[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/29 15:12 / Filesize : 339 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数的整数論 II



182 名前:208 [2005/12/05(月) 15:20:51 ]
命題
A を局所環、M を有限表示を持つ平坦な A-加群とする。
このとき、M は自由である。

証明
A の極大イデアルを m とし、k = A/m とおく。
M/mM = k(x)M の k 上の基底 を x_1 (mod mM), ..., x_n (mod mM)
とし、N = Ax_1 + ... + Ax_n とする。
M の任意の元 x は N の元と mod mM で等しいから
M = mM + N である。
よって、m(M/N) = (mM + N)/N = M/N となる。
中山の補題(前スレの242)より、M/N = 0 つまり M = N となる。
L = A^n を階数 n の自由加群とし、その基底を
e_1, ..., e_n とする。 各 e_i に x_i を対応させる
ことにより、A-加群としての全射 f: L → M が得られる。
Ker(f) = K とおく。

次の可換図式において、
  m(x)K → m(x)L → m(x)M → 0
   |   |    |
   v   v    v
0 → K → L →   M → 0

M は平坦だから、m(x)M → M は単射である(M = A(x)M と見なす)。
よって snake lemma より、
0 → K/mK → L/mL → M/mM → 0
は完全となる。
L → M の定義から、L/mL → M/mM は同型である。
よって K/mK = 0 となる。>>179 より K は有限生成だから、
中山の補題より K = 0 となる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<339KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef