[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2chのread.cgiへ]
Update time : 04/13 12:29 / Filesize : 472 KB / Number-of Response : 868
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

2つの封筒問題スレ 4



604 名前:525,526 mailto:sage [2012/01/13(金) 05:41:22.32 ]
>>599のDの訂正
Dについて:p>1,r>1とし、1においてp^{-n}/(p^{-1}+p^{-2}+,,,,)の確率で(r^{n}円,r^{n+1}円)の組を入れる(ただし、n=1,2,3,,,)とする。
このとき、全確率は1であり、金額比は1:rである。
確認した金額がr^{k}円(ただしk>1)であるとき、他方がr^{k-1}円である確率とr^{k+1}円である確率はそれぞれ、p/(p+1)と1/(p+1)である。
よって他方の金額の期待値pr^{k-1}/(p+1)+r^{k+1}/(p+1)がr^{k}のM倍となるのはp+r^2=M(p+1)rのとき。
また確認した金額がr^1のとき他方の金額は必ずr^2であり金額(の期待値)がM倍以上となるのはr>=Mのとき。
M>1のときこれらの二つの条件を満たす解r,pが必ず存在する。
なぜなら、f(r)=r^2-M(p+1)r+pとおくと、十分大きなrに対してf(r)>0であり、f(M)=p(1-M^2)<0でありfはrに関して連続であるから。
(ちなみにf(p)=p(p+1)(1-M)<0より、ここで得た解r,pはr>pを満たすことも分かる。)
M=1.25として上記の二つの条件を満たす解r,pを用いて確率分布を定めればDを満たす。

これでいいかな。もう少し推敲すべきかもしれんが。計算ミスがあったら失礼。
>>603
>どうでもいいが1/3と2/3は逆だと思う
ご指摘どうも。
k=1は無視していたわけではなく、これを逆にして計算してたために正の解は一つだけでそれが1.25倍「以上」を満たしていた。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<472KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef