- 302 名前:301 mailto:sage [2009/08/20(木) 11:12:19 ]
- (e^2 が無理数であることの証明)
仮定より, 1+1/1!+1/2!+...+1/n! < p < 1+1/1!+1/2!+...+1/n!+3/(n+1)! ...@ また簡単な微分演算により, x>0 で 1+x/1!+x^2/2!+...+x^n/n! < e^x < 1+x/1!+x^2/2!+...+x^n/n!+x^(n+1)・e^x/(n+1)!...A Aにおいて x=1 とし,@と挟み撃ちより p=e. Aにおいて x=2 とおくと, 1+2/1!+2^2/2!+...+2^n/n! < e^2 < 1+2/1!+2^2/2!+...+2^n/n!+2^(n+1)・e^2/(n+1)!...B e^2=k/j (j,k は正の整数) とおけると仮定する. また m が正の整数のとき (2^m)!=2^(2^m-1)・N(m) (N(m) は正の整数) とかけるので, Bにおいて n=2^m (m は正の整数) とし,辺々に j・N(m) をかけると, j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!}<k・N(m) <j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!}+4j・e^2/(2^m+1)...C ここで j・N(m){1+2/1!+2^2/2!+...+2^(2^m)/(2^m)!} および k・N(m) は 正の整数で,m を十分大きくすると,0<4j・e^2/(2^m+1)<1 とすることができる. これはCに矛盾する. # e^m (m≧3) の証明はできない...
|

|