すると (2'')の確率も(2)と同じになるというのも自然に思えるのです。…★ そして(2'')は、「それって結局(1)と同じじゃないか」と思えるのです。…(*) ★や(*)の「思えるのです」が妥当かどうか、をお聞きしたいのです。
785 名前:132人目の素数さん [2017/02/07(火) 23:39:37.80 ID:11bgOyRq.net] >>768 ★は正しいですが、(*)は間違えです 条件付き確率、を勉強してください
786 名前:731 [2017/02/07(火) 23:46:06.05 ID:+jhsg5Qm.net] ただ、答えは一致しますよね。
787 名前:132人目の素数さん [2017/02/07(火) 23:51:06.52 ID:+jhsg5Qm.net] 1回目にあるスートを引くという事象をE、2回目に1回目とおなじスートを引くという事象をF として(2'')をあえて条件付き確率の体裁で求めると P(EかつF)/P(E) となりますが P(E)=1 でしかも「EかつF」は F と同じですから結局これはP(F)と同じになる、で合ってますか。
788 名前:132人目の素数さん [2017/02/07(火) 23:52:01.27 ID:11bgOyRq.net] >>770 いいえ、一致しません 「条件付き確率」というキーワードが二回も出てきているのにも関わらず、それを無視してレスを投稿するのはあまりいい態度とは言えません 例を変えましょう スペードのカードが13枚あるとします 12枚トランプを引きA〜Qと順番に引き最後にKを引く確率 12枚スペードを引いてA〜Qを順番に引いたという前提のもと、次にKを引く確率 この二つは明らかに異なるものです 上は1/13!ですが、下は100%だからです
789 名前:132人目の素数さん [2017/02/07(火) 23:54:29.92 ID:11bgOyRq.net] >>771 >P(E)=1 違います >「EかつF」は F と同じですから 違います
790 名前:731 [2017/02/08(水) 00:05:20.14 ID:Wb6H21AF.net] ありがとうございます。(2)あるいは(2'')の正しい求め方と結論を教えて頂ければ幸いです。 特にP(E)=1が「違います」というのが良く分かりません。 ちなみに私は(2)なら 1回目にスペードを引くという事象をK、2回目にスペードを引くという事象をL としてP(KかつL)/P(K)。
791 名前:ここでP(K)=1/13, P(KかつL)=(1/13)*(12/51) より答は12/51。 とします。 [] [ここ壊れてます]
792 名前:132人目の素数さん [2017/02/08(水) 00:17:15.30 ID:vz0R3Zjn.net] >>774 Eが起こることは前提としているのだからP(E)=1なのは当たり前なのではないか、ということですよね この時点で条件付き確率の話になってしまっているのです Eが成り立つことを前提とするならば、Eが必ず成り立つのは当然であり、Eが起こる確率は1となるでしょう ですが、それはあくまでもEを前提とした確率であり、何も条件で縛られることのないE本来の事象が起こる確率P(E)ではないのです 事象Aが起こる前提としたときに、事象Bの起こる確率は、Aを前提としたときのBの条件付き確率といい、P(B|A)と表します >P(E)=1 これはP(E|E)=1のことなのです よくわかりませんけど、計算式はあってます (1)や(3)は >P(KかつL)=(1/13)*(12/51) であるのに対し、(2)のほうは >12/51 となるわけですね (1)=(3)であり、(2)はそれとは異なる値であることが確かめられました ところで >P(KかつL)=(1/13)*(12/51) これは実はそれほど自明な関係式ではないというのはわかりますか? P(KかつL)=P(K)*P(L|K)を計算してるんです、実は Kが起こった後の条件付き確率とは、この時点であなたが無意識的に求めた12/51そのものなわけです
793 名前:132人目の素数さん mailto:sage [2017/02/08(水) 01:08:02.74 ID:BoFrU/K0.net] >>775 >>703 のテストの模範解答はまだですか? うpを楽しみにしていますので早めにお願いします 本当にテストに出た問題なら。
794 名前:132人目の素数さん [2017/02/08(水) 01:52:33.61 ID:vz0R3Zjn.net] よほど悔しかったようですね(笑)
795 名前:132人目の素数さん [2017/02/08(水) 01:58:56.82 ID:YV0pFltm.net] 悔しくも何も、解けるかどうかも分からない問題ですよね。
796 名前:132人目の素数さん mailto:sage [2017/02/08(水) 02:06:53.68 ID:Xewn0u9O.net] 劣等感って、昔から自分の都合の良いようにしか物事を捉えることが出来ない人だけど、これってなんかの障害だよね? あまりにも酷すぎる
797 名前:132人目の素数さん mailto:sage [2017/02/08(水) 02:13:39.65 ID:BoFrU/K0.net] >>775 ぼっこぼこにされているようですね(笑) テストに出たんですよね? 模範解答のうp楽しみです ごまかして逃げないでくださいね(笑)
798 名前:132人目の素数さん [2017/02/08(水) 02:39:00.21 ID:vz0R3Zjn.net] 知恵遅れの戯言ですね(笑)
799 名前:132人目の素数さん mailto:sage [2017/02/08(水) 02:54:38.71 ID:BoFrU/K0.net] 戯言とかどうでもいいから テストの解答うpをお願いします できないんですか?(笑)
800 名前:132人目の素数さん [2017/02/08(水) 03:04:51.05 ID:vz0R3Zjn.net] よほど効いたんでしょうね(笑)
801 名前:132人目の素数さん mailto:sage [2017/02/08(水) 03:14:08.55 ID:Xewn0u9O.net] たぶん劣等感には画面の向こうで悔しそうにしてる俺達の姿が見えてるんだろうね 実際はゴミを見る目で劣等感の書き込みを読んでるわけだけど 知恵遅れが知恵遅れについて語ってるー(笑)って
802 名前:132人目の素数さん mailto:sage [2017/02/08(水) 03:30:01.03 ID:adJ6DA8/.net] 俺には何がマジレスなのかわからねえ.... 全部ネタか煽りにしか見えねえ... 問題丸投げするやつに言いたいんだけど こういう場所は「考えることに意味があると思っている人の集まり」であるべきだと俺は思うから 自分はどこまで考えたか書いて、具体的にどこ(何行目か、何文目かなど)がわからなかったかを明確にするべきだ、と俺は思うよ
803 名前:132人目の素数さん mailto:sage [2017/02/08(水) 03:31:52.89 ID:UZTl3M7p.net] >>760 六個のサイコロを投げて、任意の和が10にならないパターン A.合計が9以下 B.mod3で000000or000002型 C.mod4で000000or000001or000003or000013型 D.6が多く使われる場合。 まずこれは、1,2,3をいくつか用いて、4ができない組み合わせを考え、 されに、多くの場合は5を一つだけ加えてもそのまま通用する。すると φ,1,2,3,11,12,23,33,111,5,15,25,35,115,125,(235はダメ),335,1115となるが、 すでにBやCに含まれている物を除くと 1*,11*,12*,111*,5*,15*,25*,115*,125*,1115* ("*"は合計で6個になるよう6を追加するという記号) 6^6通り中、982
804 名前:通りあると思われる [] [ここ壊れてます]
805 名前:132人目の素数さん [2017/02/08(水) 03:32:07.36 ID:vz0R3Zjn.net] そんなことできるような能力あるならそもそも丸投げなんてしないんですよ なーんにもわからないから丸投げするんです
806 名前:132人目の素数さん mailto:sage [2017/02/08(水) 03:40:26.90 ID:adJ6DA8/.net] >>787 なーんにもとは?
807 名前:132人目の素数さん mailto:sage [2017/02/08(水) 03:42:15.35 ID:adJ6DA8/.net] >>785 訂正 下の方 自分はどこまで考えたか書いて、具体的にどこ(何行目か、何文目かなど)がわからなかったかも明確に書くべき
808 名前:132人目の素数さん [2017/02/08(水) 03:43:44.29 ID:vz0R3Zjn.net] >>788 Yahoo知恵袋とか見てきて回答でもすれば、わからないとはどういうことかということがわかりますよ
809 名前:132人目の素数さん mailto:sage [2017/02/08(水) 06:14:21.72 ID:BoFrU/K0.net] >>790 逃げてないではやく模範解答うpしようね(笑) 学校のテストなんだよね? まだ返却されてないのかな?(笑)
810 名前:731 [2017/02/08(水) 07:00:38.58 ID:Wb6H21AF.net] >>775 レスどうもありがとうございます。 すみません。私の>>774 の(2)の解答はシビアなタイポがありましたので次に修正します。 ちなみに 私は(2)なら 1回目にスペードを引くという事象をK、2回目にスペードを引くという事象をL としてP(KかつL)/P(K)。ここでP(K)=13/52, P(KかつL)=(13/52)*(12/51) より答は12/51。 ですから(1)や(3)も(2)と同じ答えになります。((1)の答は 4*P(KかつL) ) >Eが起こることは前提としているのだからP(E)=1なのは当たり前なのではないか、ということですよね ちがいます。いまEは1回目に あ る ス ー ト を引くという事象なのです。 愚直にかけば E = (1回目スペード)or(1回目ハート)or(1回目クラブ)or(1回目ダイヤ) です。 「起こることは前提としている」のではなく、明らかに確率1で起きる事象ではないですか。
811 名前:731 [2017/02/08(水) 07:03:05.02 ID:Wb6H21AF.net] >>775 なお条件付き確率については教科書レベルのことなら十分存じていますので大丈夫です。 無意識的ではなく意識的に使っています。
812 名前:132人目の素数さん mailto:sage [2017/02/08(水) 11:15:28.95 ID:vbsLKMqM.net] どのスートも対等だから当たり前でいいんじゃないの?
813 名前:132人目の素数さん [2017/02/08(水) 13:21:52.13 ID:vz0R3Zjn.net] >>792 いちいち質問変えてんじゃねぇよ で、結局お前の今の質問はなんなんだよ? ちゃんとかけよ で、また回答つけたらコロコロ変えんのか? 回答する側おちょくって楽しいかよ?
814 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:23:32.24 ID:pksJ4tUH.net] >>795 >>703 のテストは返ってきましたか? はやく模範解答をうpしてください みんな待っています
815 名前:132人目の素数さん [2017/02/08(水) 13:29:11.58 ID:vz0R3Zjn.net] >>796 死ね
816 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:29:18.65 ID:Xewn0u9O.net] >>795 いっつも解答する側おちょくってるの君じゃん… 鏡を見たことある?
817 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:31:43.27 ID:pksJ4tUH.net] >>797 学校のテストなんですよね? そろそろ返却されてると思いますが 模範解答はまだですか? 本当に学校のテストなんですか?
818 名前:132人目の素数さん [2017/02/08(水) 13:32:00.35 ID:vz0R3Zjn.net] >>792 殺す
819 名前:132人目の素数さん [2017/02/08(水) 13:32:15.48 ID:vz0R3Zjn.net] >>792 殺す
820 名前:132人目の素数さん [2017/02/08(水) 13:32:27.90 ID:vz0R3Zjn.net] >>792 死ね
821 名前:132人目の素数さん [2017/02/08(水) 13:33:09.13 ID:vz0R3Zjn.net] >>792 死ね
822 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:33:15.02 ID:Xewn0u9O.net] こわ…通報しとこ… みんなも通報しようね…
823 名前:132人目の素数さん [2017/02/08(水) 13:33:27.69 ID:vz0R3Zjn.net] >>792 死ね
824 名前:132人目の素数さん [2017/02/08(水) 13:33:45.63 ID:vz0R3Zjn.net] >>792 死ね
825 名前:132人目の素数さん [2017/02/08(水) 13:34:03.15 ID:vz0R3Zjn.net] >>792 死ね
826 名前:132人目の素数さん [2017/02/08(水) 13:34:40.87 ID:vz0R3Zjn.net] >>732 同じです
827 名前:132人目の素数さん [2017/02/08(水) 13:35:14.67 ID:vz0R3Zjn.net] >>733 こいつに惑わされました笑笑
828 名前:132人目の素数さん [2017/02/08(水) 13:35:36.12 ID:vz0R3Zjn.net] >>732 同じスートですね
829 名前:132人目の素数さん [2017/02/08(水) 13:35:51.65 ID:vz0R3Zjn.net] 頭良くならなーい
830 名前:132人目の素数さん [2017/02/08(水) 13:36:44.53 ID:vz0R3Zjn.net] 自殺したい
831 名前:132人目の素数さん [2017/02/08(水) 13:37:01.22 ID:vz0R3Zjn.net] 頭が悪いのに生きてる意味はないですよね?
832 名前:132人目の素数さん [2017/02/08(水) 13:40:46.69 ID:vz0R3Zjn.net] オススメの自殺方法を教えてください
833 名前:132人目の素数さん [2017/02/08(水) 13:41:17.45 ID:vz0R3Zjn.net] >>799 望月さんのおかげで解けるようになりました
834 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:44:17.11 ID:pksJ4tUH.net] >>815 知恵遅れの自己紹介は理解できましたので >>703 の模範解答のうpをお願いします
835 名前:132人目の素数さん [2017/02/08(水) 13:48:42.21 ID:vz0R3Zjn.net] >>816 ABC予想により自明である
836 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:52:10.39 ID:pksJ4tUH.net] ABC予想の論文はまだ査読中ですが?
837 名前:132人目の素数さん [2017/02/08(水) 13:55:20.26 ID:vz0R3Zjn.net] >>818 ですけど正しいです 私にはわかります
838 名前:132人目の素数さん mailto:sage [2017/02/08(水) 13:59:36.68 ID:
] [ここ壊れてます]
839 名前:pksJ4tUH.net mailto: では学校のテストの問題をうpしてください そういう出題をする学校は問題があるので 問い合わせます [] [ここ壊れてます]
840 名前:132人目の素数さん mailto:sage [2017/02/08(水) 14:00:23.19 ID:ImpDxdix.net] >>819 お前数学なめてんだろ? 二度と解答するんじゃねーよ低脳が
841 名前:132人目の素数さん [2017/02/08(水) 14:02:08.30 ID:vz0R3Zjn.net] >>821 リーマン予想が正しいことを示してください
842 名前:132人目の素数さん [2017/02/08(水) 14:02:30.53 ID:vz0R3Zjn.net] >>821 わからないんですか? 低脳なんですね
843 名前:132人目の素数さん mailto:sage [2017/02/08(水) 14:04:11.50 ID:ImpDxdix.net] はいはいテメーみてーな人間のゴミは社会に必要ないんですとっとと人生ドロップアウトして、どうぞ
844 名前:132人目の素数さん mailto:sage [2017/02/08(水) 14:06:34.16 ID:pksJ4tUH.net] >>823 学校のテストで出たんですよね? 偏差値75の「進学校」ということは大学ではないですよね? どちらの高校のテストでしょうか? 学校名をお願いします で、今日は学校に行かないんですか?(笑)
845 名前:132人目の素数さん [2017/02/08(水) 14:14:21.18 ID:vz0R3Zjn.net] >>825 授業が簡単すぎてつまらないので内職中です(笑)
846 名前:132人目の素数さん mailto:sage [2017/02/08(水) 14:17:39.03 ID:Xewn0u9O.net] 劣等感どうみても高校生じゃないでしょ でも大学生なら知ってる知識も無いみたいだね んー、高校生と大学生の間って何?浪人?高卒?
