[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



1 名前:132人目の素数さん [03/10/02 00:41]
Grothendieckは代数幾何が大好きだったそうです。

994 名前:132人目の素数さん [04/01/02 03:05]
補題(Krull-Akizuki)
A を1次元のネーター整域、K をその商体とする。
L を K の有限次拡大体とする。A の L における整閉包は
Dedekind整域である。

証明は例えば、Bourbaki VII §2.5 を参照。

995 名前:132人目の素数さん [04/01/02 03:38]
Hartshorne Ex.4.11 (a) の解答

A を局所ネーター整域、m を A の極大イデアルとし、
K をその商体とする。L を K の有限生成拡大体とする。
補題(>>993)よりm の生成元 x_1, x_2, ..., x_n を適当に
とると、B = A[x_2/x_1, ..., x_n/x_1] としたとき、
mB = (x_1)Bとなり (x_1)B ≠ B となる。
(x_1)B の極小素イデアルを p とする。
Harsthorne I Th.1.11A(Krullの単項イデアル定理)より B_p の
次元は1である。m ⊆ p であるから B_p は A を支配する。
補題(>>994)より B_p の K における整閉包 B~ は
Dedekind整域である。B~ の任意の極大イデアルを M とする。
B~_M は離散付値環である。B_p ∩ M は B_p の極大イデアル
である(Cohen-Seidenberg)から B~_M は B_p を支配する。
補題(>>992)より L の離散付値環で B~_M を支配、即ち A
を支配するものが存在する。

996 名前:132人目の素数さん [04/01/02 03:44]
Hartshorne Ex.4.11 (b) の解答

Ex.4.11 (a) と本文の Th.4.3 と Th.4.7 の証明から
明らか。

997 名前:132人目の素数さん [04/01/02 03:51]
これでこのスレでのHartshorneの問題の解答は終わりだな。
後で参照したい人はこのスレを保存しておいたほうがいいよ。
因みに私のやり方は、「全部読む」をクリックしてから
編集メニューの「すべて選択」を選び、コピーしてから
空のテキストファイルに貼り付ける。

998 名前:132人目の素数さん mailto:sage [04/01/02 04:06]
埋め

999 名前:132人目の素数さん mailto:sage [04/01/02 04:08]
生め

1000 名前:132人目の素数さん mailto:sage [04/01/02 04:08]
1000GET!

1001 名前:1001 [Over 1000 Thread]
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。






[ 新着レスの取得/表示 (agate) ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef