1 名前:132人目の素数さん [2005/11/22(火) 16:08:30 ] さぁ、好きなだけ語れ。 シロート厳禁、質問歓迎! 前スレ science4.2ch.net/test/read.cgi/math/1126510231
970 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:04:33 ] 補題 A をネーター局所環とし、m をその極大イデアルとする。 I を m に含まれるイデアルとする。 dim(A/I) < dim(A) なら x ∈ I で dim(A/xA) = dim(A) - 1 となるものが存在する。 証明 dim(A) = n とする。 dim(A/p) = n となる A の素イデアル p は A の極小素イデアル であるから有限個である。これ等を p_1, .., p_r とする。 dim(A/I) < dim(A) だから I はどの p_i にも含まれない. 前スレの579より I の元 x でどの p_i にも含まれないものがある。 >>942 より dim(A/xA) = dim(A) - 1 である。 証明終
971 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:06:30 ] 補題 A をネーター局所環とし、m をその極大イデアルとする。 dim(A) ≧ 1 なら x ∈ m で dim(A/xA) = dim(A) - 1 となるものが存在する。 証明 >>970 において I = m とすればよい。 証明終
972 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:09:54 ] >>967 の切断列の定義はBourbakiによる。
973 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:24:44 ] 命題 A をネーター環とし、M ≠ 0 を有限生成 A-加群とする。 x_1, ... x_r を rad(A) の元の列とすれば、 dim(M/(x_1M + ... + x_rM)) ≧ dim(M) - r となる。 証明 r に関する帰納法を使う。 r = 1 のときは >>969 で証明されている。 r > 1 とする。 M/(x_1M + ... x_(r-1)M) = N とおく。 N/x_rN = M/(x_1M + ... + x_rM) である。 >>969 より、dim(N/x_rN) ≧ dim(N) - 1 である。 帰納法の仮定より、dim(N) ≧ dim(M) - r + 1 である。 よって、dim(N/x_rN) ≧ dim(N) - 1 ≧ dim(M) - r 証明終
974 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:45:48 ] A をネーター局所環とし、m をその極大イデアル、 M ≠ 0 を有限生成 A-加群とする。 S = {x_1, ..., x_r} を m の r 個の元からなる集合とする。 列 x_1, ..., x_r が M-切断列(>>967 )になることは、集合 S のみで 定まる。よって、集合 S も(不正確だが)M-切断列と呼ぶ。 x_1M + ... + x_rM を SM と書く。
975 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 10:48:21 ] 記法の定義 集合 S の濃度を |S| と書く。
976 名前:9208 ◆lJJjsLsZzw mailto:sage [2006/02/24(金) 11:14:03 ] 補題 A をネーター局所環とし、m をその極大イデアル、 M ≠ 0 を有限生成 A-加群とする。 S と T を m の元からなる空でない有限集合で交わらないものとする。 S∪T が M-切断列(>>974 )になることと、 S が M-切断列 であり、かつ T が (M/SM)-切断列 となることは同値である。 証明 N = M/SM とおく。 N/TN = M/(S∪T)M となる。 よって、次の等式が得られる(記法 |S| については >>975 )。 dim(M/(S∪T)M) - dim(M) + |S| + |T| = (dim(N/TN) - dim(N) + |T|) + (dim(M/SM) - dim(M) + |S|) >>973 より、この等式の左辺 ≧ 0 であり、 右辺の括弧の中の各項も ≧ 0 である。 さらに、S と T は交わらないから、|S∪T| = |S| + |T| である。 よって本補題の主張が得られる。 証明
977 名前:132人目の素数さん mailto:sage [2006/02/24(金) 15:21:18 ] ころ
978 名前:132人目の素数さん [2006/02/27(月) 14:46:32 ] 9208さん、新スレ立てましたので 引越しをお願いいたします。 science4.2ch.net/test/read.cgi/math/1141019088/
979 名前:132人目の素数さん mailto:sage [2006/02/27(月) 21:24:08 ] 梅
980 名前:132人目の素数さん mailto:sage [2006/02/27(月) 21:24:50 ] ウメ
981 名前:132人目の素数さん mailto:sage [2006/02/28(火) 00:02:57 ] メシ
982 名前:132人目の素数さん mailto:sage [2006/02/28(火) 00:43:37 ] シマ
983 名前:132人目の素数さん mailto:sage [2006/02/28(火) 09:57:11 ] ( ´,_ゝ`)プッ
984 名前:132人目の素数さん mailto:sage [2006/02/28(火) 16:08:30 ] 九十八日。
985 名前:132人目の素数さん mailto:sage [2006/02/28(火) 21:49:11 ] (;゜〇゜)
986 名前:132人目の素数さん [2006/03/01(水) 11:00:31 ] king氏ね
987 名前:GiantLeaves ◆6fN.Sojv5w [2006/03/01(水) 11:24:43 ] talk:>>986 お前に何が分かるというのか?
988 名前:132人目の素数さん mailto:sage [2006/03/01(水) 11:40:00 ] >>987 たまには数学の話もしてみれば?
989 名前:GiantLeaves ◆6fN.Sojv5w [2006/03/01(水) 11:42:47 ] talk:>>988 何やってんだよ?
990 名前:132人目の素数さん mailto:sage [2006/03/01(水) 12:48:41 ] ε ⌒ヘ⌒ヽフ ( ( ;・ω・)=3 呼んだブヒ? しー し─J
991 名前:132人目の素数さん mailto:sage [2006/03/01(水) 20:37:49 ] kkkinggguuu
992 名前:GiantLeaves ◆6fN.Sojv5w [2006/03/01(水) 21:50:52 ] talk:>>991 私を呼んだか?
993 名前:132人目の素数さん mailto:sage [2006/03/02(木) 00:10:52 ] 消えろ
994 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:20:59 ] ほらほら
995 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:22:16 ] もうすぐだよ、ほら
996 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:23:08 ] 後少しで、ほら
997 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:23:54 ] みんな、寝てるのかな
998 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:24:56 ] きっとこの先何年たってもこれだけは変わらない!
999 名前:132人目の素数さん mailto:sage [2006/03/02(木) 04:25:49 ] そうこの数学板のみんなも!
1000 名前: ◆xeS.CIM.Jk [2006/03/02(木) 04:28:16 ] 数学を愛するすべての人は幸せになる! 小さな希望にも無限の可能性を抱いて頑張れる! 数学は不滅だ!それを愛するおまいらがいる限り!
1001 名前:1001 [Over 1000 Thread] このスレッドは1000を超えました。 もう書けないので、新しいスレッドを立ててくださいです。。。