847 名前:132人目の素数さん [2017/02/08(水) 14:19:09.17 ID:vz0R3Zjn.net] >>827 ピチピチの高校生ですよ
848 名前:132人目の素数さん mailto:sage [2017/02/08(水) 14:28:11.75 ID:Xewn0u9O.net] 君一年前から全く成長してないけどね(笑)
849 名前:132人目の素数さん mailto:sage [2017/02/08(水) 17:57:31.78 ID:QTUU6xBs.net] sign二乗+cosine二乗=1ですが これを使って解けという問題が出た時 1をsignとcosineにするのは分かるんですが それで約分した場合1になりますよね? その1をsign二乗+cosine二乗に変形しても 良いのでしょうか?
850 名前:132人目の素数さん mailto:www [2017/02/08(水) 18:36:23.08 ID:QjknNwlq.net] かまわんよ
851 名前:132人目の素数さん mailto:sage [2017/02/08(水) 19:59:57.42 ID:adJ6DA8/.net] >>796 みんな?俺は待ってないけど
852 名前:132人目の素数さん mailto:sage [2017/02/08(水) 20:01:42.96 ID:adJ6DA8/.net] >>830 一般的な表記法で頼む
853 名前:132人目の素数さん mailto:sage [2017/02/08(水) 21:33:22.39 ID:QTUU6xBs.net] >>831 ありがとうございます >>833 こういう設問です i.imgur.com/lnupEqA.jpg
854 名前:132人目の素数さん mailto:sage [2017/02/09(木) 01:53:45.54 ID:lYEV5XiJ.net] 何言ってるのかわからないのオレだけだろうか
855 名前:132人目の素数さん [2017/02/09(木) 02:05:48.21 ID:qsdcnQuJ.net] >>834 > こういう設問です > i.imgur.com/lnupEqA.jpg 倍角公式の応用問題なんじゃないの 全体がボケ画像ではっきりとは分らんけど。
856 名前:132人目の素数さん mailto:sage [2017/02/09(木) 03:11:25.91 ID:7Q8bdJo2.net] >>835 仲間がいた 俺もわからん 質問の意図から逸れるが、signって書いているあたり三角関数がなにかもわかってなさそう
857 名前:132人目の素数さん mailto:sage [2017/02/09(木) 08:04:37.01 ID:JGexE4u3.net] >>837 すいませんでした もう少し勉強してから、また聞きに来ます
858 名前:132人目の素数さん mailto:sage [2017/02/09(木) 10:45:14.99 ID:bB4LjhAF.net] ニドトクルナ
859 名前:132人目の素数さん mailto:sage [2017/02/09(木) 23:34:23.24 ID:SMupR3yn.net] t=tan(θ/2)の置換が有用な問題ってなんかあるのん? 積分と円周上の有理点の問題しか知らない
860 名前:132人目の素数さん [2017/02/11(土) 03:25:25.78 ID:dGLnjw4v.net] 頭が悪くて週に一回は自殺したくてたまらなくなります どうすればいいですか?
861 名前:132人目の素数さん [2017/02/11(土) 04:55:32.46 ID:E4uUtKB5.net] 「ばかだから死んで楽になる。早く死にたい」 https://www.kobe-np.co.jp/news/zenkoku/compact/201702/0009902465.shtml
862 名前:132人目の素数さん [2017/02/11(土) 09:45:45.50 ID:G6SUsxwv.net] 次の条件を満たす自然数a,b,cの組は何組あるか。 aとbの最小公倍数は100 , bとcの最小公倍数は200 , cとaの最小公倍数は200 どのように考えて数ええるのがいいでyそうか。
863 名前:132人目の素数さん mailto:sage [2017/02/11(土) 10:
] [ここ壊れてます]
864 名前:21:47.64 ID:UpAC1EIz.net mailto: >>841 実行力がないお前は、この10歳の坊や以下だダボ [] [ここ壊れてます]
865 名前:132人目の素数さん mailto:sage [2017/02/11(土) 11:39:00.17 ID:uMhyVnFy.net] >>843 cが2をいくつ持つか以外は面倒くさく順に数えていくしかないように思う
866 名前:132人目の素数さん mailto:sage [2017/02/11(土) 14:49:20.86 ID:qcG2po/H.net] >>841 早く死んでください
867 名前:132人目の素数さん mailto:sage [2017/02/11(土) 19:56:12.44 ID:pBkGophQ.net] a^n-1=(a^p-1)(a^q-1)(a^r-1)を満たす自然数a,n,p,q,rを全て求めよ
868 名前:132人目の素数さん mailto:sage [2017/02/12(日) 12:50:18.14 ID:x+oe26ll.net] a=0,1とn=p=q=r=0とn=p,q=r=0とa=2,n=p,q=r=1とa=3,n=2,p=q=r=1
869 名前:132人目の素数さん [2017/02/12(日) 13:26:35.12 ID:3CjQ0pfs.net] 逆関数の微分法dy/dx=1/(dx/dy)なのですが、公式そのものは導関数dy/dxを分数のように逆数にしても良いというだけで逆関数以外に使用しても良いですか?例えば y=x^2はxとyが1対1じゃないので何かの逆関数じゃないですが 1=2x(dx/dy) dy/dx=2x のように逆関数の微分公式を使用する事は問題ないですか?
870 名前:132人目の素数さん mailto:sage [2017/02/12(日) 14:01:18.93 ID:oWRAiGAi.net] >>848 自然数つってんだろハゲ! 大学数学では0も自然数に含めるとかいうくだらん言い訳はいらんからな
871 名前:132人目の素数さん mailto:sage [2017/02/12(日) 14:44:05.46 ID:oWRAiGAi.net] dy/dx=1/(dx/dy)=2x/2x(dx/dy)=2x/1=2x
872 名前:132人目の素数さん mailto:sage [2017/02/12(日) 18:05:37.65 ID:0ue+SN00.net] >>849 問題ない
873 名前:848 [2017/02/13(月) 19:20:41.61 ID:3kBsIVk2.net] ありがとうございましたm(_ _)m
874 名前:132人目の素数さん mailto:sage [2017/02/13(月) 20:24:14.49 ID:hgb+zDYf.net] lim[x→0]sin(sinx)/sinx という問題で解答でsinx=tとおくと x→0のときt→0 lim[x→0]sin(sinx)/sinx …A =lim[t→0]sint/t …B =1 って書いてあるんですが x→0だからt→0だっていうのはわかるんですが t→0のときx→0とは限らないのにAとBを=で結んでいんでしょうか?
875 名前:132人目の素数さん mailto:sage [2017/02/13(月) 22:08:53.36 ID:m8BJU8gE.net] >>854 xを0近傍で制約してるから大丈夫
876 名前:132人目の素数さん mailto:sage [2017/02/14(火) 03:00:29.47 ID:d0cJkM6t.net] 三角関数やってるけど弧度法だるい… いちいち度数法に変換して単位円描いて…ってやってるけど、まず度数法に変換する計算しなきゃ単位円に角度記せないのあかん?
877 名前:132人目の素数さん [2017/02/14(火) 03:22:44.82 ID:+eG2LucA.net] そうですね まあ、「慣れ」です 覚え方としては、でてくる角度は大体、0°、30°、45°、60°、90°なわけですから、これを覚えればいいです 0、π/6、π/4、π/3、π/2
878 名前:132人目の素数さん mailto:sage [2017/02/14(火) 05:28:49.98 ID:ZH0jIMCb.net] 15°,75°,36°,72°定期
879 名前:132人目の素数さん [2017/02/14(火) 08:20:34.57 ID:wMHlUxR0.net] 円Γ上の2点ABに対しAでの接戦とBでの接戦は点Xで交わりΓ上の2点CDに対しCDXはこの順に一直線になる。直線CAと直線BDが点Fで直交するときCDとABの交点をGとしてGXの垂直二等分線とBDの交点をHとおくこのときXFGHは同一円周上を示してください。お願いします
880 名前:132人目の素数さん mailto:sage [2017/02/14(火) 14:01:50.63 ID:1BPv4iIy.net] 分かるように書け
881 名前:132人目の素数さん [2017/02/14(火) 14:28:51.76 ID:wMHlUxR0.net] どこがわかりにくい?
882 名前:132人目の素数さん mailto:sage [2017/02/14(火) 18:27:35.04 ID:6wzRLmH8.net] 句読点が無いとこ
883 名前:132人目の素数さん [2017/02/14(火) 20:28:51.41 ID:qPkCkgWW.net] 円、Γ上の2点AB。に対しA、での接戦。とBでの接、戦は点、Xで交わりΓ上の2点C。 Dに対しCD、Xはこ、の順に一直線になる。直線CAと直。線BD、が点Fで直交する、ときCDとABの交。 点をGとしてGXの垂直二。等分線とBDの交点をHとお、くこのときXF。GHは同一円、周上を示してください。 お願いします
884 名前:132人目の素数さん [2017/02/14(火) 22:19:29.57 ID:wMHlUxR0.net] 円Γ上の2点ABに対し、Aでの接戦とBでの接戦は点Xで交わり、Γ上の2点CDに対し,CDXはこの順に一直線上に並ぶ。直線CAと直線BDが点Fで直交する。CDとABの交点をGとして、GXの垂直二等分線とBDの交点をHとおく。このときXFGHは同一円周上を示してください。お願いします。
885 名前:132人目の素数さん [2017/02/14(火) 22:20:14.94 ID:wMHlUxR0.net] これで大丈夫?
886 名前:132人目の素数さん mailto:sage [2017/02/14(火) 22:26:22.53 ID:2niPq3jr.net] 接戦も直せよ
887 名前:132人目の素数さん [2017/02/14(火) 22:29:05.33 ID:hZ1drASj.net] >>865 ここの回答者は無能なので難癖つけるだけつけて解く気はないですから、知恵袋にでもいったほうがいいですよ ここの人たちは本当にバカしかいないんです
888 名前:132人目の素数さん [2017/02/14(火) 22:29:06.87 ID:dVKctBxI.net] 日本語下手くそ
889 名前:132人目の素数さん [2017/02/14(火) 22:29:45.51 ID:dVKctBxI.net] >>867 劣等感には解けなかったらしい
890 名前:132人目の素数さん [2017/02/14(火) 22:38:07.88 ID:hZ1drASj.net] >>869 あなたには、の間違えではないのですか?
891 名前:132人目の素数さん [2017/02/14(火) 22:38:42.32 ID:dVKctBxI.net] >>870 いや。違うようです
892 名前:132人目の素数さん mailto:sage [2017/02/15(水) 19:03:41.98 ID:Jxi52cro.net] 結局解けないんですね(笑)
893 名前:132人目の素数さん [2017/02/15(水) 19:06:03.19 ID:DDchjDTC.net] 解けたら土下座してくれるん? 劣等感の塊のおまえはいつも都合悪くなったら逃げるから、その煽り受けて解いてもいいことないんだよ
894 名前:132人目の素数さん mailto:sage [2017/02/15(水) 19:12:10.47 ID:Jxi52cro.net] でも解けないんですよね?(笑)
895 名前:132人目の素数さん [2017/02/15(水) 19:13:23.18 ID:DDchjDTC.net] >>874 日本語も読めなかったの忘れてたわ、ごめん
896 名前:132人目の素数さん mailto:sage [2017/02/15(水) 19:14:07.49 ID:Jxi52cro.net] 泣きながら逃亡ですか(笑)
897 名前:132人目の素数さん [2017/02/15(水) 19:17:02.24 ID:0+hXFhkr.net] ブーメラン
898 名前:132人目の素数さん mailto:sage [2017/02/15(水) 19:20:05.76 ID:Jxi52cro.net] 解けなくて悔しいんですね(笑)
899 名前:132人目の素数さん mailto:sage [2017/02/16(木) 08:22:43.67 ID:jtO8BWHe.net] 逃げたか。
900 名前:132人目の素数さん [2017/02/16(木) 08:50:50.72 ID:LKVwVH7b.net] 劣等感に話なんて通じないのに
901 名前:132人目の素数さん [2017/02/16(木) 09:12:16.11 ID:hValZo8A.net] 劣等感を感じても数学にかじりつくのはなぜだろう 才能がないのだから別の道にいけばいいのに
902 名前:132人目の素数さん [2017/02/16(木) 09:12:39.16 ID:8NOvnpzP.net] https://youtu.be/2q-vGObpa4M
903 名前:132人目の素数さん mailto:sage [2017/02/16(木) 18:33:43.71 ID:GVF4V6w0.net] p_0=3 p_1=0 p_2=2 p_(n+3)=p_(n+1)+p_n このとき任意の素数qに対してp_qがqの倍数であることを示せ
904 名前:132人目の素数さん mailto:sage [2017/02/16(木) 19:26:29.65 ID:kZB/bb3Z.net] perrin number
905 名前:132人目の素数さん mailto:sage [2017/02/17(金) 13:50:01.62 ID:gjziQhBR.net] 別の道の才能もないのさ
906 名前:132人目の素数さん mailto:age [2017/02/17(金) 17:44:09.61 ID:7KIyX2iL.net] 積分に関してなんですが αを実数として {(x^α+1)}'=(α+1)x^α-------------@ より α≠-1のとき ∫x^αdx=1/(α+1)・x^(α+1)+C(積分定数)-------A とあるのですが Aの左辺の∫の中身がx^αとあるのは@をx^αで解いたってことだから @をx^αについてとくと、α≠-1のとき 1/(α+1)・{x^(α+1)}'と {x^(α+1)}'のように微分の{}'が付いてしまうのはどうするのですか? つまりA式は ∫x^αdx=1/(α+1)・{x^(α+1)}'+C とならないのですか? なんかもう積分の意味から分からなくなってきました、詳しく教えてください
907 名前:132人目の素数さん mailto:sage [2017/02/17(金) 17:54:05.84 ID:Ooz3Ztdz.net] ∫は´を消す魔法
908 名前:132人目の素数さん mailto:age [2017/02/17(金) 17:56:58.56 ID:7KIyX2iL.net] >>887 えぇ
909 名前:132人目の素数さん [2017/02/17(金) 17:58:44.61 ID:jVaYJRUT.net] じゃあ、´は∫を消す魔法
910 名前:132人目の素数さん mailto:age [2017/02/17(金) 18:16:46.14 ID:7KIyX2iL.net] 数学的に、どうぞ
911 名前:132人目の素数さん [2017/02/17(金) 18:27:56.68 ID:qJHwJTW7.net] そんな贅沢言わないで呪文を覚えておけばいいよ
912 名前:132人目の素数さん mailto:sage [2017/02/17(金) 20:29:05.84 ID:VsnVnFKc.net] 数学的に知りたきゃまず大学行きなさい
913 名前:132人目の素数さん mailto:sage [2017/02/18(土) 03:15:01.54 ID:GCy0dWY+.net] >>886 > {}'が付いてしまうのはどうするのですか? 高校範囲ですよ。 @を x^α についてとくと α≠-1 のとき x^α=1/(α+1)・{x^(α+1)}' だから、 積分すると ∫x^αdx=1/(α+1)・∫{x^(α+1)}'dx。 微積分の基本定理から ∫{x^(α+1)}'dx=x^(α+1)+(積分定数その1) なので、 結局、∫x^αdx=1/(α+1)・{x^(α+1)+(積分定数その1)} =1/(α+1)・x^(α+1)+(積分定数その2)。
914 名前:132人目の素数さん mailto:sage [2017/02/18(土) 03:25:48.99 ID:oulCU/fm.net] バカに微分
915 名前:積分学の基本定理とか言っても分かんないのによwww [] [ここ壊れてます]
916 名前:132人目の素数さん mailto:sage [2017/02/18(土) 04:42:14.26 ID:ZiiNkRCz.net] そもそも高校数学では微分に対して微分積分学の基本定理が成り立つような操作を積分と定義してるからな 今思い返してみると意味不明だわな
917 名前:132人目の素数さん mailto:sage [2017/02/18(土) 05:22:45.14 ID:e1kUnPkj.net] 役に立つかわからんけど一応 (F(x+h)-F(x))/h=(1/h)∫[x,x+h]f(t)dt 積分の平均値の定理より (1/h)∫[x,x+h]f(t)dt=f(c) となるcがxとx+hの間に存在する このときh→0のとき、はさみうちの原理よりc→xであるから lim[h→0](F(x+h)-F(x))/h=lim[h→0](1/h)∫[x,x+h]f(t)dt=lim[c→x]f(c)=f(x) 積分の平均値の定理は fが連続であるとき (1/(b-a))∫[a,b]f(x)dx=f(c) となるc∈(a,b)が存在する というもの これは中間値の定理と積分の基本的な定理から証明が可能
918 名前:132人目の素数さん mailto:sage [2017/02/18(土) 05:24:36.64 ID:e1kUnPkj.net] >>896 はF'(x)=f(x)になる証明な
919 名前:132人目の素数さん mailto:sage [2017/02/18(土) 05:39:36.63 ID:an1Bt/YR.net] >>886 の主張は {(x^α+1)}'=(α+1)x^αから x^α=1/(α+1)・{x^(α+1)}' なので ∫x^αdx=1/(α+1)・{x^(α+1)}'+C じゃないか?と言ってるんだろ? そうはならないよ それが成り立つとすると、∫dx の記号の意味は単にCをつけるだけ ってことになってしまうだろ
920 名前:132人目の素数さん [2017/02/18(土) 09:59:06.64 ID:Pih1/QfO.net] >>895 いいえ、意味不明ではありません あなたこそ何もわかっていないのではないですか?
921 名前:132人目の素数さん mailto:sage [2017/02/18(土) 10:55:04.44 ID:ZiiNkRCz.net] >>899 積分の定義をどうぞ リーマンでもルベーグでもいいよ
922 名前:132人目の素数さん mailto:sage [2017/02/18(土) 11:26:28.25 ID:VzrjEuvo.net] また無意味な返しを
923 名前:132人目の素数さん [2017/02/18(土) 11:35:52.64 ID:Pih1/QfO.net] >>900 >>895 >微分に対して微分積分学の基本定理が成り立つような操作
924 名前:132人目の素数さん mailto:sage [2017/02/18(土) 11:52:11.99 ID:ZiiNkRCz.net] >>902 それは正しい定義ではない 無知は恥ずかしいね
925 名前:132人目の素数さん mailto:sage [2017/02/18(土) 11:53:26.87 ID:ZiiNkRCz.net] そもそも積分に関する定理が先に存在して、そこから積分が定義されるとかおかしいと思わないの?
926 名前:132人目の素数さん [2017/02/18(土) 11:54:20.70 ID:Pih1/QfO.net] >>903 「正しい定義」を定義してください 自分が正しいと思うこと、でしょうか? >>904 >積分に関する定理 とはどのようなものですか?
927 名前:132人目の素数さん mailto:sage [2017/02/18(土) 12:02:25.50 ID:zEdMECZe.net] ごめん、そこまで無知だとは思わなかった 俺が悪かったよ そのまま高校数学を楽しんで
928 名前:132人目の素数さん mailto:sage [2017/02/18(土) 12:03:32.76 ID:aNEeq6V5.net] https://twitter.com/rippukudoh/status/831135623587065857 この問題多少の誘導ありとしても高校数学の範囲で解けるんでしょうか? 一応ラグランジュの未定乗数法で解けるのは分かります。
929 名前:132人目の素数さん [2017/02/18(土) 12:05:06.67 ID:Pih1/QfO.net] >>906 どうしてID変えたのですか? 唯一の定義が存在し、それのみが真理であるという態度は現代的ではありません 少なくとも、ヒルベルトによる形式主義に反するものです ある仮定からどのような結論が導かれるか、その道筋が数学という学問なのであるわけです 仮定はあくまで仮定であり、真理ではありえない、すなわち、無矛盾であればなんでも良いのです
930 名前:132人目の素数さん mailto:sage [2017/02/18(土) 12:21:15.93 ID:nVUS8C/b.net] ルベーグ積分だと、f'(x) が絶対可積分でなければ 微積分学の基本定理は成り立たないけど、 1次元の Henstock Kurzweil 積分の場合は 微積分学の基本定理が完全に成り立つ。 すなわち、各点で f'(x) が存在するだけで即座に f'(x) は Henstock Kurzweil 積分であり、∫[a,b] f'(x)dx=f(b)−f(a) が成り立つ 従って、微分操作と積分操作は完全に逆の関係になってる また、Henstock Kurzweil 積分の定義から微積分学の基本定理を 導出してみると、ほとんど >微分に対して微分積分学の基本定理が成り立つような操作 こういう定義を採用しているに等しいことも分か
931 名前: ま、詳しくはググってくれ [] [ここ壊れてます]
932 名前:132人目の素数さん [2017/02/18(土) 12:50:32.09 ID:DVthawkt.net] 原始関数が存在するとは限らない
933 名前:132人目の素数さん [2017/02/18(土) 14:31:34.63 ID:Wh/rRfIl.net] あんまり劣等感いじめてやるな、かわいそう
934 名前:132人目の素数さん [2017/02/18(土) 15:12:11.53 ID:Pih1/QfO.net] >>904 がかわいそうなんじゃないんですか?
