[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



993 名前:132人目の素数さん [04/01/02 02:51]
補題
A を局所ネーター整域、m を A の極大イデアルとし、
K をその商体とする。m の生成元 x_1, x_2, ..., x_n を適当に
とると、B = A[x_2/x_1, ..., x_n/x_1] としたとき、
mB = (x_1)Bとなり (x_1)B ≠ B となる。

証明
m の生成元 x_1, ..., x_n で 各 x_i が 0 でないものをとる。
Hartshorne I Th. 6.1A より K の付値環 R で A を支配する
ものが存在する。v を R に付随する付値で G をその値群と
する。g_i = v(x_i/x_1) と置く。g_k = min{g_1,...,g_n} と
する。各 i に対して v(x_i/x_k) = g_i - g_k >= 0 である。
よって、x_i/x_k ∈ R であり、
A[x_1/x_k, ..., x_n/x_k] ⊆ R となる。
必要なら x_1, ..., x_n の番号を付け替えて x_k = x_1 と
仮定してよい。よって B ⊆ R である。R は A を支配するから
R の極大イデアルは mB を含む。よって mB ≠ B である。
i ≧ 2 のとき、x_i ∈ (x_1)B だから
mB = (x_1, x_2, ..., x_n)B ⊆ (x_1)B である。
逆の包含関係は明らかだから、mB = (x_1)B である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef