- 1 名前:132人目の素数さん [2011/11/03(木) 00:12:57.26 ]
- 過去ログ
www3.tokai.or.jp/meta/gokudo-/omoshi-log/ まとめwiki www6.atwiki.jp/omoshiro2ch/ 1 cheese.2ch.net/test/read.cgi/math/970737952/ 2 natto.2ch.net/test/read.cgi/math/1004839697/ 3 science.2ch.net/test/read.cgi/math/1026218280/ 4 science.2ch.net/test/read.cgi/math/1044116042/ 5 science.2ch.net/test/read.cgi/math/1049561373/ 6 science.2ch.net/test/read.cgi/math/1057551605/ 7 science2.2ch.net/test/read.cgi/math/1064941085/ 8 science3.2ch.net/test/read.cgi/math/1074751156/ 9 science3.2ch.net/test/read.cgi/math/1093676103/ 10 science4.2ch.net/test/read.cgi/math/1117474512/ 11 science4.2ch.net/test/read.cgi/math/1134352879/ 12 science6.2ch.net/test/read.cgi/math/1157580000/ 13 science6.2ch.net/test/read.cgi/math/1183680000/ 14 science6.2ch.net/test/read.cgi/math/1209732803/ 15 science6.2ch.net/test/read.cgi/math/1231110000/ 16 science6.2ch.net/test/read.cgi/math/1254690000/ 17 kamome.2ch.net/test/read.cgi/math/1284253640/ 18 kamome.2ch.net/test/read.cgi/math/1307923546/
- 552 名前:132人目の素数さん mailto:sage [2012/05/27(日) 05:56:51.79 ]
- 根性 根性 de 根性 ♪
- 553 名前:132人目の素数さん mailto:sage [2012/05/27(日) 06:03:08.93 ]
- >>549
背理法だろ
- 554 名前:132人目の素数さん [2012/05/27(日) 07:34:29.76 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 555 名前:132人目の素数さん [2012/05/29(火) 04:32:20.22 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
- 556 名前:132人目の素数さん mailto:sage [2012/05/29(火) 04:50:24.77 ]
- ハイリ ハイリ フレ ハイリ ホー ハッハッハ ハイレ ハイレ フレー ホーホー
- 557 名前:132人目の素数さん mailto:sage [2012/05/29(火) 23:35:27.52 ]
- 低次元に落としてみれば?
- 558 名前:132人目の素数さん mailto:sage [2012/05/30(水) 05:38:05.52 ]
- >>533
不可能であることが言えた( ^o^) 解答のイメージ: p∈R^2を1つ取る。 このpを通るジョルダン閉曲線が1つだけ存在する。 この閉曲線の内部から別の点pを1つ取る。 このpを通るジョルダン閉曲線が1つだけ存在する。 この閉曲線の内部から別の点pを1つ取る。 このpを通るジョルダン閉曲線が1つだけ存在する。 ……これを繰り返すことで、ジョルダン閉曲線が 内部にどんどん作られていき、「切り株の年輪」のような 模様が作られる。ジョルダン閉曲線を "十分多く作れば" 、 区間縮小法のような感じで、年輪は一点に収束する(本当は 一点とは限らないが、一点の方がイメージしやすいので)。 その点を再びpと書くと、この点を通るジョルダン閉曲線が 存在するはずだが、この閉曲線は他の閉曲線と交わって矛盾する。 年輪を帰納的に構成しようとしたが、可算無限回では終わらず、 超限帰納法が必要になりそうだった。自分のスキルでは超限帰納法が うまく使えないので、かわりにツォルンの補題を使うことにした。 従って、証明が冗長な感じになった( ^o^) (続く)
- 559 名前:132人目の素数さん mailto:sage [2012/05/30(水) 05:40:20.56 ]
- (続き)
記法: A⊂R^2に対して、Aの内部をA^iと書くことにする。 R^2内のジョルダン閉曲線γに対して、 「γの内部またはγ上の点」全体の集合をF(γ)と表すことにする。 明らかに、F(γ)はコンパクトである。また、F(γ)^i≠φが成り立つ。 実際の解答: >>533が不可能であることを背理法で示す。 題意を満たすジョルダン閉曲線の族があったとして、その集合をΓと置く。 集合族Mを次のように定める。 M={ F(γ)|γ∈Γ} Γの定義から、任意のF1, F2∈Mに対して、 ・F1=F2 ・F1⊂F2, F1≠F2 ・F1⊃F2, F1≠F2 ・F1∩F2=φ のいずれかが成り立つことが分かる。 このMに、次のようにして半順序≦を定義する(包含が逆向きになっているが、それでいい)。 F1≦F2 ⇔ F1⊃F2 (続く)
- 560 名前:132人目の素数さん mailto:sage [2012/05/30(水) 05:44:19.69 ]
- (続き)
まず、上記の半順序集合(M,≦)には極大元が存在しないことを示す。 もし極大元が存在するならば、F1∈Mが極大元だとすると、 Mの定義から、F1=F(γ1)なるγ1∈Γが取れる。 F(γ1)^i≠φだから、p∈F(γ1)^i を1つ取る。Γの定義から、このpを通る γ∈Γが存在する。再びΓの定義から、F(γ)⊂F(γ1)^iが成り立つことが分かる。 特にF(γ)≧F(γ1)かつF(γ)≠F(γ1)となる。すると、 F(γ)∈M, F(γ)≧F(γ1), F(γ)≠F(γ1) ということになるので、F1=F(γ1)がMの極大元であることに矛盾する。 以上より、(M,≦)には極大元が存在しない。 よって特に、(M,≦)は帰納的でない。なぜなら、もし(M,≦)が帰納的ならば、 ツォルンの補題が使えて、(M,≦)には極大元が存在することになってしまうので。 (続く)
- 561 名前:132人目の素数さん mailto:sage [2012/05/30(水) 05:52:10.07 ]
- (続き)
さて、(M,≦)は帰納的でないのだから、ある空でない全順序部分集合A⊂Mが存在して、 (A,≦)は(M,≦)の中に上界を持たないことになる。このようなAを1つ取っておく。 Aは全順序部分集合だったから、任意のF1, F2∈Aに対して、 F1⊂F2 または F1⊃F2 が成り立つ。 特に、集合族Aは有限交叉性を持つ。… (*) 任意のF∈Aはコンパクトだから、これと(*)より、∩[F∈A] F ≠φ が成り立つことになる。そこで、p∈∩[F∈A] F …(**) を1つ取る。 Γの定義から、このpを通るγ1∈Γが存在する。 F1=F(γ1)と置いておく。明らかに、p∈F1 かつ F1∈M である。 (A,≦)は(M,≦)の中に上界を持たなかったから、あるF∈Aが存在して、 F≦F1が成り立たない。すなわち、F⊃F1が成り立たない。これと>>559から、 ・F1⊃F, F1≠F ・F1∩F=φ のいずれかが成り立つ。(**)に注意して、p∈Fだから、これとp∈F1より、 後者は成り立たない。よって、前者が成り立つしかない。 F=F(γ)なるγ∈Γを取っておく。このとき F(γ1)⊃F(γ), F(γ1)≠F(γ), p∈F(γ1), p∈F(γ), p∈Im(γ1) ということだから、Γの定義から矛盾する(γとγ1の図を描くと分かりやすい)。 以上より、>>533は不可能である。 ……ジョルダン閉曲線の性質を証明せずに、"Γの定義より" で 済ませている部分が多々あるので、厳密性に欠けるような( ^o^)
- 562 名前:132人目の素数さん mailto:sage [2012/05/30(水) 08:21:24.51 ]
- ジョルダン閉曲線の内側の面積は0より大きい。
内側の面積が最小であるジョルダン閉曲線の内側には 別のジョルダン閉曲線は存在しえない。 故にジョルダン閉曲線で覆われていない領域が存在する。
- 563 名前:132人目の素数さん mailto:sage [2012/05/30(水) 14:56:14.23 ]
- >>562
ジョルダン閉曲線が交わる場合は、その限りじゃないんじゃない?