935 名前:132人目の素数さん [2017/02/18(土) 15:48:28.58 ID:E4LhWfqT.net] >>912 元気だぜ、おまえはがんばってる
936 名前:132人目の素数さん mailto:sage [2017/02/18(土) 19:12:03.60 ID:GCy0dWY+.net] >>909 なぜにクルツバイル? 高校生はリーマンでいいだろ。
937 名前:132人目の素数さん mailto:sage [2017/02/18(土) 19:16:41.23 ID:YLn7pP8o.net] 2^n+1/n^2が整数となる自然数nを全て求めよ。 どこから手をつければいいかわかりません。 nが奇数という事はわかったのですが、、、
938 名前:132人目の素数さん mailto:sage [2017/02/18(土) 19:52:40.76 ID:nVUS8C/b.net] >914 きみは文脈を理解しよう >>895 → >>899 → >>900 → >>902 → >>904 → >>905 → >>906 という流れを汲んだ上での >909 だよ ID:ZiiNkRCz の認識はおかしいってことを言いたいの
939 名前:132人目の素数さん mailto:sage [2017/02/18(土) 21:04:41.84 ID:e1kUnPkj.net] >>915 1/n^2は任意の自然数nで整数にならない ∴2^n+1/n^2が整数となる自然数nは存在しない
940 名前:132人目の素数さん mailto:sage [2017/02/18(土) 21:13:27.48 ID:J26pbwUd.net] (log[5]x+log[5]2)(log[5]x+log[5]7)=-a^2 が実数解をもつとき、aのとりうる範囲 お願いします
941 名前:132人目の素数さん mailto:sage [2017/02/18(土) 21:16:23.51 ID:sGxtUjOP.net] >>915 数式もまともに書けない劣等感
942 名前:132人目の素数さん mailto:sage [2017/02/18(土) 21:17:31.50 ID:an1Bt/YR.net] >>917 n=1
943 名前:132人目の素数さん mailto:sage [2017/02/18(土) 22:01:27.97 ID:e1kUnPkj.net] >>920 俺馬鹿だな 完全に気付かなかった
944 名前:132人目の素数さん mailto:sage [2017/02/18(土) 22:41:59.67 ID:y9QtwJPm.net] >>921 質問者の言いたいことは理解してるのにわざとそう解釈するのはバカどころかクズだよ
945 名前:132人目の素数さん mailto:sage [2017/02/18(土) 22:48:32.63 ID:fmflwRh/.net] >>918 t=log[5]xとおくと、tは全実数を動く よってt^2+(log[5]2+log[5]7)t+(log[5]2)(log[5]7)-a^2=0が実数解を持てばよい 判別式から4a^2≦(log[5]2+log[5]7)^2-4(log[5]2)(log[5]7)=(log[5]2-log[5]7)^2 これを解いて|a|≦1/2(log[5]7-log[5]2)
946 名前:132人目の素数さん mailto:sage [2017/02/18(土) 22:50:51.14 ID:fmflwRh/.net] すまん2行目のa^2の符号逆になっちまった
947 名前:132人目の素数さん mailto:sage [2017/02/19(日) 01:04:27.33 ID:pRTm4Yum.net] >>923 あー!と思って続きを解いてたらお礼が遅れた 助かりました!ありがとうございます
948 名前:132人目の素数さん mailto:sage [2017/02/19(日) 01:39:57.01 ID:4RDGmhkM.net] >>922 何が言いたいんだ?こいつwwwwwww
949 名前:132人目の素数さん [2017/02/19(日) 13:53:09.17 ID:zY71+pMw.net] どなたかご教授ください<m(__)m> 円x²+y²=1上の点Pにおける接戦をℓとする。 点(6,0)を通り、ℓに垂直な直線が、ℓと交わる点をQとする。 AQ・PQの最大値を求めよ。
950 名前:132人目の素数さん [2017/02/19(日) 14:01:00.26 ID:hCDls012.net] Aって何者?
951 名前:132人目の素数さん [2017/02/19(日) 14:03:18.30 ID:zY71+pMw.net] A(6,0)です。ごめんなさい抜けてました。
952 名前:132人目の素数さん mailto:sage [2017/02/19(日) 14:05:29.26 ID:g+jZEXdS.net] Aを定義しないと、AQにわからない。
953 名前:132人目の素数さん [2017/02/19(日) 14:34:47.35 ID:zY71+pMw.net] >>927 >>929 解ります?
954 名前:132人目の素数さん [2017/02/19(日) 14:47:16.75 ID:YMWST063.net] >>927 計算はしていないが一応。 lとx軸の交点をMとすると、OPMとAQMが相似。これとOP=1、OA=OM+MA=6を用いてAQ.PQをOMのみの式にできる。あとは微分でゴリ押し。OM<-1,1<OMであることに注意
955 名前:132人目の素数さん [2017/02/19(日) 16:06:30.46 ID:zY71+pMw.net] >>932 OMのみの式にできても、微分からわからないです。
956 名前:132人目の素数さん mailto:sage [2017/02/19(日) 16:22:43.25 ID:FNdTvrG8.net] >>933 10√5 [] [ここ壊れてます]
958 名前:132人目の素数さん [2017/02/19(日) 16:46:53.75 ID:YMWST063.net] OMだとキツイかもしれない P(cos t,sin t)にすればOM=1/cos tにできるからそれでやってみて
959 名前:132人目の素数さん [2017/02/19(日) 19:22:53.22 ID:zY71+pMw.net] 詳解お願いします(ノД`)・゜・。
960 名前:132人目の素数さん [2017/02/19(日) 20:49:05.97 ID:fj6UEupw.net] 解答を暗記するほどの問題じゃないから要らない
961 名前:132人目の素数さん [2017/02/19(日) 20:57:17.88 ID:nstFaPN+.net] >>937 暗記とかwww
962 名前:132人目の素数さん [2017/02/19(日) 21:22:31.53 ID:zY71+pMw.net] >>934 >>935 AQ=|6cost-1| PQ=6|sint|で 10√5でました。ありがとうございました。
963 名前:132人目の素数さん mailto:sage [2017/02/20(月) 16:43:29.71 ID:WSCKUr9g.net] >>915 明らかにnは奇数。 n=1 のときは成立するので以下 n>1とする。 (I) nは3の倍数。 nの最小の素因数をpとする。 題意より p|nn|(2^n +1)|{2^(2n)−1}, フェルマーの小定理より p|{2^(p-1)−1} ∴ 2nも(p-1)も2の位数2iの倍数。 2i ≦ gcd(2n,p-1) {∵題意より 2^i≡-1(mod p)となる最小のi>0がある。} 一方、pの最小性より、 gcd(2n,p-1)≦ 2gcd(n,p-1)= 2, ∴ i=1 ∴ 2^1≡-1(mod p) ∴ p=3.
