命題 A を半局所環(極大イデアルが有限個しかない環)とする。 M を A 上の階数 n(>>253) の射影加群とすると、 M は自由である。
証明 A の Jacobson 根基(前スレの238)、つまり A のすべての極大イデアルの 共通集合を I とする。 B = A/I は半単純環(>>279)である。 M(x)B は >>355 より B 上の階数 n の射影加群である。 よって >>340 より M(x)B = M/IM は B 上の階数 n の自由加群である。 M は射影加群だから A-加群として平坦である。 よって、>>182 の証明と同様にすればよい。 証明終