- 564 名前:132人目の素数さん mailto:sage [2012/05/30(水) 18:09:02.46 ]
- ジョルダン閉曲線の族が与えられたとき、
それらのジョルダン閉曲線における、 内側の面積が「最小である」ジョルダン閉曲線 は必ずしも存在しない。下限はいつでも存在するが、 それは0である可能性があり、その場合、 >>562の論法は破綻する。
- 565 名前:132人目の素数さん mailto:sage [2012/05/30(水) 18:33:58.68 ]
- >>563
> 内側には 交わってるものは内側とは言わんだろ。
- 566 名前:132人目の素数さん mailto:sage [2012/05/30(水) 22:03:05.45 ]
- >>565
「内側」と言っている時点で、内包するものだけに 限定してしまっていて、互いに交わる場合が考慮されていない、 と言いたいのだ。
- 567 名前:132人目の素数さん mailto:sage [2012/05/30(水) 22:06:21.20 ]
- なんか、アレフ1のR^2と、ジョルダン曲線とジョルダン曲線上の一周を[0,2π)とした位相の直積が一対一対応しないのが不思議。連続体仮説が崩れてる気が。
- 568 名前:132人目の素数さん mailto:sage [2012/05/30(水) 22:13:45.64 ]
- >>567
連続と限らなければ一対一対応が作れる。
- 569 名前:132人目の素数さん mailto:sage [2012/05/30(水) 22:48:25.54 ]
- www.astroarts.co.jp/shop/showcase/pzl_great/index-j.shtml
こういう感じの5x5の真っ白なジグソーパズルがあるとする。 ピースの繋ぎ目は全てユニークで間違った並べ方をすると必ず噛み合わず、 また実際に合わせてみないと隣り合うか分からない。 ピースの照合一回を一手とすると、 最善手の最長手数はいくらか。
- 570 名前:132人目の素数さん mailto:sage [2012/05/30(水) 23:13:13.17 ]
- 縁は直線?
- 571 名前:132人目の素数さん mailto:sage [2012/05/30(水) 23:13:43.97 ]
- 面積に注目するのイイですね。
その方針でも証明できた( ^o^) 今度はツォルンの補題が必要なくなった。 でも>>558-561より長い証明になってしまった。 構成的に議論するから、当たり前か。 まあ、書かなくてもいいよね(^o^)
- 572 名前:132人目の素数さん mailto:sage [2012/05/30(水) 23:13:57.88 ]
- 裏返しも区別がつかないの?
- 573 名前:132人目の素数さん mailto:sage [2012/05/30(水) 23:49:24.01 ]
- よくわからんときは問題を簡略化して考えてみようと思った
・表裏の区別はつく、というか裏返せない ・縁と縁でないものの区別はつく ・凹と凸の区別などはつかない ・ジグゾーパズルの大きさは2x2
- 574 名前:132人目の素数さん mailto:sage [2012/05/30(水) 23:54:04.28 ]
- すると最善最悪は3回の照合で配置解明、+4回の連結で完成か
…これかなり難しそうだなあ、2x2でこれか 3x3…すでに投げ出したい
- 575 名前:132人目の素数さん mailto:sage [2012/05/31(木) 00:17:08.08 ]
- 3x3は中央が固定。
その上下左右は最悪4+3+2回 角も最悪4+3+2回 ある場所にある向きで必ず入るとわかっているピースを差し込むのは 照合というのか? 照合でないとしたら、1手に数えないのか?
- 576 名前:132人目の素数さん mailto:sage [2012/05/31(木) 00:32:53.20 ]
- とりあえず確定済みの連結作業については
照合回数に含めない方向で考えてみないか? まあ>>569など不満があるなら反対してくれると期待
- 577 名前:132人目の素数さん mailto:sage [2012/05/31(木) 13:57:09.54 ]
- 3×3の場合
(1)各辺のピースを中央のピースに合わせる 最悪で(3+2+1+0)=6回 (2)角のピースを合わせる 最悪で(3+2+1+0)=6回 よって6+6=12回 4×4の場合 (1)各辺のピースに対して対応する中央のピースを見つける 最悪で(4×4−1)+(4×3+2×1−1)+(4×2+2×2−1)+(4×1+2×3−1)+(2×4−1)+(2×3−1)+(2×2−1)+(2×1−1)=64回 (2)角のピースを合わせる 最悪で(3+2+1+0)=6回 (3)2×2の場合に帰着 最悪で3回 よって64+6+3=73回 これが最善手かどうかはわからんが
- 578 名前:132人目の素数さん mailto:sage [2012/05/31(木) 18:52:19.13 ]
- 実際に配置する話と情報を獲得する話がごっちゃに議論されるとわかりにくいので
「照合」とはあくまでも1つの辺と1つの辺がかみ合うかどうかをチェックする 作業を指すものだという設定にしたほうがよいかもしれない。 たとえば既に判明しているかみ合わせから部分的な配置が確定したところに存在する 1ピース分の穴に実際にピースを置いて確認する操作をすると、それは 同時に4組の辺と辺のかみ合わせをチェックしていることになるが、 上記考え方ではそのように実際に配置した所でチェックするのではなく あくもでも個々の辺と辺のかみ合わせだけをチェックするのであって、 今回の例では、穴の周囲4辺のうちのどこかと別のピースのある辺がマッチした 時点で、他の3辺についてもマッチすることは推論による帰結として判明する と考える。
- 579 名前:132人目の素数さん mailto:sage [2012/05/31(木) 21:32:29.35 ]
- N×N の場合でも、次の方針でできるんじゃないの?
(1) 外枠を作る (2) Pを残りのピースとする (3) 以下の処理をして内側を埋める for(c=2; c<N; c++){ _for(r=2; r<N; r++){ __r-1行c列目のピースとPのピースを照合し、 __マッチしたピースpをPから取り出してr行c列目にはめる。 _} } この場合の照合回数もすぐ出るでしょ。
- 580 名前:132人目の素数さん mailto:sage [2012/05/31(木) 22:25:27.52 ]
- 最善である証明どうやりゃいいんだか
- 581 名前:132人目の素数さん mailto:sage [2012/05/31(木) 22:34:02.85 ]
- 外枠を作るのに何回かかるか公式化できる?
ちなみに3×3だとある角のピースから時計回りにつなげると3+2+2+1+1回 それに中央のピースの回転を合わせるのに3回で計12回、>>577と同じになる >>577のやり方も一般化できるよ。しかも公式化できる。 n×n (n≧4)の場合、求める回数をP(n)とする (1)各辺のピースに対して対応する中央のピースを見つける 最悪で(4*n-1)+(4*n-3)+...+3+1=4*n^2回 (2)角のピースを合わせる 最悪で3+2+1+0=6回 (3)(n-2)×(n-2)の場合に帰着 最悪でP(n-2)回 よってP(n)=4*n^2+6+P(n-2)
- 582 名前:132人目の素数さん mailto:sage [2012/05/31(木) 22:38:34.16 ]
- >>581
ごめん、(1)の回数が間違ってるわ。スルーして
- 583 名前:132人目の素数さん mailto:sage [2012/05/31(木) 22:48:30.55 ]
- >>581
n×n (n≧4)の場合 辺のピースの個数e:=4*(n-2) 中央のピースの個数c:=(n-2)*(n-2) だから(1)の回数は (4*c-1)+(4*c-3)+...+(4*c-2*(e-1)-1)回に訂正 これでいけるはず
- 584 名前:132人目の素数さん mailto:sage [2012/05/31(木) 23:53:43.34 ]
- ある場所にピースが置けるかどうかは
隣のピースとの合致を総当りで見るしかない 順番に埋めていく限りはどの順番で当てはめても 1辺ずつの照合になるから最悪手はおよそ4*N!だろう ちょっと問題を変えて、4つのピースを十字型に 並べてから真ん中に5つ目を当てはめると言う手順で 同時に4辺の合致判定をしたと認めるならば 4乗根くらい探索効率があがるはずだがどうかね
- 585 名前:132人目の素数さん mailto:sage [2012/06/01(金) 07:48:15.88 ]
- >>584
自己レスだが計算が適当すぎた
- 586 名前:569 mailto:sage [2012/06/03(日) 19:32:14.86 ]
- 意外に厳密なルール設定が必要だったな。
照合に関しては >>578 がいいかな。 安楽椅子探偵が別部屋のパズルを 「◯番のピースの{左, 右, 上, 下} 辺に△番のピースはマッチするか?」の形式の 質問に対する「Yes/No」だけで解いてるイメージで。 >>584 はピースの照合が目的なら4手。 SAT充足判定問題を反復深化させると解けるかな。
- 587 名前:569 mailto:sage [2012/06/03(日) 19:38:19.87 ]
- 話がズレるが実際のジグソーパズルのユニークな切り口ってどうやって作ってるんだろうね。
多分凸の部分の大きさが線形に並んでるんだろう。 ってことはリアルジグソーも凸の大きさであらかじめソートしてやれば 二分探索が出来て早くなるのかもね
- 588 名前:132人目の素数さん mailto:sage [2012/06/03(日) 19:40:20.12 ]
- Flashのジグソーパズルなら
ピースをほとんど重ねてしまって照合作業をCPUに任せるという 卑怯な手がある
- 589 名前:132人目の素数さん [2012/06/03(日) 20:26:30.14 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 590 名前:132人目の素数さん mailto:sage [2012/06/03(日) 21:50:23.58 ]
- 「◯番のピースの{左, 右, 上, 下} 辺に△番のピースの{左, 右, 上, 下}はマッチするか?」
だった
- 591 名前:132人目の素数さん mailto:sage [2012/06/03(日) 22:24:18.64 ]
- ジグソーパズルを NxM とすると、
4個のコーナーピースは (位置の組み合わせ)=4!=24通り、 2(N+M)-8個のエッジピースは (位置の組み合わせ)=(2(N+M)-8)! 通り、 (N-2)(M-2)個のセンターピースは (位置の組み合わせ)×(向きの組み合わせ) =(((N-2)(M-2))!)(4^((N-2)(M-2))) 通りの組み合わせがある。 全体の正解の組み合わせは、 N≠Mのとき、これらの積の1/2(180度回転対称はどちらも正解なので) N=Mのとき、これらの積の1/4(90度回転対称はどちらも正解なので) となる。 2x2のとき、6 通り。 3x3のとき、576 通り。 4x4のとき、1486356480 通り。 4x5のとき、128421199872000 通り。 5x5のとき、273395378722701312000 通り。
- 592 名前:132人目の素数さん mailto:sage [2012/06/03(日) 22:53:44.38 ]
- 2x2 を minimax の全探索で行ってみよう。
ピースを a,b,c,d として a を左上に置く。 答えは abcd, abdc, acbd, acdb, adbc, adcb のどれかだ。 (左上、右上、右下、左下の順で表現した) 「a の右隣りは b か」を問うとする。 __ 答 YES → 候補 abcd, abdc より2手詰み。 __ 答 NO → 候補 acbd, acdb, adbc, adcb。 ____「a の右隣りは c か」を問うとする ______ 答 YES → 候補 acbd, acdb より3手詰み。 ______ 答 NO → 候補 adcb, adbc より3手詰み。 ____「b の右隣りは a か」を問うとする ______ 答 YES → 候補 acdb, adcb より3手詰み。 ______ 答 NO → 候補 acbd, adbc より3手詰み。 ____「c の右隣りは a か」を問うとする ______ 答 YES → 候補 adbc より2手詰み。 ______ 答 NO → 候補 acbd, acdb, adcb より3手以上必要。 ____「c の右隣りは d か」を問うとする ______ 答 YES → 候補 acdb より2手詰み。 ______ 答 NO → 候補 acbd, adbc, adcb より3手以上必要。 よって2x2に対する「最悪手を最小にする最善手」の 最悪手は3手。最良手は2手。確率平均的には、8/3=2.666手。 これ以上はちょっと計算機の力が必要か。
- 593 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:03:47.87 ]
- 01 02 04 07 11
03 05 08 12 16 06 09 13 17 20 10 14 18 21 23 15 19 22 24 25 の順番で照合するとする。 01を置いた後、残りの 2辺が直線のピースは3個 1辺が直線のピースは12個 0辺が直線のピースは9個 よって照合回数の最大数は (2+1)+(11+10+...+2+1)+(8+7+...+2+1)=120回 各順番で高々残りピースの数-1と同じ回数だけ照合すればいいという訳だから、単純に足してみた
- 594 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:22:09.78 ]
- 同じ方法で
1*1は0回 2*2は1回 3*3は9回 4*4は36回 n*nは3+(4n-7)(4n-6)/2+((n-2)^2-1)((n-2)^2)/2
- 595 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:24:29.01 ]
- n>1が抜けてた
- 596 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:27:24.55 ]
- >>593
細かいが、各()の中で最後に1を足す必要は無いぞ
- 597 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:30:01.53 ]
- すまんミスりまくりだ
同じ方法で 1*1は0回 2*2は3回 3*3は9回 4*4は37回 n*nは3+(4n-9)(4n-8)/2+((n-2)^2-1)((n-2)^2)/2回
- 598 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:34:45.90 ]
- >>596
+1の項は残りピース2個の時だから要ると思う わかりにくくてすまん
- 599 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:38:05.32 ]
- >>587
普通のジグソーパズルなら凸の位置や形状、 辺の曲がり方なんかも変えてある 大きなパズルを解くときは事前にピースの色と 形状パラメータで分類してから始めるというのは 慣れてる人ならみんなやってると思う
- 600 名前:132人目の素数さん mailto:sage [2012/06/04(月) 07:45:37.43 ]
- >>599で思い出したけど、普通のジグソーパズルなら
凸と凸のマッチングとか絶対見ないし、4辺凸型とか 周りの情報で探索を絞れる形もあるな 今の全探索型の解は実際の2倍くらいの見積もりか
- 601 名前:132人目の素数さん mailto:sage [2012/06/04(月) 10:27:23.26 ]
- >>600
そっかじゃあ例えば左と上が凹、右と下が凸になってたら、上下がわかるのか そうなると4つの角は自動的に決まるし、枠だってすぐ決まるな と思って>>569見たら上下と左右が対称だった
- 602 名前:132人目の素数さん mailto:sage [2012/06/04(月) 22:09:29.26 ]
- >>601
ばらけたピースの左端のやつは3辺が凸の形に見える
- 603 名前:132人目の素数さん [2012/06/05(火) 13:34:44.79 ]
- >>593
中央のピースは回転も考慮に入れないといけないのでは? 今日東急ハンズで実物見てきたけど ・9×11と12×17の2タイプ ・表裏の区別はおそらく可能 ・中央のピースはすべて上下凸左右凹(上下凹左右凸)型 ・辺のピースは上凸左右凹型か上凹左右凸型のどちらか だった
- 604 名前:132人目の素数さん mailto:sage [2012/06/05(火) 13:48:44.57 ]
- >>603
ちゃんと買ってこいよ、乞食が!
- 605 名前:132人目の素数さん mailto:sage [2012/06/05(火) 14:55:42.97 ]
- >>603
確かにそうだ ていうか>>569を改めて見る限り、目視も照合回数に含まれると考えていいんじゃね? とすると中央ピースは×3して192回か?
- 606 名前:132人目の素数さん [2012/06/05(火) 15:02:53.51 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 607 名前:132人目の素数さん [2012/06/05(火) 20:39:57.38 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 608 名前:132人目の素数さん [2012/06/06(水) 00:04:40.42 ]
- >>605
中央ピースは{(4*9-1)+(4*8-1)+...+(4*2-1)+(4*1-1)}になるんじゃね?
- 609 名前:132人目の素数さん mailto:sage [2012/06/06(水) 00:21:07.96 ]
- 端から1個ずつやるのは損では?
残ってるピースがすべてバラバラの1個だと、 残ってるもの全部候補になっちゃうから全部試さないといけない。 あらかじめ2個以上のをくっつけてピースを大きくしとくと、 明らかにぶつかって試しても意味ないところがもっと枝刈りできる気がするが。 たとえば3x2のすでにくっ付いたピースと2x2の隙間があるとすると、 そのピースはその隙間には入らないことは照合しなくてもわかるわけで。
- 610 名前:132人目の素数さん [2012/06/06(水) 00:21:27.57 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 611 名前:132人目の素数さん [2012/06/08(金) 10:15:14.01 ]
- >>609
求める手数はピースの照合の仕方によらない
- 612 名前:132人目の素数さん mailto:sage [2012/06/08(金) 13:06:52.34 ]
- >>611
どうして?
- 613 名前:132人目の素数さん mailto:sage [2012/06/08(金) 14:19:57.54 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/
- 614 名前:132人目の素数さん mailto:sage [2012/06/08(金) 16:29:17.10 ]
- >>612
バラバラにやろうとすると4辺を調べなきゃいけないけど、端(角)からやると1回で済む
- 615 名前:132人目の素数さん [2012/06/08(金) 18:15:26.13 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 616 名前:132人目の素数さん [2012/06/08(金) 23:11:32.07 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 617 名前:132人目の素数さん [2012/06/12(火) 02:44:09.94 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 618 名前:132人目の素数さん [2012/06/12(火) 12:06:45.86 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 619 名前:132人目の素数さん mailto:sage [2012/06/12(火) 17:20:19.66 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 620 名前:132人目の素数さん mailto:sage [2012/06/15(金) 23:09:05.04 ]
- n人のJKを、3人以上のいくつかのグループに分けて、それぞれのグループで円順列をつくる場合の数は何通りか?
- 621 名前:132人目の素数さん mailto:sage [2012/06/15(金) 23:11:47.64 ]
- >>620
すまん、数ヲタ的にはこうか? 「n人のJKを」 → 「n人のょぅι゛ょを」
- 622 名前:132人目の素数さん mailto:sage [2012/06/15(金) 23:18:22.93 ]
- n人のロリコンを、3人以上のいくつかのグループに分けて、それぞれのグループで円順列をつくる場合の数は何通りか?
だろ
- 623 名前:132人目の素数さん mailto:sage [2012/06/15(金) 23:50:05.88 ]
- いやいや
n人のロリータを、3人以上のいくつかのグループに分けて、それぞれのグループで円順列をつくる場合の数は何通りか? だろ
- 624 名前:132人目の素数さん mailto:sage [2012/06/16(土) 00:19:02.72 ]
- じゃあ
n人のロリコンが、m人のJCを3人以上のいくつかのグループに分けて、それぞれのグループで円順列をつくる場合の数は何通りか? か
- 625 名前:132人目の素数さん mailto:sage [2012/06/16(土) 00:56:14.43 ]
- >>624
その n は、当社で働く上で何の役に立つのですか?
- 626 名前:132人目の素数さん mailto:sage [2012/06/16(土) 01:01:00.57 ]
- >>620
> 数ヲタはロリコンなの? > ロリコン達が、n人のJCを、3人以上のいくつかのグループに分けて、 > それぞれのグループで円順列をつくる場合の数は何通りか? 答えは簡単な形にならなんだ しかもGFを使って解いたし… ('A`)ヴォエァ!
- 627 名前:132人目の素数さん mailto:sage [2012/06/16(土) 01:03:41.32 ]
- JCって?
- 628 名前:132人目の素数さん mailto:sage [2012/06/16(土) 01:05:50.78 ]
- ちょっとだけだぞ!
つ stat.ameba.jp/user_images/20091226/12/glamdays/20/3a/j/o0400064910353859185.jpg
- 629 名前:132人目の素数さん mailto:sage [2012/06/16(土) 09:22:27.51 ]
- >>628
JCキタ━━━┌(_Д_┌ )┐━━━!!
- 630 名前:132人目の素数さん mailto:sage [2012/06/16(土) 13:21:20.19 ]
- >>627
常識的にカンガルー dic.nicovideo.jp/a/jc dic.nicovideo.jp/a/jk
- 631 名前:132人目の素数さん [2012/06/21(木) 00:52:36.01 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 632 名前:132人目の素数さん [2012/06/21(木) 18:40:39.75 ]
- >>27
出題者がいるか謎だが解いてみた 答えは(315π-284√2)/140 どうだろう
- 633 名前:あのこうちやんは始皇帝だった mailto:shikoutei@chine.co.jp [2012/06/21(木) 19:35:38.57 ]
-
テメ〜ら、定職に就くのが先決だろがあああああ!!!!!!!!!!!!! ニート・無職・無能の、ゴミ・クズ・カスのクソガキどもがああああ!!!!!!!!!!!! ブッ殺してやっから、覚悟しとけ!!!!!!!!!!!!!!!!!!!!!!!!!!
- 634 名前:132人目の素数さん [2012/06/21(木) 19:42:20.71 ]
- __ノ)-'´ ̄ ̄`ー- 、_
, '´ _. -‐'''"二ニニ=-`ヽ、 / /:::::; -‐''" `ーノ / /:::::/ \ / /::::::/ | | | | | |:::::/ / | | | | | | | |::/ / / | | || | | ,ハ .| ,ハ| | |/ / / /| ,ハノ| /|ノレ,ニ|ル' | | | / / レ',二、レ′ ,ィイ|゙/ 私は只の数ヲタなんかとは付き合わないわ。 . | \ ∠イ ,イイ| ,`-' | 頭が良くて数学が出来てかっこいい人。それが必要条件よ。 | l^,人| ` `-' ゝ | さらに Ann.of Math に論文書けば十分条件にもなるわよ。 | ` -'\ ー' 人 一番嫌いなのは論文数を増やすためにくだらない論文を書いて | /(l __/ ヽ、 良い論文の出版を遅らせるお馬鹿な人。 | (:::::`‐-、__ |::::`、 ヒニニヽ、 あなたの論文が Ann of Math に accept される確率は? | / `‐-、::::::::::`‐-、::::\ /,ニニ、\ それとも最近は Inv. Math. の方が上かしら? | |::::::::::::::::::|` -、:::::::,ヘ ̄|'、 ヒニ二、 \ . | /::::::::::::::::::|::::::::\/:::O`、::\ | '、 \ | /:::::::::::::::::::/:::::::::::::::::::::::::::::'、::::\ノ ヽ、 | | |:::::/:::::::::/:::::::::::::::::::::::::::::::::::'、',::::'、 /:\__/‐、 | |/:::::::::::/::::::::::::::::::::::::::::::::::O::| '、::| く::::::::::::: ̄| | /_..-'´ ̄`ー-、:::::::::::::::::::::::::::::::::::|/:/`‐'::\;;;;;;;_| | |/::::::::::::::::::::::\:::::::::::::::::::::::::::::|::/::::|::::/:::::::::::/ | /:::::::::::::::::::::::::::::::::|:::::::::::::::::::::O::|::|::::::|:::::::::::::::/
- 635 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:17:26.17 ]
- 2^nを3で割ると2余ることを証明せよ。
ただし、nは自然数とする。
- 636 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:23:45.61 ]
- >>635
4=2^2はそうなってないよ。
- 637 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:24:35.60 ]
- >>635
2^n-2 =2(2^(n-1)-1) =6(1+2+2^2+…+2^(n-2)) mod 3として 2^n-2≡0 ∴2^n≡2 何が面白いのか分からん
- 638 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:25:12.57 ]
- >>637補足
n-2>0 つまりn>2のとき
- 639 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:34:27.79 ]
- 16=2^4はそうなってないよ。
- 640 名前:132人目の素数さん mailto:sage [2012/06/21(木) 23:59:31.27 ]
- 意外と面白かったな
- 641 名前:132人目の素数さん mailto:sage [2012/06/22(金) 00:19:24.66 ]
- 滑稽で仕方ない
- 642 名前:132人目の素数さん mailto:sage [2012/06/22(金) 00:35:53.02 ]
- マイナスとマイナスの積はプラスになることを式変形によって証明してつかあさい
- 643 名前:132人目の素数さん mailto:sage [2012/06/22(金) 00:52:37.91 ]
- 2^n = (3-1)^n ≡ (-1)^n (mod 3)
なので、nが偶数なら1余り、奇数なら2余る。
- 644 名前:132人目の素数さん mailto:sage [2012/06/22(金) 00:53:23.18 ]
- >>637
> >>635 > 2^n-2 > =2(2^(n-1)-1) > =6(1+2+2^2+…+2^(n-2)) 何が凄いといって、ここほど凄いところはない。 > 何が面白いのか分からん 君が面白がられている。
- 645 名前:132人目の素数さん mailto:sage [2012/06/22(金) 00:59:39.08 ]
- >>642
あってる? (-1) * (-1) = 1 + (-1) + (-1) * (-1) = 1 + 1 * (-1) + (-1) * (-1) = 1 + (1 - 1) * (-1) = 1 + 0 * (-1) = 1
- 646 名前:132人目の素数さん mailto:sage [2012/06/22(金) 01:01:47.67 ]
- x<0&y<0→xy=|x|e^πi|y|e^πi=|x||y|e^2πi=|x||y|>0
- 647 名前:132人目の素数さん mailto:sage [2012/06/22(金) 01:04:23.33 ]
- >>645
マジレスするとそれは一例を示しただけのような。
- 648 名前:132人目の素数さん mailto:sage [2012/06/22(金) 01:10:35.44 ]
- >>647
そだね。これでどうかな。 x, y > 0 のとき (-x) * (-y) = x * 0 + (-x) * (-y) = x * (y - y) + (-x) * (-y) = x * y + x * (-y) + (-x) * (-y) = x * y + (x - x) * (-y) = x * y
- 649 名前:132人目の素数さん mailto:sage [2012/06/22(金) 22:33:14.41 ]
- つきつめるとこうなるかな
(-x)(-y)=(0-x)(0-y)=00-0x-0y+xy=0-0-0+xy=xy
- 650 名前:132人目の素数さん mailto:sage [2012/06/22(金) 23:18:32.83 ]
- >>649
> (-x)(-y)=(0-x)(0-y)=00-0x-0y+xy=0-0-0+xy=xy .................................................................................↑
- 651 名前:132人目の素数さん mailto:sage [2012/06/22(金) 23:21:15.22 ]
- >>649
ズレてしまった > > (-x)(-y)=(0-x)(0-y)=00-0x-0y+xy=0-0-0+xy=xy > .................................................................................↑ ↑は +xyのところを指したつもり
- 652 名前:132人目の素数さん mailto:sage [2012/06/22(金) 23:57:24.04 ]
- 半径1の円周上(この円をC1)に異なる2点P,Qをとる。C1の中心をOとする。
また2点P,Qを直径とする円(この円をC2)をかく。 線分P,Qを1:2に外分する点をRとするとき、RからC1,C2に2本の接戦が引ける。 この接線のなす角をθとするとき、cosθの最大値を求めよ。
|

|