964 名前:132人目の素数さん mailto:sage [2017/02/20(月) 16:45:15.17 ID:WSCKUr9g.net] >>915 (II) nは9の倍数でない。 n =(3^k)m,gcd(m,3)=1 とおく。 題意より、nn|(2^n +1), いま k≧2 と仮定すると、題意より L = 3^(k+2) | 3^(2k)|nn|(2^n +1)|{2^(2n)−1} …(1) オイラー函数φ(L) = 2・3^(k+1)なので、オイラーの定理より L|{2^φ(L) -1}, …(2) ここで、gdc(2n,φ(L))= 2・3^k だから、(1)(2)の最小公倍数をとって L|{2^gcd(2n,φ(L)}−1 = 2^(2・3^k)−1 =(2+1)(2^2-2+1)(8^2-8+1)( … ){2^(2・3^(k-1))−2^(3^(k-1))+1} …(*) 右辺の始めの2つの因子は3で、残りの因子は xx-x+1。 ここで x=2 または x=2^(3・奇数)= 8^奇数 ≡ (-1)^奇数 = -1(mod 9) ∴ xx-x+1 =(x+1)(x-2)+3 ≡ 3(mod 9) 右辺の各因子は、ちょうど1回ずつ 3で割り切れる。 右辺はちょうど(k+1)回 3で割り切れる。 一方、左辺のLは(k+2)回 3で割りきれる。(矛盾) ∴ k=1.
965 名前:132人目の素数さん mailto:sage [2017/02/20(月) 16:58:03.58 ID:WSCKUr9g.net] >>915 (III) n=3 n=3d,(d,3)=1 とおく。 いま、d>1と仮定し、dの最小の素因数をqとおく。q≧5 題意より q|nn|(2^n+1)|{2^(2n)−1} フェルマーの小定理より q|{2^(q-1)−1} ∴ 最大公約数をとって q|{2^gcd(2n,q-1)−1}, 一方、qの最小性から、 gcd(2n,q-1)= gcd(6d,q-1)= 6gcd(d,q-1)= 6, q|(2^6 -1) = 63, q=7, 一方、 q|nn|2^n +1 = (q+1)^d +1 ≡ 1^d +1 = 2(mod q) (矛盾) ∴d=1 ・IMO-1990 北京大会 Q3
966 名前:132人目の素数さん [2017/02/20(月) 22:11:35.28 ID:EhDBIOOm.net] 1/(1+sin(x)) の0〜piの積分を求めよ。 という問題で、分母分子に1-sin(x)をかけると 1/(cos(x))^2 - sin(x)/(cos(x))^2 になるので この不定積分として tan(x) - 1/cos(x) (整理して (sin(x)-1)/cos(x) …(a))を 得たのですが、(a)はx=0.5piで定義されず 0〜piの積分に使えません。 ところで(a)の分母分子に1+sin(x)をかけると, (a)= -cos(x)/(1+sin(x)) …(b) に変形でき、これなら 0〜piで連続なので積分に使えると思い、解答は天下り的に 「 (b)を微分すると 1/(1+sin(x))になるので、(b)は原始関数である。よって 求める答は (TeX表記です→) [ (b) ]_0^pi =…= 2 。」 と書きました。 天下り的でなく、不定積分として直接(a)を
967 名前:得ることはできるものでしょうか。 [] [ここ壊れてます]
968 名前:132人目の素数さん mailto:sage [2017/02/20(月) 22:57:32.95 ID:ynY9AKxH.net] i.imgur.com/2G0iTQI.jpg (1)は答えだけわかって(2)はヒントだけわかります (1)は∠IBI1に●,☓,○が集まって90°になると睨んでるのですが、そうなるための∠DBI1=○になりません。∠DBI1の求め方又はそもそも解き方が間違ってるなら正しい解き方、 そして(2)はヒントによると∠DBI=∠DIB,∠DBI1=∠DI1Bらしいのですが何故なのか教えて下さい
969 名前:132人目の素数さん mailto:sage [2017/02/21(火) 00:25:10.39 ID:B62WUnAT.net] 円周角 三角形の内角と外角 に着目する
970 名前:132人目の素数さん [2017/02/21(火) 01:12:38.37 ID:dP8MoDfR.net] >>943 x=x^2/x となるのはx≠0のとき それと同じで、0≦x≦πの範囲で 1/(1+sin(x))=(1-sin(x))/(cos(x))^2 となるのは分母≠0のとき、つまりx≠π/2
971 名前:132人目の素数さん mailto:sage [2017/02/21(火) 01:27:56.33 ID:Ps5mD6u3.net] >>945 まだわからないので更に詳しく教えて下さい
972 名前:132人目の素数さん mailto:sage [2017/02/21(火) 01:41:37.49 ID:KmhAK+Tr.net] >>943 tan(x/2)=tとおく
973 名前:132人目の素数さん mailto:sage [2017/02/21(火) 02:18:01.53 ID:kQvuYl49.net] >>944 (1)では点Dは使わない方が良いかと 線分ABをBの方向に延長した点をEとでもおくと、 Iは内心だから∠ABI=∠CBI(=aとする) I1の定義から∠CBI1=∠EBI1(=bとする) Bの周りの角度の和から2a+2b=180°でa+b=90°になることからわかる (2)は弧CDに対する円周角は等しいから∠DBC=∠DAC, △ABIの外角に注目して∠BID=∠BAI+∠ABIが成り立つ 以上から∠DBI=∠DIB また∠DBI1=90°-∠DBIであり、△IBI1の内角の和に注目して∠DI1B=90°-∠DIB
974 名前:132人目の素数さん [2017/02/21(火) 02:19:17.86 ID:dP8MoDfR.net] >>943 >>946 の続き (b)の分母分子に1-sin(x)をかけると -cos(x)/(1+sin(x))=(sin(x)-1)/cos(x) となり(a)と等しくなるが これも分母≠0のとき、つまりx≠π/2 積分する範囲で分母≠0ならば (a)=(b) で問題ないが、今回は、分母=0となるxが含まれるので (a)≠(b)
975 名前:942 [2017/02/21(火) 10:37:48.61 ID:Xxbzz5cy.net] すみません。 >天下り的でなく、不定積分として直接(a)を得ることはできるものでしょうか。 は 天下り的でなく、不定積分として直接(b)を得ることはできるものでしょうか。 でした。 つまり僕がお聞きしたいのは 1/(1+sin(x)) の原始関数として 直接 -cos(x)/(1+sin(x)) の表式を得ることは できるですか ということですすみあせん。
976 名前:132人目の素数さん mailto:sage [2017/02/21(火) 12:20:45.04 ID:BthXt0ZI.net] >>951 定義域の一部が抜けることをとりあえず気にせずに不定積分を求め、 抜けた部分もカバーできるように形を調整して必要な範囲で使える原始関数にする なんてことは当たり前の操作であって、そのプロセスをそのまんま解答に書けばよいかと。 そもそも、不定積分を求めるのに「天下り的」な操作を忌避してたら、 微分から逆算して作られた積分の公式は全部アウトでしょうよ。
977 名前:132人目の素数さん mailto:sage [2017/02/21(火) 12:24:27.21 ID:nQQSK4L9.net] >>949 ありがとうございました 無事(2)の本来の答えもわかりました
978 名前:132人目の素数さん mailto:sage [2017/02/21(火) 14:16:11.39 ID:KmhAK+Tr.net] >>951 ∫0→pi/2 と∫pi/2 to pi はpi-xと置換すれば等しいから求める式は2∫0 to pi/2 ここでt=tan(x/2)と置換すればいい
979 名前:132人目の素数さん [2017/02/21(火) 15:47:26.20 ID:p34OjPkW.net] >>951 「直接」というのがどういう意味で使っているか、だな。
980 名前:132人目の素数さん mailto:sage [2017/02/21(火) 17:43:29.19 ID:OP6xUzxm.net] >>943 1/(1+sin(x)) の原始関数をyとして y=-cos(x)/(1+sin(x)) を求めても、 x→π+0 のときは y→+∞ となって、0・∞=∞・0=0 を使わないと x→π+0 のときの原始関数yの収束の様子が分からないから、 高校の知識だけでそのやり方により与えられた積分の値を求めることは出来ない。
981 名前:132人目の素数さん mailto:
[] [ここ壊れてます]
982 名前:sage mailto:2017/02/21(火) 18:01:29.20 ID:OP6xUzxm.net [ >>943 >>956 の >0・∞=∞・0=0 を使わないと x→π+0 のときの原始関数yの収束の様子が分からないから、 >高校の知識だけでそのやり方により与えられた積分の値を求めることは出来ない。 の部分は >+∞+1=+∞ を使わないと x→π+0 のときの原始関数yの収束の様子が分からないから、 >高校の知識だけでそのやり方により与えられた積分の値について知ることは出来ない。 というか、この積分は発散して値は求まらない。 ] [ここ壊れてます]
983 名前:132人目の素数さん mailto:sage [2017/02/21(火) 18:11:27.30 ID:OP6xUzxm.net] >>943 >>956-957 (訂正後も含む)の「x→π+0 のときの原始関数yの収束の様子」の部分は「積分の値の様子」な。 単純に原始関数 y=-cos(x)/(1+sin(x)) に x=π や x=0 を代入して積分値を計算して見れば、いいたいこと分かるだろ。
