補題 Kを体、v をその離散付値、L を K の有限生成拡大体とする。 L の離散付値で v の拡張になっているものが存在する。
証明 A を K の付値環、m を A の極大イデアルとし、πをその生成元 とする。L の K 上の超越基を x_1, x_2, ..., x_n とする。 B = A[x_1, ...,x_n] とおく。 A は UFD だから B も UFDである(Gaussの定理)。 よってπは B の既約元であるから、πB は B の素イデアルで あり、B の πB による局所化 B_πB は離散付値環である。 B の商体を M とすると、B_πB は M の離散付値 w を 引き起こす。w は v の拡張である。 L は M の有限次拡大体だから補題より w は L の 離散付値に拡張される。