984 名前:132人目の素数さん mailto:sage [2017/02/21(火) 18:21:40.95 ID:OP6xUzxm.net] >>943 >>956-958 の話は取り消しでなかったことにしてほしい。変なこと考えてた。
985 名前:132人目の素数さん [2017/02/21(火) 18:26:55.90 ID:dP8MoDfR.net] >>951 ちょっと考えてみたが、直接は思い付かなかったw しかし sin(x)=cos(π/2-x) とすれば 1/(1+sin(x))=1/(2(cos(π/4-x/2))^2) これを積分すると -tan(π/4-x/2)=tan(x/2-π/4) 0≦x≦πで定積分すれば2になる 一応この変形だと定義域で分母≠0となる もちろん -tan(π/4-x/2)=-cos(x)/(1+sin(x)) と変形出来る。無駄な変形だけどね >>956-957 何か勘違いしてるぞ
986 名前:132人目の素数さん mailto:sage [2017/02/21(火) 18:32:25.20 ID:OP6xUzxm.net] >>960 あ〜、πを3π/2とゴッチャにしたりして間違えてた。
987 名前:942 950 [2017/02/21(火) 21:48:12.19 ID:Xxbzz5cy.net] 多くの知見に満ちたレスをありがとうございます 僭越ながら959をベストアンサーにさせていただきます
988 名前:132人目の素数さん mailto:sage [2017/02/22(水) 12:34:02.19 ID:pO0SiJAe.net] なに無駄なこと書いてんだ
989 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:39:11.49 ID:vPMeQnxx.net] ¥
990 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:39:29.64 ID:vPMeQnxx.net] ¥
991 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:39:49.14 ID:vPMeQnxx.net] ¥
992 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:40:07.90 ID:vPMeQnxx.net] ¥
993 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:40:27.80 ID:vPMeQnxx.net] ¥
994 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:40:46.40 ID:vPMeQnxx.net] ¥
995 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:41:04.82 ID:vPMeQnxx.net] ¥
996 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:41:24.23 ID:vPMeQnxx.net] ¥
997 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:41:42.75 ID:vPMeQnxx.net] ¥
998 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 15:42:01.75 ID:vPMeQnxx.net] ¥
999 名前:132人目の素数さん mailto:sage [2017/02/22(水) 18:52:00.43 ID:HkjWDIJ5.net] (2)を間違えました。pのy座標が1/2のとき、θはπ/6なのですが、どうしてもpのx座標がcの中心のx座標と同じように考えてしまいます。なにが間違っているのでしょうか。よろしくお願いします。 i.imgur.com/YBDAmhs.jpg
1000 名前:132人目の素数さん mailto:sage [2017/02/22(水) 18:52:39.47 ID:HkjWDIJ5.net] 問題のとらえ間違えに気付きました。なんでもないです。
1001 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:54:37.67 ID:vPMeQnxx.net] ¥
1002 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:54:54.74 ID:vPMeQnxx.net] ¥
1003 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:55:11.39 ID:vPMeQnxx.net] ¥
1004 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:55:28.79 ID:vPMeQnxx.net] ¥
1005 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:55:45.42 ID:vPMeQnxx.net] ¥
1006 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:56:00.47 ID:vPMeQnxx.net] ¥
1007 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:56:17.45 ID:vPMeQnxx.net] ¥
1008 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:56:36.83 ID:vPMeQnxx.net] ¥
1009 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:56:54.99 ID:vPMeQnxx.net] ¥
1010 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/22(水) 18:57:13.92 ID:vPMeQnxx.net] ¥
1011 名前:132人目の素数さん mailto:sage [2017/02/23(木) 10:45:57.84 ID:AaITFjYg.net] 「将軍さま、問題を屏風から追い出してください。」
1012 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:03:18.68 ID:sUU4b7tI.net] ¥
1013 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:03:38.44 ID:sUU4b7tI.net] ¥
1014 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:03:58.14 ID:sUU4b7tI.net] ¥
1015 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:04:15.86 ID:sUU4b7tI.net] ¥
1016 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:04:34.17 ID:sUU4b7tI.net] ¥
1017 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:04:51.21 ID:sUU4b7tI.net] ¥
1018 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:05:09.11 ID:sUU4b7tI.net] ¥
1019 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:05:28.57 ID:sUU4b7tI.net] ¥
1020 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:05:46.06 ID:sUU4b7tI.net] ¥
1021 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 11:06:03.52 ID:sUU4b7tI.net] ¥
1022 名前:132人目の素数さん mailto:sage [2017/02/23(木) 14:04:44.21 ID:UG/5k8zL.net] >>963 >>956-959 で考えていたのは、どちらかというと、広義積分 lim_{ε→(3/2)π-0}(∫_[0→ε](1/(1+sin(x)))dx) のこと。
1023 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 17:56:54.48 ID:sUU4b7tI.net] ¥
1024 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 17:57:15.62 ID:sUU4b7tI.net] ¥
1025 名前:¥ ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 17:57:34.58 ID:sUU4b7tI.net] ¥
1026 名前:猫 ◆2VB8wsVUoo mailto:sage [2017/02/23(木) 17:57:56.80 ID:sUU4b7tI.net] 猫
1027 名前:過去ログ ★ [[過去ログ]] ■ このスレッドは過去ログ倉庫に格納されています